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Abstract In this paper, a compressed membership problem for finite automata, both
deterministic (DFAs) and non-deterministic (NFAs), with compressed transition la-
bels is studied. The compression is represented by straight-line programs (SLPs), i.e.
context-free grammars generating exactly one string. A novel technique of dealing
with SLPs is employed: the SLPs are recompressed, so that substrings of the input
word are encoded in SLPs labelling the transitions of the NFA (DFA) in the same
way, as in the SLP representing the input text. To this end, the SLPs are locally de-
compressed and then recompressed in a uniform way. Furthermore, in order to reflect
the recompression in the NFA, we need to modify it only a little, in particular its size
stays polynomial in the input size.

Using this technique it is shown that the compressed membership for NFA with
compressed labels is in NP, thus confirming the conjecture of Plandowski and Rytter
(Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999) and extending the partial
result of Lohrey and Mathissen (in CSR, LNCS, vol. 6651, pp. 275–288, Springer,
Berlin, 2011); as this problem is known to be NP-hard (in Plandowski and Rytter,
Jewels Are Forever, pp. 262–272, Springer, Berlin, 1999), we settle its exact compu-
tational complexity. Moreover, the same technique applied to the compressed mem-
bership for DFA with compressed labels yields that this problem is in P, and this prob-
lem is known to be P-hard (in Markey and Schnoebelen, Inf. Process. Lett. 90(1):3–6,
2004; Beaudry et al., SIAM J. Comput. 26(1):138–152, 1997).
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A. Jeż (�)
Max Planck Institute für Informatik, 66123 Campus E1 4, Saarbrücken, Germany
e-mail: ajez@mpi-inf.mpg.de

A. Jeż
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1 Introduction

1.1 Compression and Straight-Line Programmes

Due to ever-increasing amount of data, compression methods are widely applied in
order to decrease the data’s size. The stored data is processed from time to time and
decompressing it on each occasion is wasteful. Thus there is a large demand for algo-
rithms working directly on the compressed representation of the data, without explicit
decompression. Such task is not as hopeless as it may seem at the first sight: it is a
popular outlook that compression basically extracts the hidden structure of the text
and if the compression rate is high, the text must have a lot of internal structure. So
if data is compressed well, it has a structure that can be exploited by algorithms. In
some sense such an intuition is correct: efficient algorithms for fundamental text op-
erations (pattern matching, checking equality, etc.) are known for various practically
used compression methods (LZ, LZW, their variants etc.) [10–13, 15].

Practical compression methods, like LZW or LZ variants, differ both in main idea
as well in details and so also algorithms for data compressed using various compres-
sion methods are different as well. This leads to a plethora of algorithms for various
compression variants and string operations [2, 4, 7, 8, 10–13, 15–17, 22, 23, 35, 36].
However, a different approach is also explored: for some applications and for most
of theory-oriented considerations it would be useful to model the practical compres-
sion standard by a more mathematically well-founded method. This idea lay at the
foundations of the notion of Straight-Line Programms (SLP), whose instances can
be simply seen as context-free grammars generating exactly one string. In particular,
SLPs belong to a broader family of grammar-based compression methods.

SLPs are the most popular theoretical model of compression. This is on one hand
motivated by a simple, ‘clean’ and appealing definition, on the other hand, they
model well the LZ compression standard: each LZ-compressed text can be converted
into an equivalent SLP with O(log(N/n)) multiplicative increase in length and in
O(n log(N/n)) time (where N is the size of the decompressed text) [5, 40] while
each SLP can be converted to an equivalent LZ-compressed text with a constant in-
crease of length (and in linear time).

The approach of modelling compression by SLP in order to develop efficient al-
gorithms turned out to be fruitful. Algorithmic problems for SLP-compressed strings
were considered and successfully solved [25, 26, 36]. In particular, the recent state-
of-the-art efficient algorithms for pattern matching in LZ compressed text essentially
use the reformulation of LZ methods in terms of SLPs [11]. SLPs found their usage
also in programme verification [14] as well as in verifying the bisimulation [6, 24].
Surprisingly, while SLPs were introduced mainly as a model for practical applica-
tions, they turned out to be useful also in strictly theoretical branches of computer
science, for instance, in the word equations [37, 38]; in particular, the currently best
PSPACE bound was obtained in this fashion by Plandowski [37].

For more information about the SLPs and their applications, please look at the
recent survey of Lohrey [29].
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1.2 Membership Problem

As SLPs are used both in theoretical and applied research in computer science, tools
for dealing with them should be developed. In particular, one should be aware that
whenever working with strings, these may be supplied as respective SLPs. Hence, all
the usual string problems should be reinvestigated in the compressed setting, as the
classical algorithms may not apply directly, be inefficient or the problems themselves
may become computationally difficult.

From language theory point of view, the crucial questions stated in terms of strings,
is the one of compressed string recognition. To be more precise, we consider classic
membership problems, i.e. recognition by automata, generation by a grammar etc.,
in which the input is supplied as an SLP. We refer to such problems as compressed
membership problems. These were first studied in the pioneering work of Plandowski
and Rytter [39], who considered compressed membership problem for various for-
malism for defining languages. Already in this work it was observed that we should
precisely specify, what part of the input is compressed. Clearly the input string, but
what about the language representation (i.e. regular expression, automaton, grammar,
etc.). Should it be also compressed or not? Both variant of the problem are usually
considered, with the following naming convention: when only the input string is com-
pressed, we use a name compressed membership, when also the language representa-
tion, we prepend fully to the name.

In years to come, the compressed membership problem was investigated for vari-
ous language classes [15, 20, 21, 27, 28, 39]. Compressed word problem for groups
and monoids [27, 31, 32], which can be seen as a generalisation of membership prob-
lem, was also considered.

Despite the large attention in the research community, the exact computational
complexity of some problems remained open. The most notorious of those is the fully
compressed membership problem (FCMP) for NFA, considered already in the work
of Plandowski and Rytter [39]. Here, the compression of NFA is done by allowing it
to have transitions by strings, instead of single letters, and representing these strings
as SLPs.

It is relatively easy to observe that the compressed membership problem for the
NFA is in P, however, the status of the fully compressed variant remained open for
over a decade. Some partial results were already obtained by Plandowski and Ryt-
ter [39], who observed that it is in PSPACE and is NP-hard for the case of one-letter
alphabet, both of these bounds being relatively natural. Moreover, they showed that
this problem is in NP for some particular cases, for instance, for one-letter alphabet.
Further work on the problem was done by Lohrey and Mathissen [30], who demon-
strated that if the strings defined by SLP have polynomial periods, the problem is
in NP, and when all strings are highly aperiodic, it is in P. Concerning the case of
DFAs, it is known that even for a fixed regular language, the compressed membership
is P-hard [3, 33], and no upper-bound better than PSPACE (which holds for NFAs as
well) was known.

1.3 Our Results and Techniques

We establish the computational complexity of fully compressed membership prob-
lems for both NFAs and DFAs.
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Theorem 1 Fully compressed membership problem for NFA is in NP, for DFA it is
in P.

Our approach to the problem is essentially different than the ones of Plandowski
and Rytter [39] and Lohrey and Mathissen [30]. The earlier work focused on the
properties of strings described by SLPs and tried to use this knowledge in order to
analyse the automaton and its input, hopefully this should result in an efficient algo-
rithm. We take a completely different route: we analyse and change the way strings
are described by the SLPs in the instance. That is, we focus on the SLPs, and not on
the encoded strings. Roughly, our algorithm replaces a substring of two letters ab ap-
pearing in the input string with a new letter c throughout the instance and iterates this
process. In this way strings in the instance are compressed ‘in the same way’. The in-
tuition behind this is that already testing the equality of SLPs is a nontrivial task [36]
and consequently performing other operations on SLPS is even more involved. When
all strings are compressed in the same way, two appearances of the same string in the
instance are represented in a canonical way, so, for instance, testing equivalence is
trivial, and in fact other operations on the SLPs can be performed more efficiently.

In order to perform the compressions of a pair ab we first decompress the SLPs,
so that appearances of ab can be easily identified. Since the decompressed text can
be exponentially long, we do the decompression locally: we introduce explicit strings
into the rules’ bodies. Then, we compress these explicit strings uniformly. Since such
pieces of text are compressed in the same way, we can ‘forget’ about the original
substrings of the input and treat the introduced nonterminals as atomic letters. Such
recompression shortens the text significantly: one ‘round’ of recompression, in which
every pair of letters that was present at the beginning of the ‘round’ is compressed,
should shorten the encoded strings by a constant factor.

1.4 Similar Techniques

While application of the idea of recompression to compressed membership prob-
lem is new, related approaches were previously employed, and somehow inspired the
presented technique: most notably the idea of replacing short strings by a fresh let-
ter and iterating this procedure was used by Mehlhorn et. al [34], in their work on
data structure for equality testing for dynamic strings. They viewed this process as
‘hashing’ or ‘signature building’. In particular their method can be straightforwardly
applied to equality testing for SLPs, yielding a nearly cubic algorithm (as observed
by Gawrychowski [9]); a faster implementation of the employed data structure was
also proposed [1] and it leads to a nearly quadratic algorithm for the SLP equiva-
lence testing [9]. However, the inside technical details of the construction makes the
extension to FCMP problematic: while this method can be used to build ‘canonical’
SLPs for strings in the instance, there is no apparent way to control how these SLPs
actually look like and how do they encode the strings. Thus it is unknown how to
modify the NFA and its transitions in the process of building canonical SLPs.

The (mentioned earlier) recent approaches to FCMP by Mathissen and Lohrey [30]
already implemented the idea of replacing strings with fresh letters as well as mod-
ifications of the instance such that such replacement is possible. Also, while it was
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known that the problem is NP-hard already in the case of a one-letter alphabet [39],
their algorithm used nondeterminsim only in this case; thus suggesting that the non-
determinism in the problem is strongly connected to long blocks of the same letter.
However, the replacement was not iterated, and the newly introduced letters could
not be further compressed. Also, they replaced blocks of letters chosen by some pre-
defined criteria, in particular, only parts of the instance were compressed.

1.5 Other Applications of the Technique

The technique of local recompression was also successfully applied to fully com-
pressed pattern matching [18], obtaining a faster (i.e. almost quadratic) algorithm for
this problem. Furthermore, a variant of this method was also applied in the area of
word equations. While not claiming any essentially new results, the recompression
approach yielded much simpler proofs and algorithms with smaller memory con-
sumption (though still polynomial) of many classical results in the area, like PSPACE
algorithm for solving word equations, double exponential bound on the size of the
solution, exponential bound on the exponent of periodicity, context-sensitiveness in
case of O(1) variables, etc. [19].

