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Abstract. We present the first linear time algorithm for d-list colouring
of a graph—i.e. a proper colouring of each vertex v by colours coming from
lists L(v) of sizes at least deg(v). Previously, procedures with such com-
plexity were only known for ∆-list colouring, where for each vertex v one
has |L(v)| ≥ ∆, the maximum of the vertex degrees. An implementation
of the procedure is available.

1 Introduction

Graph colouring is probably the most popular subject in graph theory. Al-
though even the 3-colourability of a graph is known to be an NP-complete
problem, there is a number of positive results dealing with the case where
the number of colours is close to ∆ — the maximal degree of a graph.
The most famous among them is the Brooks’s theorem [5] asserting that a
connected graph that is neither a clique nor an odd cycle, can be coloured
with ∆ colours. However, the question becomes much harder even for ∆−1
colours. Borodin and Kostochka conjectured in [4] that for ∆ ≥ 9 the
graphs with no clique of size ∆ are (∆− 1)-colourable. The conjecture re-
mains open; for ∆ ≥ 1014 it was affirmed by Reed in [15] by means of the
probabilistic method.
Another extension of the Brooks’s theorem in the direction of list-colourings
was made independently by Vizing [19] and Erdős et al. [7]. Recently this
line of research became even more popular than simple colourings. For ex-
ample it is studied in depth in [9, 18, 13, 11] and many other sources, e.g. as
recently as [10]. In 1994 at a graph theory conference held at Oberwolfach
Thomassen pointed out that one can also prove a choosability version of
Gallai’s result [8], which characterized the subgraphs of k-colour-critical
graphs induced by the set of all vertices of degree k − 1. Surprisingly, as
Kostochka in [12] has mentioned, this theorem can be easily derived from
the result of Borodin [2, 3] and Erdős et al. [7]. Specifically, Erdős has char-
acterised all d-choosable graphs as follows. The non-d-choosable graphs are
exactly the graphs, whose blocks are cliques or odd cycles. So if a graph
possesses a block that is neither a clique nor an odd cycle, it can be coloured
for every d-list-assignment. This characterisation does not treat the case
of colouring of a non-d-choosable graph for a given d-list-assignment. The
latter was addressed by Borodin in little-known [2], covering the case when
we are given a non-d-choosable graph and a d-list-assignment.
The present paper focused on a linear-time algorithm for the d-list colour-
ing. We also present a proof of the Borodin’s result as a corollary of our
algorithmic result.



Algorithmic aspects. Although the general list-colouring problem is a
hard problem even to approximate, there is a linear time algorithm by Skul-
rattanakulchai [16] for any ∆-list-assignment, which improves the Lovász’s
algorithm [14] of such complexity for ∆-colouring. The algorithm of Skul-
rattanakulchai emerged from a new proof of a theorem of Erdős, Rubin
and Taylor [7]. Unlike the latter, we rely upon a simple idea of recursive
deletion of vertices presented in the proof by Dirac and Lovász [1] of Brooks
Theorem [5]. It allows us to present the first linear time algorithm for d-list
colouring problem. Since d-list colouring obeys a simple rule of reduction,
our procedure can be easily applied to the problem of partial d-list colour-
ing completion and thus to the completion of a partial ∆-list colouring. So
our work generalises, in a number of directions