2 Preliminaries

2.1 Straight Line Programmes

Formally, a Straight line programme (SLP) is a CFG such that each nonterminal has
a unique rule and it cannot derive itself, i.e. the grammar is acyclic. Usually it is
assumed that G is in a Chomsky normal form, i.e. each production is either of the
form X → YZ or X → a. By this assumption, strings defined by G’s nonterminals
have length at most 2n, where n is the number of nonterminals of the grammar; since
our algorithm will replace some substrings by shorter ones, none string defined by
SLPs during the run of algorithm will exceed this length.

Remark 1 During the run of the CompMem, each string derived by a nonterminal has
length at most 2n.

We denote the unique string derived by nonterminal A by val(A) (like value).
A symbol is either a letter or a nonterminal. The notion of val extends to strings of
symbols in an obvious way.

2.2 Input

The instance of the fully compressed membership problem (FCMP) for NFA con-
sists of an input string, represented by an SLP, and an NFA N , whose transitions are
labelled by SLPs.

For our purposes it is more convenient to assume that all SLPs are given as a
single context free grammar G with a set of nonterminals X = {X1, . . . ,Xn}, the
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input string is defined by Xn and the NFAs transitions are labelled with nonterminals
of G. While we require that the input grammar is in the Chomsky normal form, during
the algorithm we allow the grammar to be in a slightly more general form, described
by the following conditions:

each Xi has exactly one production, which has at most 2 noterminals, (1a)

if Xj appears in the rule for Xi then j < i, (1b)

if val(Xi) = ε then Xi does not appear in the rules’ bodies. (1c)

The strings that appear in the rule’s body appear explicitly in this rule, or alter-
natively they are called explicit strings; this notion is introduced to distinguish them
from the substrings of val(Xi).

Without loss of generality we may assume that the input string starts and ends with
designated, unique symbols, denoted as $ and #. These are not essential, however,
the first and last letter of val(Xn) need to be treated in a somewhat special manner,
furthermore, also the transitions by $ and # in the NFA are treated in a special way
(for instance, there is a unique transition by each of them). Having special symbols
for the first and last letter makes the analysis smoother.

2.3 Input Size, Complexity Classes

The size |G| of the representation of grammar G is the sum of the lengths of G’s
rules’ bodies (we count ε as occupying a single entry). The size |N | of the represen-
tation of NFA N is the sum of number of its states and transitions. The size |Σ | of
alphabet Σ is simply the number of elements in Σ .

By npolytime (polytime) we denote the non-deterministic polynomial running time
(deterministic, respectively), with respect to |N |, |Σ |, |G| and n. As usual, depending
on the context, this describes either the running time of a specific algorithm, or a
class of algorithms running in such time; the context will always uniquely determine,
which of this meaning applies. By NP (P, respectively) we denote the complexity
classes of the decision problems solvable in npolytime (polytime, respectively).

The input instance size is polynomial in |N |, |G|, |Σ | and n, which denotes the
number of nonterminals in G. One of the crucial properties of our algorithm is that n

only decreases during the run of the algorithm. For this reason we modify the input
instance so that its size is polynomial in n alone:

Remark 2 Without loss of generality we may assume that initially |N |, Σ and |G|
are all at most n.

To satisfy this additional condition it is enough to add dummy nonterminals (with
rules) that are not used anywhere in the instance. Clearly this increases the size of the
instance by a constant factor.

2.4 Automata, Paths and Labels, Determinism

Since we investigate automata, proofs deal mainly with (accepting) paths for strings.
The constructed NFAs have transitions labelled with either letters, or non-terminals
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of G. That is δ ⊆ Q × (Σ ∪ X ) × Q. Consequently, a path P from state p1 to pk+1

(with intermediate states p2, . . . , pk) is a sequence α1α2 . . . αk , where αi ∈ Σ ∪ X
and δ(pi, αi,pi+1). We write that P induces such a list of labels. The val(P ) defined
by such a path P is simply val(α1 . . . αk). We also say that P is a path for a string
val(P ). A path is accepting, if it ends in an accepting state. We usually consider paths
beginning in a starting state. A string w is accepted by N if there is an accepting path
from the starting state for w.

Usually it is more convenient to represent path’s list of labels as

ui1Xi2ui3Xi4 · · ·Xim−1uim,

where each uij ∈ Σ∗ is a string representing the consecutive letter labels and Xij

represents a nonterminal label. Notice that uij may be empty. The val(P ) defined by
such a path P is val(P ) = ui1 val(Xi2)ui3 val(Xi4) · · ·val(Xim−1)uim .

We consider also DFAs with compressed labels. Let us comment, what ‘determin-
ism’ means here: a NFA with compressed labels is deterministic, when for each state
q and any two transitions from q labelled with α and α′, the first letters of val(α)

and val(α′) are different. Other known (meaningful) definitions of determinism are
polynomially equivalent to the given one.

2.5 Known Results

We use the following basic result: when the input string is over a one-letter alphabet
the FCMP is in NP for NFA and in P for DFA.

Lemma 1 (cf. [39, Theorem 5]) The FCMP restricted to the input string over an
alphabet Σ = {a} is in NP for NFA and in P for DFA.

Proof Notice that if the input string w is over an alphabet {a}, no accepting path in
the NFA for w may use transitions that denote strings having letters other than a.
Thus, any such transitions can be deleted from N and we end up with an instance, in
which Σ = {a}, i.e. also transitions in the NFA are labelled either with a letter a or by
nonterminals defining some powers of a. Then the result of Plandowski and Rytter
[39, Theorem 5] can be applied directly, claiming an NP upper-bound.

Their proof follows by an observation that when Σ = {a} then an accepting path
in the NFA exists if and only if the NFA satisfies an Eulerian-type condition: each
state is entered and leaved the same number of times. Since each transition is used at
most exponentially many times, a description of such a path can be guessed and then
it can be verified whether it satisfies the condition and defines a word of appropriate
length.

Consider now the deterministic automaton. As shown in the beginning, we can
limit ourselves to transitions by powers of a. Since the automaton is deterministic,
for each state there is at most one transition labelled with a power of a, and so the path
for w cycles after at most n transitions. As the lengths of the cycle can be calculated
in polytime, the whole problem can be easily checked in polytime. �
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3 Basic Classifications and Outline of the Algorithm

In this section we present the outline of the algorithm for FCMP for NFAs. Its main
part consist of recompression, i.e. replacing strings appearing in val(Xn) by shorter
ones. In some cases, such replacing is harder, in other easier and identifying such
hard cases is the first step in this section.

3.1 (Non)-Crossing Appearances, Maximal Blocks

We say that a string s has a crossing appearance in a (unique string derived by)
nonterminal Xi with a production Xi → uXjvXkw, if s appears in val(Xi), but this
appearance is not contained in neither u, v, w, val(Xj ) nor val(Xk). Intuitively, this
appearance ‘crosses’ the symbols in uval(Xj )v val(Xk)w, i.e. at the same time part of
s is in the explicit substring (u, v or w) and part is in the compressed strings (val(Xj )

or val(Xk)). This notion is similarly defined for nonterminals with productions of
only one nonterminal, i.e. of the form Xi → uXjv, productions of the form Xi → u

clearly do not have crossing appearances.
A string s has a crossing appearance in the NFA N , if there is a path in N inducing

list of labels α1α2, where α1, α2 ∈ X ∪ Σ with at least one of α1, α2 being a nonter-
minal, such that s appears in a val(α1α2), but this appearance is not contained in the
val(α1), nor in val(α2). The intuition is similar as in the case of crossing appearance
in a rule: it is possible that a string s is split between two transitions’ labels. Still,
there is nothing difficult in consecutive letter transitions, thus we treat such a case as
a simple one.

We say that a pair of letters ab is a crossing pair, if ab has a crossing appearance of
any kind. Otherwise, such a pair is non-crossing. Unless explicitly written, whenever
we talk about crossing/non-crossing pair ab we assume that a �= b.

We say that a letter a ∈ Σ has a crossing block, if for some � the a� has a crossing
appearance; otherwise, a has no crossing block. This can be equivalently charac-
terised by saying that a has a crossing block if and only if aa is a crossing pair.

The letters with crossing blocks and crossing pairs correspond to the intuitive no-
tion of being ‘hard’ to compress.

The following lemma shows that while G may encode long strings, they have
relatively few different short substrings and that they can be established efficiently
(recall that n is the number of all noterminals in G, more precisely, they are X1, . . . ,
Xn).

Lemma 2 There are at most 2n different letters with crossing blocks and at most
|G| + 4n different pairs of letters appearing in val(X1), . . . ,val(Xn).

The set of letters with crossing blocks, the set of crossing pairs and the set of
non-crossing pairs appearing in val(X1), . . . ,val(Xn) can be computed in polytime.

Proof Since a letter a has a crossing block if and only if aa is a crossing pair, it
follows that if a has a crossing block then it is either the first, or the last letter of
some val(Xi). Since there are at most n nonterminals, there are at most 2n letters
with a crossing block. In order to calculate the set of letters with a crossing block, it
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is enough to calculate the set of crossing pairs, as a has a crossing block if and only
if aa is a crossing pair. Hence, in the rest of this proof all crossing pair can be of the
form aa.

We estimate the total number of (different) pairs of letters appearing in val(X1),
. . . , val(Xn). Consider first pairs that appear in some explicit string on the right-hand
side of some production. Since the total length of explicit strings is |G|, there are
at most |G| such pairs. Other pairs are assigned to nonterminals X1, . . . ,Xn: a pair
ab is assigned to Xi , if it appears in val(Xi) and it does not appear in val(X1), . . . ,
val(Xi−1). We show that at most four different pairs are assigned to each nonterminal.
In this way, the total number of different pairs is at most |G| + 4n. Indeed, if ab is
assigned to Xi with a production Xi → uXjvXkw, then ab does not appear neither
in u, v, w as in such case it was already accounted; nor in val(Xj ), val(Xk), as in
such case it is not assigned to Xi . Thus, there are four possibilities:

– a is the last letter of u and b is the first letter of val(Xj ),
– a is the last letter of val(Xj ) and b is the first letter of v,
– a is the last letter of v and b is the first letter of val(Xk),
– a is the last letter of val(Xk) and b is the first letter of w.

The cases, in which u or v is empty or there are less nonterminals on the right-hand
side of the production, are similar.

The above description can be turned to a straightforward algorithm computing
both the list of all non-crossing and crossing pairs appearing in val(X1), . . . , val(Xn).
First, the list of all pairs of letters with such appearances is calculated: clearly, it is
enough to read every rule (for Xi ) and store the pairs that appear in the explicit
strings and the pairs that are assigned to Xi . Then, for each pair of letters it should
be decided, whether it is crossing. To this end, we check, whether it has a crossing
appearance in any nonterminal or in N , which can be done in polytime. Such pairs are
crossing, other are non-crossing. Lastly, we filter out the pairs of the form aa from
these lists, which gives the list of letters with crossing blocks. �

The notions of (non-) crossing pairs do not apply to aa, still, an analog can be
defined: for a letter a ∈ Σ we say that a� is a a’s maximal block of length � (or
simply �-block), if it appears in some string defined by some nonterminal and it is
surrounded by letters other than a, formally, if there exist two letters x, y ∈ Σ , where
x �= a �= y and a nonterminal Xi , such that xa�y is a substring of val(Xi). Similarly
to crossing pairs, it can be shown that there are not too many different maximal blocks
of a.

Lemma 3 For a letter a there are at most |G| + 4n different lengths of a’s maximal
blocks in val(X1), . . . , val(Xn). The set of these lengths can be calculated in polytime.

The proof of Lemma 3 is similar to the proof of Lemm 2; however, Lemma 3 is
not shown now, instead, we give a proof of a stronger Lemma 13 in a later section.

3.2 Outline of the Algorithm

Our algorithm is based on two main operations performed on strings encoded by G
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Algorithm 1 Outline of the CompMem, which tests compressed membership
1: while |val(Xn) > n| do
2: perform the preprocessing 	 Reduces the number of crossing pairs to O(n)

3: P ← list of non-crossing pairs in val(X1), . . . , val(Xn)

4: P ′ ← list of crossing pairs in val(X1), . . . , val(Xn)

5: for each ab ∈ P do
6: compress ab, modify N accordingly

7: for each ab ∈ P ′ do
8: compress ab, modify N accordingly

9: L ← letters in val(X1), . . . , val(Xn) without crossing blocks, except $, #
	 Including letters introduced in line 6 and 8

10: L′ ← letters in val(X1), . . . , val(Xn) with crossing blocks, except $, #
	 Including letters introduced in line 6 and 8

11: for a ∈ L do
12: compress blocks of a, modify N accordingly

13: for a ∈ L′ do
14: compress blocks of a, modify N accordingly

15: Decompress Xn and solve the problem naively.

blocks compression of a For each a� that is an �-block in val(Xn) and � > 0, replace
all a’s �-blocks in val(X1), . . . , val(Xn) by a fresh letter a�. Modify N accord-
ingly.

pair compression of ab For two different letters a, b such that substring ab appears
in val(X1), . . . , val(Xn) replace each substring ab in val(X1), . . . , val(Xn) by a
fresh letter c. Modify N accordingly.

When the pair ab is crossing (or a has crossing blocks), the compression of ab (a
blocks, respectively) is difficult; on the other hand, compression of non-crossing pairs
(blocks of letters without crossing blocks, respectively) is easy. All this is explained
in detail later in the section.

We denote the string obtained from w by a’s blocks compression by BCa(w), and
the string obtained by compression of a pair ab into c by PCab→c(w).

We adopt the following notational convention throughout rest of the paper: when-
ever we refer to a letter a�, it means that the last block compression was done for a

and a� replaced a’s �-blocks.
The main idea behind the algorithm is that block compression and pair compres-

sion shorten the encoded texts significantly. The general schema is given in Algo-
rithm 1.

The preprocessing, which is described in details later, modifies the instance
slightly, so that the number of crossing pairs can be upper-bounded in terms of n:
note that as crossing pairs can come from the NFA transitions, in general there can
be as much as Ω(|N |) crossing pairs, which is more than the analysis can handle.

There are three important remarks to be made:

– there is no explicit non-deterministic operation in the code, however, it appears
implicitly in the term ‘modify the NFA accordingly’ in lines 12 and 14. Roughly,
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to perform such a modification, one needs to solve FCMP for string a�, and this is
known to be NP-complete.

– the compression (both of pairs and blocks) is never applied to $, nor to #. The
markers were introduced so that we do not bother with strange behaviour when
first or last letter is compressed, and so we do not touch the markers.

– CompMem, as presented, is deterministic, however some of its subprocedures are
non-deterministic. This can make a false impression that it is in the class PNP.
However, we never alter the results returned by the non-deterministic procedures,
and so CompMem is in fact in NP; this is formally stated and proved in the later
sections.

Ideally, each letter of the input is compressed and so the |val(Xn)| halves in an
iteration of the main loop. The worst case scenario is not far from the ideal behaviour.

Lemma 4 There are O(n) executions of the loop in line 1 of CompMem.

Proof Consider any 2 consecutive letters ab, where a �= $ and b �= #, appearing in
the val(Xn) at the beginning of loop starting in line 1. We show that at least one of
these two letters is compressed before the next execution of this loop. In this way, if
we partition val(Xn) into blocks of 4 consecutive letters, each block is shortened by
at least one letter in each iteration of the loop from line 1. Thus the length of val(Xn)

decreases by a factor of 3/4 in each iteration and so this loop is executed at most
O(n) times, as in the input instance satisfies |val(Xn)| ≤ 2n, see Remark 1.

Assume for the sake of contradiction that none of letters a, b is compressed during
this iteration of the loop.

If a �= b, then ab is going to be included in P or P ′ in line 3 or 4, respectively, de-
pending on whether ab is crossing or not. Then CompMem will attempt to compress
ab, either in line 6 or 8, and this fails only if one of the letters a or b was already
compressed. This contradicts the assumption that none of the a, b was compressed.

So suppose now that a = b and that none of these letters is compressed. In par-
ticular, none of these two appearances of a were compressed in line 6 or 8. Thus, a

will be listed in L′ in line 10 or in L in line 9, depending on whether it has crossing
appearances or not. In the latter case, CompMem will compress the maximal block,
in which these letters appear, in line 12, in the former in line 14. In either case, these
letters a are compressed, a contradiction with the assumption that they were not. �

Remark 3 Notice that pair compression PCab→b is in fact introducing a new non-
terminal with a production c → ab, similarly BCa introduces nonterminals a� with
productions a� → a� (notice that in order to transform this production to Chomsky
normal form, introduction of some other nonterminals is needed). Hence, CompMem
creates new SLPs that encode strings from the instance. However, these new nonter-
minals are never expanded, they are always treated as individual symbols. Thus it is
better to think of them as letters. Moreover, the analysis of running time of CompMem
relies on the fact that no new nonterminals are introduced by CompMem.
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4 Details

In this section we describe in detail how to implement the block compression and pair
compression and how to modify the NFA. In particular, we are going to formulate the
connections between NFA and SLPs preserved during CompMem.

4.1 Invariants

The invariants below describe the grammar kept by CompMem.
SLP 1 The set of used nonterminals is a subset of X = {X1, . . . ,Xn} and the produc-

tions are of the form described in (1a)–(1c).
SLP 2 The nonterminal Xn has a production Xn → $uXn−1v#, where u,v ∈ (Σ \

{$,#})∗; $, # are not used in other productions.
The following invariants represent the constraints on the NFA.
Aut 1 every transition of N is labelled by a single letter of Σ (letter transition) or by

a nonterminal (nonterminal transition) that does not define ε, each nontermi-
nal labels at most one transition. No transition is labelled with Xn.

Aut 2 there is a unique starting state that has a unique outgoing transition labelled
by letter $, and no incoming transitions; there is no other transition by $. Sim-
ilarly, there is a unique accepting state that has a unique incoming transition
labelled by letter #, it does not have any outgoing transitions; there is no other
transition by # in N .

CompMem will preserve (SLP 1)–(Aut 2), and we shall always assume that the input
of the subroutines satisfies (SLP 1)–(Aut 2).

We assume that the input instance satisfies (SLP 1)–(Aut 2), moreover that the in-
put grammar is in the Chomsky normal form. It is routine to transform (in polytime)
the input instances not satisfying these conditions into equivalent instances that sat-
isfy them; the only (seemingly) non-trivial one is the second requirement of (Aut 2)
that there is a unique accepting state with a unique incoming transition for a DFA: to
satisfy this condition we add two symbols #1# to the end of the Xn and create two
new states in N , p1 and p. Then we make a transition by #1 from each accepting
state to p1 and a unique transition from p1 to p by #. Lastly, p becomes the unique
accepting state.

4.2 Compression of Pairs

The compression of non-crossing pairs is intuitively easy: whenever these appear in
strings encoded by G or on paths in N , they cannot be split between nonterminals or
between transitions. So we replace their explicit appearances in the grammar and in
the NFA. This is formalised and shown in the first subsection.

The compression of the crossing pairs does not directly follow this approach, how-
ever, for a fixed crossing pair ab we show that a simple transformation of the SLP
makes ab a noncrossing pair, so that it consequently can be compressed using the
known procedure. Thus, the compression of crossing pairs also can be done: first we
fix a pair ab, then transform the instance, so that ab is noncrossing and then com-
press ab, using the already described procedure for compression of a noncrossing
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Algorithm 2 PairComp(ab, c): compresses a non-crossing pair ab into c

1: for each production Xi → α do
2: replace each explicit ab in α by c

3: for states p, q do
4: if δN(p,ab, q) then
5: put a transition δN(p, c, q)

pair. There can be as much as Ω(|N |) crossing pairs, however, a simple preprocess-
ing reduces this number to O(n), see Lemma 10 later in this section. In particular,
the transformation is used in total O(n) many times. This is described in detail in the
second subsection.

4.2.1 Compression of Non-crossing Pairs

Consider a non-crossing pair ab. Since it is non-crossing, it can only appear in the
explicit strings in the rules of G. Hence, compressing ab into a fresh letter c consists
of replacing each explicit ab by c in rules’ bodies. Still, ab can appear on a path
in N . But since ab is non-crossing, this can be either wholly inside a nonterminal
transition (and so compression was already taken care of), or on two consecutive
letter transitions. This is also easy to handle: whenever there is a path from p to q by
a string ab, we introduce a new letter transition by c from p to q . This description is
formalised in PairComp (Algorithm 2).

To distinguish between the input and output G and N , we utilise the following
convention: ‘unprimed’ names refer to the input (like G, Xi , N ), while ‘primed’
symbols refer to the output (like G′, X′

i , N ′). This convention is used in lemmata
concerning algorithms through the paper.

Lemma 5 PairComp(ab, c) runs in polytime and preserves (SLP 1)–(Aut 2). When
applied to a non-crossing pair of letters ab, where a, b /∈ {$,#}, it implements the
pair compression, i.e. val(X′

i ) = PCab→c(val(Xi)), for each Xi .
N ′ recognises val(X′

n) if and only if N recognises val(Xn). If N is a DFA, so is N ′.
If de was a noncrossing pair in G, N and d �= c �= e then de is also a noncrossing

pair in G′, N ′.

Proof The bound on the running time is obvious from the code.
Since PairComp only modifies the grammar by shortening some strings in the

productions (it does not create ε-rules), and it does not affect $ and # in the rules,
(SLP 1)–(SLP 2) are preserved. The only modification in N is the introduction of
new transition by a single letter (namely, by c) between states that are joined by a path
for ab. Moreover, if there is a new transition δN ′(p′, c, q ′), then p has an outgoing
production by a /∈ {$,#}, and so it was not a starting or accepting state, and q had
an incoming transition by b /∈ {$,#}, and similarly it was not a starting nor accepting
state. Thus (Aut 1)–(Aut 2) hold for N ′ as well. Notice that if N is deterministic, so is
N ′: suppose that there are two different transitions starting with a letter d from state
p in N ′. If d �= c, then these two transition are also present in N and they begin with



698 Theory Comput Syst (2014) 55:685–718

the same letter, which is not possible, as N is deterministic. If d = c, then either in N

there are two transitions from p whose strings begin with a or there is a unique such
transition, but δ(p, a) has two transitions whose strings begin with b. In both cases
this is a contradiction.

We now show that N ′ recognises val(X′
n) if and only if N recognises val(Xn). To

this end we demonstrate, how PairComp affects val(Xi):

Claim 1 After performing PairComp, it holds that

val
(
X′

i

) = PCab→c

(
val(Xi)

)
. (2)

Proof Notice that as a �= b, PCab→c is well defined for each string.
The claim follows by a simple induction on the nonterminal’s number: This is

true when the production for Xi has no nonterminal on the right-hand side (recall the
assumption that a �= b), as in this case the pair compression on right hand side of the
production for Xi is explicitly performed. When Xi → uXjvXkw, then

val(Xi) = uval(Xj )v val(Xk)w and

val
(
X′

i

) = PCab→c(u)val
(
X′

j

)
PCab→c(v)val

(
X′

k

)
PCab→c(w)

= PCab→c(u)PCab→c

(
val(Xj )

)
PCab→c(v)PCab→c

(
val(Xk)

)
PCab→c(u),

with the last equality following by the induction assumption. Notice that since ab

is a non-crossing pair, all occurrences of ab in val(Xi) are contained in u, v, w,
val(Xj ) or val(Xk), as otherwise ab would be a crossing pair, which contradicts the
assumption. Thus,

PCab→c

(
val(Xi)

)

= PCab→c(u)PCab→c

(
val(Xj )

)
PCab→c(v)PCab→c

(
val(Xk)

)
PCab→c(u),

which shows that PCab→c(val(Xi)) = val(X′
i ), ending the proof of the claim. �

The second claim similarly establishes, how the pair compression of a non-
crossing pair affects the NFA. To be more precise, what happens to a string defined
by a path in the NFA after applying pair compression to the underlying NFA.

Claim 2 Consider a non-crossing pair ab and a path P in the NFA N , which defines
a list of labels:

ui1Xi2ui3Xi4 · · ·Xim−1uim,

where each uij ∈ Σ∗ is a string representing the consecutive letter labels and Xij

represents a transition by a nonterminal transition. Then

PCab→c

(
val(P )

)

= PCab→c(ui1)val
(
X′

i2

)
PCab→c(ui3)val

(
X′

i4

) · · ·val
(
X′

im−1

)
PCab→c(uim). (3)
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Proof Similarly as in Claim 1, notice that as ab is a non-crossing pair, the appear-
ance of ab in the string defined by P cannot be split between a nonterminal and a
string (or other nonterminal). Thus, replacement of pairs ab takes place either wholly
inside string u or inside val(Xi). The former is done explicitly by PCab→c , while (2)
establishes the form of the latter. This ends claim’s proof. �

After proving Claims 1–2, it is easy to show the main thesis of the lemma, i.e. that
val(X′

n) is accepted by N ′ if and only if val(Xn) is accepted by N .
⇐© Suppose first that val(Xn) is accepted by N . Consider the accepting path P

for val(Xn), represent it as a list of labels: ui1Xi2ui3Xi4 · · ·Xim−1uim , similarly as in
Claim 2. Of course,

val(P ) = val(Xn) = ui1 val(Xi2)ui3 val(Xi4) · · ·val(Xim−1)uim. (4)

We will construct an accepting path P ′ in N ′ inducing a list of labels

PCab→c(ui1)X
′
i2
PCab→c(ui3)X

′
i4

· · ·X′
im−1

PCab→c(uim). (5)

Using (3) and recalling that val(P ) = val(Xn) will be enough to conclude that
val(P ′) = PCab→c(val(Xn)).

Notice that by the code of PairComp

– if there is a transition δN(p,d, q) for a letter d ∈ Σ in N , then there is the same
transition δN ′(p, d, q) in N ′.

– if there is a path from p to q for a string ab in N then there is a transition
δN ′(p, c, q) in N ′.

Thus, by a trivial induction on the length of the string u, if δN(p,u, q) then also
δN ′(p,PCab→c(u), q). The situation is similar for nonterminals: if there is a tran-
sition δN(p,Xi, q) in N , then there is an analogous transition δN ′(p,X′

i , q) in N ′.
Thus, a path P ′ with the same starting and ending state as P and the list of labels as
in (5) is inductively defined. Since the starting (accepting) state in N and N ′ coincide,
this shows that val(P ′) is accepted by N ′.

⇒© Suppose now that a string PCab→c(val(X′
n)) is recognised by N ′. Let the path

of the accepting computation in N ′ be P ′, with a list of labels

u′
i1
X′

i2
u′

i3
X′

i4
· · ·X′

im−1
u′

im
.

Similarly to the previous case, we will inductively define an accepting path P in N

with a list of labels

ui1Xi2ui3Xi4 · · ·Xim−1uim, (6)

where uij is obtained from u′
ij

by replacing each c by ab.
Notice that by PairComp,

– if there is a letter transition δN ′(p, c, q) in N ′, there is a path from p to q for a
string ab in N .

– if there is a letter transition δN ′(p, d, q) for a letter d �= c, there is the same transi-
tion δN(p,d, q) in N .
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Thus, by a simple induction, we conclude that if there is path in N ′ from p to q

for a string u′
ij

, then there is a path in N from p to q for a string uij . Now observe

that if there is a transition δN ′(p,X′
i , q) in N ′, then there is an analogous transi-

tion δN(p,Xi, q) in N . This completes the construction of P . Since the starting and
accepting states in N and N ′ coincide, the constructed path P is also accepting, fur-
thermore, P ’s list of labels is as in (6).

It is left to show that val(P ) = val(Xn). Since PCab→c is a one-to-one function
on string that do not contain c, and both val(P ) and val(Xn) do not contain c, it
is enough to show that PCab→c(val(P )) = PCab→c(val(Xn)). Notice that the latter
equals val(X′

n), by (2).
Using (3) we can conclude that

PCab→c

(
val(P )

) = PCab→c(ui1)val
(
X′

i2

)
PCab→c(ui3)val

(
X′

i4

) · · ·val(Xi′m−1
)u′

im

= u′
i1

val
(
X′

i2

)
u′

i3
val

(
X′

i4

) · · ·val
(
X′

im−1

)
u′

im

= val
(

P ′)

= val
(
X′

n

)
.

Finally, consider the last claim of the lemma: let a pair de ∈ P be a noncrossing
pair. Since the whole modification to G is the replacement of pairs ab by a letter c, if
de (where d �= c �= e) had no crossing appearances in G, then it does not have them
in G′. Similarly, observe that transition by d and e in N and N ′ are the same, and
if val(X′

i ) begins with e (ends with d) then also val(X′
i ) begins with e (ends with d ,

respectively). Thus, if de has a crossing appearance in N ′ then it also has it in N . �

4.2.2 Crossing Pair Compression

In this section we first show how to transform a crossing pair to a noncrossing one,
so that PairComp can be applied to it. Then, we show how to perform a preprocessing
after which the number of different crossing pairs is at most linear.

There are two possible reasons, why ab is a crossing pair: it may be that it is a
crossing pair for some nonterminal, or it has a crossing appearance in the NFA. In
both cases, the problem has something to do with the fact that b is the first letter of
val(Xi) or a is the last letter of some val(Xi). To ‘fix’ this, we ‘pop’ such b and a

from respective nonterminal: consider b and suppose that val(Xi) = bw. Then we
modify G so that val(X′

i ) = w and modify N to reflect it, if Xi labels a transition
in N . Clearly, after performing such operation for each nonterminal (including the
symmetric procedure for a), b can still be a first letter of val(Xi) (or a can be a last
letter of val(Xi), respectively); however, we show that ab is no longer a crossing pair
and that these procedures can be easily performed.

Popping letters is performed in a bottom-up fashion, starting from X1: when con-
sidering a rule Xi → α, if the first letter in val(Xi) is b, we remove it and replace Xi

by bXi in all rules’ bodies. It is easy to modify the NFA N accordingly: when there is
a transition δN(p,Xi, q), we change it into a chain of two transitions: δN ′(p, b,p1)

and δN ′(p1,X
′
i , q). Symmetric treatment is applied to a, when it is the last letter of

val(Xi). This description is formalised in LeftPop (Algorithm 3).
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Algorithm 3 LeftPop(b), pops leading b from each nonterminal
1: for i ← 1 . . n do 	 Left-popping b

2: let the rule for Xi be Xi → α

3: if the first symbol of α is b then
4: remove first letter (b) from α

5: replace each Xi in rules’ bodies by bXi ,
6: if α = ε then
7: remove Xi from rules’ bodies
8: if there is a transition δN(p,Xi, q) in N then 	 NFA modification
9: remove transition δN(p,Xi, q)

10: if α �= ε then
11: create new state p1 in N ,
12: set transitions: δN(p,b,p1), δN(p1,Xi, q)

13: else
14: set transition δN(p,b, q)

Lemma 6 LeftPop runs in polytime and when applied to b /∈ {$,#} it preserves
(SLP 1)–(Aut 2). If val(Xi) = bu for some u ∈ Σ∗ then val(X′

i ) = u; otherwise
val(X′

i ) = val(Xi).
N ′ accepts val(X′

n) if and only if N accepts val(Xn). If N is deterministic, so
is N ′.

Proof The loop is executed n times, and also each line of the code can be performed
in polytime, and so in total LeftPop runs in polytime.

Concerning the preservation of invariants: since the only operation performed
on G is replacing nonterminal Xi by bX′

i and then deleting the first letter of the
nonterminal, and nonterminals generating ε are explicitly removed from the rules,
the resulting grammar is in the form (1a)–(1c). Notice that the invariant (SLP 1) is
clearly preserved by the listed operations. As b /∈ {#,$}, the first and last symbol of
val(Xn) are not modified, and so (SLP 2) holds as well.

Let us move to the NFA invariants: the only change applied to NFA is the re-
placement of the transitions δN(p,Xi, q) by a path δN ′(p, b,p1), δN ′(p1,Xi, q), or
by δN ′(p, b, q), where b is the first letter of val(Xi). Clearly this does not affect
(Aut 1)–(Aut 2). For the same reason, if N is deterministic, so is N ′.

We show by induction on i, the number of the processed nonterminal that
val(Xj ) = val(X′

j ) if j > i or the first letter of val(Xj ) is not b; otherwise val(Xj ) =
b val(X′

j ). For the induction basis consider i = 1:

if the rule for X1 is X1 → bu for some u ∈ Σ∗ then this b is removed from the rule
and each appearance of X1 in the rules’ bodies is replaced with bX′

1. Hence,
val(X1) = b val(X′

1) and for each other nonterminal val(Xj ) = val(X′
j ).

if the rule for X1 is X1 → u for some u not beginning with b then nothing is chang-
ed and so val(Xj ) = val(X′

j ).

So consider an inductive step, let LeftPop consider the nonterminal Xi+1. We dis-
tinguish three copies of nonterminals now: the original one (so Xi+1), the one ob-
tained after the processing of Xi but before Xi+1 (those are denoted with primes,
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i.e. X′
i+1) and the ones that are obtained after considering Xi+1 (which are denoted

with double prime, i.e. X′′
i+1). By the inductive assumption val(Xi+1) = val(X′

i+1).
If val(Xi+1) does not begin with b, then the rule for X′

i+1 does not begin with b either
and so LeftPop performs no action and we are done. So suppose that val(Xi+1) be-
gins with b. By the inductive assumption X′

i+1 defines the same string, and so begins
with b as well. We claim that the first letter in the rule for X′

i+1 is b: as val(X′
i+1)

begins with b, the only other option is that it begins with some nonterminal X′
k for

k < i. But then a contradiction is easily obtained: val(X′
k) begins with b and so it

can be concluded that val(Xk) begins with b as well, as by inductive assumption
val(Xk) = val(X′

k) or val(Xk) = b val(X′
k), and both these strings begin with b. But

as val(Xk) begins with b, by the code of LeftPop, Xk was replaced with bX′
k and this

b is still in the rule for X′
i+1.

So the first letter in the rule for X′
i+1 is b, and LeftPop removes this b from the

rule and replaces each X′
i+1 in the rules by bX′′

i+1. Thus val(Xi+1) = val(X′
i+1) =

b val(X′′
i+1). And in the rules, each X′

i+1 was replaced with bX′′
i+1, which evaluate to

the same string, so values of other nonterminals have not changed.
We now show the second claim that N ′ accepts exactly the same strings as N .

The only change done in the NFA is the replacement of transitions of the form
δN(p,Xi, q) by a path inducing list of labels with b and X′

i , where b is the first
letter of val(Xi), or by a transition δN(p,b, q), when val(Xi) = b. Let us consider
the former case, the latter is similar. Notice that val(Xi) = b val(X′

i ) and so the new
path denotes the same string, as the replaced transition. Furthermore, the newly intro-
duced state in the middle of this path has only one ingoing and outgoing transition.
Since b /∈ {#,$}, the starting and accepting states were not modified, and so the both
automata recognise the same strings. Since val(Xn) = val(X′

n) (again by b /∈ {#,$}),
this shows the claim. �

A symmetric variant RightPop of LeftPop, which pops the ending a from each
nonterminal is easily defined. It satisfies the symmetric analogue of Lemma 6:

Lemma 7 RightPop runs in time polytime and preserves (SLP 1)–(Aut 2). If val(Xi) =
ua then val(X′

i ) = u; otherwise val(X′
i ) = val(Xi).

N ′ accepts val(X′
n) if and only if N accepts val(Xn). If N is deterministic, so

is N ′.

Running both of LeftPop(b) and RightPop(a) makes a pair ab noncrossing.

Lemma 8 After running LeftPop(b) and RightPop(a) the pair ab is non-crossing.

Proof There are two different cases, why the pair ab is crossing: it is crossing in
a rule or crossing in the NFA, consider first the former. As previously, let primed
nonterminals, like X′

i denote the nonterminals in the instance after application of
LeftPop(b) and RightPop(a) and Xi before this application.

Let X′
i be a nonterminal such that ab has an appearance in val(X′

i ) that is not
contained in any string or nonterminal of the rule for X′

i . There are three cases

– aX′
j appears in the rule and the first letter of val(X′

j ) is b,
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Algorithm 4 CrPairComp(ab, c), which compresses a crossing pairs ab

1: run LeftPop(b)

2: run RightPop(a)

3: run PairComp(ab, c)

– X′
j b appears in the rule and a is the last letter of val(X′

j ),
– X′

jX
′
k appears in the rule, where a is the last letter of val(X′

j ) and b is the first
letter of val(X′

k).

We shall consider only the first case, the other are shown in a similar way. Observe
that by Lemma 6, if val(X′

j ) begins with b then val(Xj ) begins with b as well, as
either val(Xj ) = val(X′

j ) or val(Xj ) = b val(Xj ). Hence LeftPop replaced Xj in each
rule by bX′

j , and consequently the letter to the left of X′
j in the rule for X′

i cannot be
a, as a �= b.

So suppose that ab has a crossing appearance in the NFA. So there are two con-
secutive transitions α and β , such that the last letter of val(α) is a and the first of
the val(β) is b. Furthermore, at least one of α, β is a nonterminal. Without loss of
generality assume that β = X′

i and let the transition be from state p to state q . As in
the previous case, from the fact that the first letter of val(X′

i ) is b we conclude that
LeftPop modified Xi . In particular, the unique transition going to p is labelled with b,
thus β = b, which is a contradiction. �

Now, it is enough to apply the pair compression for non-crossing pairs to each pair
of the form ab. For convenience, we write the whole procedure for pair compression
for crossing pairs in Algorithm 4.

Lemma 9 CrPairComp runs in polytime and preserves (SLP 1)–(Aut 2). N ′ accepts
val(X′

n) if and only if N accepts val(Xn). If N is deterministic, so is N ′.
It implements pair compression for ab, in the sense that val(X′

n) =
PCab→c(val(Xn)).

Proof The running time follows by Lemmata 5, 6 and 7.
Note that by Lemma 8 after the application of LeftPop(b) and RightPop(a) the pair

ab is noncrossing.
By Lemmata 6–7, LeftPop(b) and RightPop(a) preserve (SLP 1)–(Aut 2) and after

their application N recognises val(Xn) if and only if N ′ recognises val(X′
n). As ab

is noncrossing, Lemma 5 guarantees that after the application of PairComp(ab, c), N

recognises val(Xn) if and only if N ′ recognises val(X′
n).

Lastly, by Lemmata 6–7 the value of val(Xn) does not change when LeftPop(b)

and RightPop(a) are applied and as ab is a noncrossing pair when PairComp(ab, c)

is applied, Lemma 5 guarantees that val(X′
n) = PCab→c(val(Xn)). �

We apply CrPairComp to each of the crossing pairs separately, and each such ap-
plication increases the size of N and G. Thus it would be good to bound the number
of crossing pairs in terms of n rather than in terms of |N | and n. In general, this is
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Algorithm 5 PreProc: preprocessing—reduces the number of crossing pairs
1: for i ← 1 . . n − 1 do
2: let the rule for Xi be Xi → α and a be the first letter in α

3: remove leading a from α

4: replace each Xi in the rules’ bodies by aXi

5: if α = ε then
6: remove Xi from rules’ bodies
7: if there is a transition δN(p,Xi, q) in N then 	 NFA modification
8: remove transition δN(p,Xi, q)

9: if α �= ε then
10: create new state p1 in N ,
11: set transitions: δN(p,a,p1), δN(p1,Xi, q)

12: else
13: set transition δN(p,a, q)

14: if α �= ε then
15: perform the symmetric actions for the last letter (b) of α

not possible, however, a simple preprocessing reduces the number of crossing pairs
to O(n). It is enough to ‘pop’ the first and last letter from each of the nonterminals.

Lemma 10 PreProc (Algorithm 5) runs in time polytime and preserves (SLP 1)–
(Aut 2). For i < n if val(Xi) = aub then val(X′

i ) = u; if val(Xi) ∈ Σ then val(X′
i ) =

ε; lastly val(Xn) = val(X′
n).

N ′ accepts val(X′
n) if and only if N accepts val(Xn). If N is deterministic, so

is N ′.

Proof The proof is similar to the proof of Lemma 6 and thus it is omitted. The only
(slight) difference is that now we need to show that for each nonterminal Xi , when it
is considered, its rule begins and ends with a letter. Still, this is easy: suppose that the
rule for Xi begins with Xj . But then, when Xj was considered, Xj was replaced in
all rules with aXj , for some letter a, see line 4 of PreProc. In particular, this was done
in the rule for Xi and so the rule for Xi cannot start with a nonterminal. Symmetric
analysis shows that the rule cannot end with a nonterminal. �

As promised, after PreProc the number of crossing pairs is O(n):

Lemma 11 After PreProc there are at most 2n crossing pairs.

Proof Consider a nonterminal Xi . There are four ways in which Xi can contribute a
crossing pair:

1. in some rule there is a substring aXi (or XjXi );
2. there is a pair of consecutive transitions α and Xi in the NFA;
3. in some rule there is a substring Xia (or XiXj );
4. there is a pair of consecutive transitions Xi and α in the NFA.
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We claim that for a fixed nonterminal Xi , all cases of the form (1)–(2) yield at most
one crossing pair, and all cases (3)–(4) also yield at most one crossing pair. Thus, this
will yield 2n crossing pairs in total.

So consider a substring aXi and a′Xi that both appear in rules. Then both a and a′
were obtained in the same way: they were introduced in the respective rules in line 4
of PreProc and there was no way to change them afterwards. Hence, a = a′ is the
unique letter popped in the line 4 of PreProc. Note that this analysis shows also that
a substring XjXi cannot appear in any rule. In the same way, consider the transition
by Xi in the NFA N , let it be from p to q . But the line 11 of PreProc guarantees that
there is a unique incoming transition to p, which is the same letter as the one popped
in line 4 of PreProc, i.e. a. Consequently, cases (1)–(2) can introduce one crossing
pair per nonterminal.

A symmetric analysis applies to (3)–(4). �

4.3 Blocks Compression

The block compression is very similar in spirit to pair compression, the only addi-
tional difficulty is the fact that blocks can be long, i.e. up to exponential. In case
of letters without a crossing block, the compression can be done as in the case of
noncrossing pairs, i.e. by replacing explicit blocks in G and adding some transitions
to N . The case of a letter with a crossing block is reduced to the simpler case of letter
without such a block: similarly to the compression of crossing pairs, we need to ‘pop’
letters from the beginning and the end of a nonterminal. However, this time popping
one letter is not enough, we need to remove the whole a-prefix and a-suffix.

4.3.1 Compression of Noncrossing Blocks

Consider a that has no crossing block. Then every maximal block of a in val(X1),
. . . , val(Xn) is an explicit substring in one of the rule’ bodies; so we simply replace
explicit a� by a fresh letter a� in rules’ bodies, for each �. Furthermore, as a’s block
cannot have a crossing appearance in N , when a� is a substring of a string defined
by a path in N , then a� appears wholly inside a nonterminal transition, or a� labels
a path using letter transitions only. The former case is taken care of by compression
of a maximal blocks in G, and in the latter case for each a� and each pair of states
p and q we check whether there is a path for a� from p to q using letter transitions
only, which is done using the method from Lemma 1.

Note that BlockCompNcr(a) (Algorithm 6) uses nondeterministic subprocedures,
which can raise doubts whether it is not a PNP algorithm. However, the following
lemma shows that it is still an NP algorithm.

Lemma 12 Suppose that BlockCompNcr is applied for a letter a /∈ {$,#} without
crossing blocks. Then it preserves (SLP 1)–(Aut 2) and properly implements maximal
block compression, i.e. val(X′

i ) = BCa(val(Xi)) for each Xi .
The operations in line 6 of BlockCompNcr can be performed in npolytime, other

operations can be performed in polytime.
N recognises val(Xn) if and only if N ′ recognises val(X′

n) for some non-
deterministic choices. If N is DFA, so is N ′.
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Algorithm 6 BlockCompNcr(a), which compresses a blocks when a has no crossing
blocks

1: establish the lengths �1, . . . , �k of a’s maximal blocks in val(X1), . . . , val(Xn)

2: for each a�m do
3: for each production Xi → α do
4: replace every explicit maximal block a�m in α by a�m

5: for states p, q in N do
6: if δN(p,a�m, q) then 	 Check non-deterministically, see Lemma 1
7: put a transition δN(p,a�m, q)

If b that is not of the form a� for any � had no crossing blocks in G, N , then it
does not have them in G′, N ′.

This lemma is shown in a stronger version in the next section, as Lemma 17.

4.3.2 Removing Crossing Blocks of a Letter

It was already mentioned that a has a crossing block if and only if aa is a cross-
ing pair. We know a method transforming a crossing pair to a noncrossing pair, see
Lemma 5, however, it essentially assumes that the pair consists of two different let-
ter: in short, when aXi appears in the rule and we left-pop a letter a from Xi , then
the pair aa is still crossing, whenever val(Xi) still begins with a. This is fixed in
the most straightforward manner: we keep left-popping the letters from Xi , until
the first letter of val(Xi) is different from a. In other words, it is enough to re-
move each nonterminal’s a-prefix (and a-suffix). To be more precise: fix i and let
val(Xi) = a�i uari , where u does not start nor end with a. Then our goal is to mod-
ify G so that val(X′

i ) = u. (If val(Xi) is a power of a, we simply give u = ε and
ri = 0.) This can be done in a bottom-up fashion, by two subprocedures, one of them
removes the prefix, the other the suffix; these subprocedures work similarly as Left-
Pop and RightPop. We need to modify the NFA accordingly: it is enough to replace
the transition labelled with Xi by path consisting of three transitions, labelled with
a�i , X′

i and ari .
The removed a-prefixes and a-suffixes can be exponentially long, and so we store

them in the rules in a succinct way, i.e. a� is represented as (a, �); the size of rep-
resentation of � is O(log�), i.e. O(n), see Remark 1. We say that such a grammar
is in an a-succinct form. The NFA N might have transitions labelled with a�, which
are stored in succinct way as well. We say that N satisfies a-relaxed (Aut 1), if its
transitions are labelled by nonterminals, a single letter or by a�, where � ≤ 2n. The
semantics of the new automaton should be clear: it can traverse the transition labelled
with a� when consuming the a� from the beginning of the input word. Similarly, this
automaton is deterministic, if for any two transitions, labelled with α and β , originat-
ing from the same state, the first letters of val(α) and val(β) are different.

Before stating the appropriate algorithms, we show that even with such a succinct
representation, the number of different lengths of maximal blocks of a is also linearly
bounded, similarly as in Lemma 3.
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Lemma 13 (stronger variant of Lemma 3) For a letter a and a grammar G, which
can be given in an a-succinct form, there are at most |G|+ 4n different lengths of a’s
maximal blocks in val(X1), . . . ,val(Xn). The set of these lengths can be calculated
in polytime.

Proof Consider first the maximal blocks of a that are fully contained within some
rule’s body. Then each symbol (a letter a or a string of letters a�, represented by
one symbol) can be uniquely assigned to the maximal block to which it belongs; in
particular, there are at most |G| such blocks. To calculate the lengths of such blocks,
it is enough to read the explicit strings in the rules, adding the appropriate lengths,
which can be done in polytime, as these lengths are at most 2n.

The other maximal blocks are the ones with the crossing appearances. Assign a
maximal block to the nonterminal Xi with the smallest i, such that a� is a substring
of Xi and a� has a crossing appearance in Xi . Then there are at most 4 such blocks
assigned to this rule: suppose it is of the form Xi → uXjvXkw, then a� stretches
over u and val(Xj ) or over val(Xj ) and v or v and val(Xk) or val(Xk) and w. Hence,
there are at most 4n such lengths of maximal blocks. To calculate the lengths of these
crossing blocks it is enough to calculate first the length of the a-prefix and a-suffix
of each nonterminal, which is done in a straightforward bottom-up manner. Then it is
enough to look at the rules and calculate the lengths of the a blocks stretching over
both explicit letters and nonterminals in the rule. This is easily doable in polytime. �

Lemma 14 The CutPref(a) (Algorithm 7) for a /∈ {$,#} runs in polytime time and
preserves (SLP 1)–(Aut 2), except that it a-relaxes (Aut 1). G′ is in the a-succinct
form.

Let val(Xi) = a�i ui , where ui does not begin with a. After CutPref(a)

val(X′
i ) = ui .

N accepts val(Xn) if and only if N ′ accepts val(X′
n). If N is a DFA, so is N ′.

Algorithm 7 CutPref(a), pops the a-prefix from each nonterminal
1: for i ← 1 . . n do 	 Cutting a-prefixes
2: let the rule for Xi be Xi → α

3: if the first symbol of α is a then
4: remove the explicit a prefix, say a�i , from α

5: replace each Xi in rules’ bodies by a�i Xi

6: if α = ε then
7: remove Xi from rules’ bodies
8: if there is a transition δN(p,Xi, q) in N then 	 NFA modification
9: remove transition δN(p,Xi, q)

10: if α �= ε then
11: create new state p1 in N ,
12: set transitions: δN(p,a�i ,p1), δN(p1,Xi, q)

13: else
14: set transition δN(p,a�i , q)
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Proof We first explain, how to calculate the a-prefix a�i of val(Xi): since G is in
a-succinct form, this might be non-obvious. It is enough to scan the explicit strings
stored in the productions’ right-hand sides, summing the lengths of the consecutive
a’s appearances. This clearly works in polytime also for G stored in an a-succinct
form, as the powers of a may have length at most 2n, see Remark 1, and so the length
of their representation is linear in n (the correctness of this approach is shown later).

The running time of CutPref(a) is in polytime, as the loop has n iterations and all
lines can be performed in polytime.

Concerning the preservation of the invariants: as in each rule there are at most two
nonterminals and each nonterminal introduces at most one a’s block to the rule (in
line 5 of CutPref) in each rule of the grammar at most 2 maximal blocks of a are in-
troduced. They may be long, however, in compressed form we treat them as singular
symbols. In this way rules of G are stored in an a-succinct form, which was explic-
itly allowed. Then the a-prefix is removed and if Xi defines ε, it is removed from the
right-hand sides of the productions. This does not affect the (SLP 1)–(SLP 2) (recall
that a is not $, neither #). Since the NFA is also changed, we inspect the invariants
regarding N : introducing new states p1 and replacing transition δN(p,Xi, q) by two
transitions δN ′(p, a�i ,p1), δN ′(p1,X,q1) preserves the (Aut 1)–(Aut 2), with the ex-
ception that it a-relaxes (Aut 1); the same holds in the case, when α = ε and the
transition δ(p,Xi, q) is replaced with δ(p, a�

i , q).
Notice that if N is deterministic, so is N ′: as already mentioned the only change

done to N is the replacement of transition by Xi by a path of two transitions a�i and
X′

i , such that the first letter of val(Xi) is a and the state in the middle have exactly
one incoming and outgoing transition. This preserves determinism of the automaton:
Let Xi label a transition from p to q and let p1 be the new state in the middle. Then
p1 has one outgoing transition, furthermore, the first letter of the word defined by the
label of the transition from p′ to p1 is a, so the same as it used to be for Xi which
led from p to q . As N was deterministic, no other transition from p had a as the first
letter, and so also no such transition, except the one to p1, exists in N ′.

To show the correctness, we prove by induction on i the two main claims of the
lemma:

– CutPref correctly calculates the length of the a-prefix of val(Xi), i.e. �i ,
– val(Xi) = a�i val(X′

i ).

For i = 1 notice that the whole production for X1 is stored explicitly, and so Cut-
Pref correctly calculates the a-prefix of val(X1) and after its removal, val(X1) =
a�1 val(X′

1). Furthermore, as each X1 in the rules was replaced with a�1 val(X′
1), the

val(Xj ) for j > i is not changed.
For the induction step, let Xi → uXjvXkw. Then by the induction assumption:

val(Xi) = uval(Xj )v val(Xk)w

= ua�j val
(
X′

j

)
va�k val

(
X′

k

)
w.

There are cases to consider, depending on whether val(X′
j ) = ε or not and whether

val(X′
k) = ε or not. We describe the one with val(X′

j ) = ε and val(X′
k) �= ε, other

cases are treated in a similar way. Then the rule is rewritten as ua�j va�k val(X′
k)w.
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Since by the inductive assumption, a is not the first letter of val(X′
k), the a prefix

of val(X′
i ) is the a-prefix of ua�j va�k . Thus it is correctly calculated by CutPref.

As the last action, CutPref removes the a-prefix from the rule, which shows that
a�i val(X′

i ) = val(Xi).
It is left to show that N accepts val(Xn) if and only if N ′ accepts val(X′

n). To
this end, notice that the only modification to N is the replacement of the transition of
the form δN(p,Xi, q) by a path labelled with a�i ,X′

i (or by a�i alone). Furthermore,
the vertex inside this path has only one incoming and one outgoing transition. The
path labelled with a�i ,X′

i defines the string a�i val(X′
i ), which was already shown to

be val(Xi). It is left to observe that the newly introduced state in the middle of the
path is not accepting, nor starting. Hence the starting (accepting) states of N and N ′
coincide, and so each string is accepted by N if and only if it is accepted by N ′. �

A symmetric algorithm CutSuff, which removes the a-suffix, is also defined; it has
similar properties as CutPref.

Lemma 15 The CutSuff(a) for a /∈ {$,#} runs in polytime time and preserves
(SLP 1)–(Aut 2), except that it a-relaxes (Aut 1). G′ is in the a-succinct form.

Let val(Xi) = uia
ri , where ui does not end with a. After CutSuff(a) the

val(X′
i ) = ui .

N accepts val(Xn) if and only if N ′ accepts val(X′
n). If N is a DFA, so is N ′.

Accordingly to the intuition provided at the beginning of this subsection, and sim-
ilarly as in the case of the crossing pairs and procedures LeftPop, RightPop, it can be
easily shown that after applying CutPref(a) and CutSuff(a) the letter a no longer has
crossing blocks.

Lemma 16 After application of CutPref(a) and CutSuff(a), for each nonterminal Xi

neither first, nor last letter of val(Xi) is a; in particular, the letter a has no crossing
blocks.

Proof Observe that by Lemma 14 and 15 the letter a is not the first, nor the last letter
of any val(Xi). Hence, it cannot has crossing blocks. �

Since after CutPref and CutSuff letter a no longer has crossing blocks, we may
compress its maximal blocks using BlockCompNcr. Some small twitches are needed
to accommodate the a-succinct form of G and the fact that N is a-relaxed: the non-
trivial part of BlockCompNcr was the application of Lemma 1, which works for such
large powers of a in npolytime, see Lemma 1. Other actions of BlockCompNcr gener-
alise in a simple way.

Lemma 17 BlockCompNcr can be extended, so that it applies to instances satisfy-
ing (SLP 1)–(SLP 2) with G in the a-succinct form and a-relaxed-(Aut 1)–(Aut 2).
The output satisfies (SLP 1)–(Aut 2) and the claim of Lemma 12 applies to such an
extension.
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Proof By Lemma 13, there are only |G|+ 4n possible lengths of a’s maximal blocks
and they can be calculated in polytime; hence line 1 of BlockCompNcr takes polytime
even in this extended setting. All the loops in BlockCompNcr have only polynomially
many iterations. All operations listed in BlockCompNcr are elementary and can be
clearly performed in polytime, except replacing each a� by a� in a rule in line 4 and
for the verification in line 6. For the former operation, it is enough to read the rules
of the grammar: recall that a� is represented as a pair (a, �). Since � ≤ 2n, addition
of the lengths can be performed in polytime. The verification is more involved, we
outline how to perform it: For given two states p, q and a string a� we want to verify,
whether there is a path from p to q for a string a�. The transitions of the NFA are
labelled either with single letters, powers of a (not larger then 2n) or by nonterminals;
however, from Lemma 16 it follows that for each nonterminal Xi nor the first, nor the
last letter of val(Xi) is a. Thus, a path for a� can use only transitions labelled with
powers of a (or a single letter a). Hence, our problem can be rephrased as a fully
compressed membership problem for NFA over a unary alphabet: it is enough to

– restrict NFA N to transitions by powers of a,
– make p the unique starting state,
– make q the unique accepting state.

Since all considered powers ar appear in strings defined by G, and so r ≤ 2n, see
Remark 1. So each such ar can be represented by an SLP of O(n) size. In particular,
Lemma 1 is applicable here and so we can verify in npolytime whether there is a path
from p to q for a word a�.

Concerning the preservation of invariants: we first show that the G′ is not in the
a-succinct form, nor N ′ is a-relaxed. When BlockCompNcr finishes its work, all max-
imal blocks of a are replaced, in particular, there are no succinct representations of a

powers inside the grammar. Notice that there should be no transition labelled with a�

in the NFA. To this end a new line at the end of BlockCompNcr should be added, so
that all transitions by powers of a are removed.

Now we can return to showing the preservation of the invariants: since the only
change to the productions consists of replacing maximal blocks of a by a single
letter, (SLP 1)–(SLP 2) are preserved. Also, the only modifications to the NFA is the
addition of new letter transitions. Thus, (Aut 1) holds. To see that also (Aut 2) holds,
notice that if p receives new incoming (outgoing) transition in N ′, this transition is
of the form a� and p had an incoming (outgoing, respectively) transition by a� in N .
In particular, the starting and accepting state remain unaffected and no transition by
$ and # are introduced. Thus, also (Aut 2) holds for N ′.

Notice that if N is deterministic, so is N ′: suppose that there are two different
transitions in N ′ whose strings start with d . If d is not one of the new letters, then
the same transitions were present in N , contradiction. So suppose it is one of the new
letters, say a�. Observe that by Lemma 16 none of the strings val(Xi) started with a,
and so after the block compression none of them starts with a�. So this means that
there are two letter transitions starting from state p and labelled with a�. Thus, in N

there are two paths for the string a� starting from p, which is a contradiction.
Before showing the main property of BlockCompNcr, we briefly comment on the

last claim of the lemma: if BlockCompNcr is applied to a letter a and b �= a� had no
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crossing blocks before this application, then it also does not have after the applica-
tion. This should be obvious: application of BlockCompNcr(a) introduces some new
transitions to N , by letters other than b, changes transitions by a� into fresh letters
(other than b) and changes a’s blocks in G into fresh letters (again other than b); so
all these operations do not influence, whether b has crossing blocks or not.

We proceed to the proof of the main property of BlockCompNcr: N accepts
val(Xn) if and only if for some nondeterministic choices N ′ accepts val(X′

n). To
this end we first show, how application of BlockCompNcr affects the words defined
by G and the NFA N .

Claim 3 After performing BlockCompNcr, it holds that

val
(
X′

i

) = BCa

(
val(Xi)

)
. (7)

Claim 4 Consider a letter a with no crossing blocks and a path P in N , which has a
list of labels:

ui1Xi2ui3Xi4 · · ·Xim−1uim,

where each uij ∈ Σ∗ is a string representing the consecutive letter labels and Xij

represents a nonterminal transition, similarly as in Claim 2. Then

BCa

(
val(P )

) = BCa(ui1)val
(
X′

i2

)
BCa(ui3)val

(
X′

i4

) · · ·val
(
X′

im−1

)
BCa(uim). (8)

The proofs are analogous as the proofs of Claims 1–2 in Lemma 5 and are thus
omitted. Notice that the properties stated in Claims 3–4 do not depend on the non-
deterministic choices of BlockCompNcr.

It is left to show the main claims of the lemma: N recognises val(Xn) if and only
if the NFA N ′ obtained for some non-deterministic choices recognises val(X′

n).⇐© Suppose first that the N ′ accepts val(X′
n), using the path P ′. Clearly val(P ′) =

val(X′
n). Let the list of labels on P ′ be

u′
i1
X′

i2
u′

i3
X′

i4
· · ·X′

im−1
u′

im
.

Let uij be obtained from u′
ij

be replacing each a�k
with a�k . We shall construct a path

P in N , which has the same starting and ending as P ′ and induces a list of labels

ui1Xi2ui3Xi4 · · ·Xim−1uim.

Notice that

– if there is a transition δN ′(p,X′
i , q) in N ′ then there is a transition δN(p,Xi, q)

in N ;
– if there is a transition δN ′(p, b, q) for b �= a�k

in N ′, then there is a transition
δN(p,b, q) in N ;

– if there is a transition δN(p,a�k
, q) in N ′ for some a�k that is a maximal block in

one of val(X1), . . . ,val(Xn), then there is a path from p to q for a string a�k in N .
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Therefore, by an easy induction, P is a valid path in N , moreover, since P ′ is accept-
ing, so is P . It is left to demonstrate that P defines val(Xn): since BCa is a one-to-one
function on strings not containing letters of the form a� and both val(P ) and val(Xn)

do not contain such letters, it is enough to show that BCa(val(P )) = BCa(val(Xn)).
By (7) it holds that BCa(val(Xn)) = val(X′

n). The value of BCa(val(P )) is already
known from (8), and so it is enough to show that

BCa(ui1)val
(
X′

i2

)
BCa(ui3)val

(
X′

i4

) · · ·val
(
X′

im−1

)
BCa(uim) = val

(
X′

n

)
.

But this is simply the fact that path P ′ defines val(X′
n), which holds by the assump-

tion.
⇒© Suppose now that N accepts val(Xn). Consider the case in which BlockComp-

Ncr always made a correct non-deterministic choice, i.e. that each time it correctly
guessed in line 6.

Let the accepting path P in N has a list of labels

ui1Xi2ui3Xi4 · · ·Xim−1uim,

where, similarly as in Claim 4, each uij is a string representing the consecutive letter
labels (uij may be empty) and Xij represents a transition by a nonterminal transition.
By the definition,

val(Xn) = ui1 val(Xi2)ui3 val(Xi4) · · ·val(Xim−1)uim.

Now consider the a’s block compression applied to both side of this equality. By (7)
and (8)

val
(
X′

n

) = BCa(ui1)val
(
X′

i2

)
BCa(ui3)val

(
X′

i4

) · · ·val
(
X′

im−1

)
BCa(uim).

We will construct an accepting path P ′ with a list of labels

BCa(ui1)X
′
i2
BCa(ui3)X

′
i4

· · ·X′
im−1

BCa(uim).

Notice that val(P ′) = val(X′
n), and so construction of such path P ′ will conclude the

proof. We iteratively transform P into P ′. Notice that

– if there is a transition δN(p,Xi, q) in N then there is a transition δN ′(p,X′
i , q)

in N ′;
– if there is a transition δN(p,b, q) for b �= a in N , then there is a transition

δN ′(p, b, q) in N ′;
– if there is a path in N from p to q for string a� that has maximal block in val(Xn),

then there is a transition δN ′(p, a�, q) in N ′ (by the assumption that BlockCompNcr
guessed correctly).

And by an easy induction P ′ is a valid path in N ′ and has the same starting and
ending state as P . Since P is accepting in N and the starting and accepting states
in N and N ′ coincide, P ′ is an accepting path in N ′. �

The CutPref, CutSuff and BlockCompNcr can be now used to implement the
blocks’ compression for an arbitrary letter, with crossing blocks or not.
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Algorithm 8 BlockComp(a), which compresses a blocks
1: run CutPref(a)

2: run CutSuff(a)

3: run BlockCompNcr(a)

Lemma 18 The BlockComp(a) (Algorithm 8) for a /∈ {$,#} preserves (SLP 1)–
(Aut 2) and properly implements maximal block compression, i.e. val(X′

n) =
BCa(val(Xn)).

It works in npolytime; the only operation requiring nondeterminism is line 6 of
BlockCompNcr, other operations can be performed in polytime.

N recognises val(Xn) if and only if N ′ recognises val(X′
n) for some non-

deterministic choices. If N is DFA, so is N ′.
If b, which is not of the form a� for any �, had no crossing blocks in G, N , then it

does not have them in G′, N ′.

Proof This easily follows from Lemma 14, 15 and 17. �

4.4 Running Time and Correctness

Since the running time of each algorithm is npolytime, it is enough to show that the
size of Σ , G and N are always polynomial in n (recall that n is unchanged throughout
CompMem).

Lemma 19 During CompMem, the sizes of Σ , G, N are polynomial in n.

Proof We first bound the size of |G|. We show that at the beginning of each itera-
tion of the main loop in CompMemeach right-hand side of the production has at most
64n + 16 explicit letters, and that inside each iteration of the main loop of Comp-
Mem there are at most 16n + 4 new symbols added (we exclude the letter replacing
compressed strings). Notice that during the run of CompMem grammar G may be in
succinct form, and accordingly we treat a� as one symbol.

These bounds hold when CompMem starts working, as the assumptions that G is
in binary normal form implies that the right-hand sizes of the rules are of length at
most 2. Let us fix a rule and consider, how many new letters may be introduced in
this rule. By introduced we mean letters that were popped to this rule from some
nonterminal, and not the letters that replaced pairs or blocks in this rule. There are
five cases, in which new letters are introduced to a rule:

popping letters done by PreProc (line 4) In this way at most 4 new letters can be
introduced to a rule.

popping letters by LeftPop (line 5) Each invocation of LeftPop introduces at most 2
new symbols to a rule. As LeftPop is used once for each crossing pair and there are
at most 2n such pairs, see Lemma 11, in this way at most 4n new symbols were
added per each iteration of the main loop of CompMem.

popping letters by RightPop Symmetric analysis, as in the previous case gives the
same bound 4n on the number of letters introduced in this way to a rule.
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cutting a prefix in CutPref (line 5) There are at most 2 new powers of a (all possibly
in succinct form) that may be introduced to a rule in one invocation of CutPref.
While these powers of a are written in a succinct representation, they will be all
replaced by single letters in the later blocks compression for a. In total, CutPref is
invoked for each letter with a crossing block, and there are at most 2n such letters,
by Lemma 2. So there are at most 4n new symbols introduced in this way for one
iteration of the main loop of CompMem.

cutting a suffix in CutSuff Analysis symmetric to the one for the cutting of suffix
yields that at most 4n letters are introduced in one phase to a rule.

Hence, there are at most 16n + 4 new letters introduced to the right-hand side of
a production in each iteration of the main loop in CompMem. Still, the main task
performed by CompMem is the compression: an argument similar as in the proof
Lemma 4 can be used to show that the size of the explicit strings in the rules decreases
by a factor of 3/4 in each iteration of loop from line 1 in CompMem. Of course, the
newly added letters may be unaffected by this compression. It is left to verify that
64n + 16 is indeed the upper bound on the size of the right-hand size of a rule, let it
be Xi → αi :

∣∣α′
i

∣∣ ≤ 3

4
· |αi | + (16n + 4) ≤ 3

4
· (64n + 16) + (16n + 4) = 64n + 16.

This proves the bound on |G| at the end of each iteration of the main loop. Notice
that as there at most 16n + 4 new letters added to this rule, inside the phase the size
of G is at most 80n2 + 20n.

We now turn our attention to the size of Σ . Again, consider the execution of Comp-
Mem and one iteration of the main loop. We show that there are polynomially many
(in n) letters added in one such iteration. New letters are added to Σ when compres-
sion of pairs or block compression is applied. There are the following possibilities

compression of a non-crossing pair (line 2 of PairComp) Each compression of a non-
crossing pair decreases the total length of explicit strings used in G by at least 1.
Since the size of each right-hand side is at most 64n + 16 at the beginning of the
iteration and there are at most 16n+4 new letters added to a rule in each iteration,
there can be at most 80n2 + 20n such compressions, and so as many new letters
added in this was.

compression of a crossing pair (call to PairComp made by CrPairComp) The cross-
ing pairs compression is run for each of the crossing pairs, and there are at most
2n of them, see Lemma 11. So, at most 2n letters are introduced in this way.

block compression of a letter without a crossing block (line 4 of BlockCompNcr)
The same argument as in the case of compression of noncrossing pairs applies.

block compression for of a letter with a crossing block (call to BlockCompNcr in
BlockComp) There are at most 2n letters with crossing blocks, by Lemma 2,
and each of them has at most |G| + 4n different lengths of maximal blocks, by
Lemma 13. Compressing all of them introduces at most 2n(|G| + 4n) new letters
to Σ .

Since |G| is polynomial in n, in each phase there are polynomially many (in n) letters
introduced to Σ . Since the number of phases is O(n), see Lemma 4, the total size of
|Σ | is polynomial in n.
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It is left to bound the size of |N |: as there are at most n non-terminal transitions,
the size of transition function of N is at most O(|QN |2 · (|Σ | + n)). So it is enough
to bound the number of states of N by a polynomial in n. Note that without loss of
generality we can assume that the input NFA has at most n states, see Remark 2.
Consider when new states are added into the NFA, there are only five situations, in
which this happens:

popping letters in PreProc (line 10) This introduces at most two states per nontermi-
nal transition (one for popping the first letter and one for the last letter). As there
are at most n nonterminal transitions, by (Aut 1), this adds at most 2n states.

left-popping letters in LeftPop (line 11) LeftPop introduces one state per nonterminal
and there are at most n such transitions, by (Aut 1). Furthermore, LeftPop is in-
voked once per each crossing pair, i.e. at most 2n times, see Lemma 11. So, at
most 2n2 states are introduced in this way.

right-popping letters in RightPop The same analysis as in the previous case yields
that at most 2n2 states are introduced in this way.

cutting a prefix in CutPref (in line 11) CutPref introduces one state per nonterminal
transition. By (Aut 1) there are at most n such transitions. So it is enough to es-
timate, how many times CutPref is invoked. CutPref is run for each letter with a
crossing block, and there are at most 2n such letters, see Lemma 2. Thus, one
iteration of the main loop of CompMem adds at most 2n2 states in total.

cutting a suffix in CutSuff The same analysis as in the previous case yields that at
most 2n2 states are introduced in this way.

It is left to recall that by Lemma 4 the main loop of CompMem is run O(n) times,
hence in total there are O(n3) states added to N ′. This ends the proof of the lemma. �

Using Lemmas 5–19 it is now possible to conclude that CompMem correctly
solves the FCMP for NFA, in nondeterministic polynomial (in n) time. The only
source of non-determinism is the one in Lemma 1, and so for DFA the corresponding
problem can be solved deterministically.

Proof of Theorem 1 The proof follows by showing that CompMem properly verifies,
whether val(Xn) is accepted by N and that CompMem runs in npolytime.

Let us first show correctness of CompMem. All subroutines of CompMem (non-
deterministically) modify the instance, changing G, N and Xn into G′, N ′ and X′

n

(notice that the output depends on the non-deterministic choices). Let N(i), G(i), X(i)
n

for i = 1, . . . , k be the consecutive obtained instances, with i = 1 representing the
input instance. Then N(i) accepts val(Xn)

(i) if and only if for some non-deterministic
choices the resulting N(i+1) accepts val(Xn)

(i+1). This is shown in Lemmata 5, 9, 10,
12, 18 (if some of the procedures are deterministic, then the output does not depend
on any choices). So, if N(1) does not accept val(X(1)

n ) also N(k) does not accept
val(X(k)

n ). On the other hand, if N(1) accepts val(X(1)
n ), then there exits a sequence

of instances (representing proper non-deterministic guesses), such that for each i the
N(i) accepts val(X(i)

n ). In particular, N(k) accepts val(X(k)
n ) and as |val(X(k)

n )| < n,
val(X(k)

n ) can be decompressed and acceptance by N(k) can be checked naively in
polytime.
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Now, we should show that the running time is in fact (non-deterministic) polyno-
mial. Lemmata 5, 9, 10, 12, 18 claim that each of the subroutine runs in npolytime
in the size of the current instance. However, by Lemma 19, the size of this instance
is always polynomial in n. Furthermore, each of such application introduces a new
letter to Σ , and we know by Lemma 19 that the final size of Σ is polynomial in n.
Therefore these subroutines are run at most polynomially many (in n) times. Hence,
the total running time is npolytime.

It is left to show that if the input is a DFA, CompMem can be determinised. Firstly,
notice that by Lemmata 5, 9, 10, 12, 18, if the instance consisted of a DFA, each
instance kept by CompMem is also a DFA.

The only non-deterministic choices in CompMem are performed when calling a
subroutine for a fully compressed membership problem for a string over an alphabet
consisting of a single letter (see Lemma 1). However, the same lemma states that
when the input consists of a deterministic automaton, the problem is in P. Thus, there
is no non-determinism in CompMem, when it is applied to a DFA. �
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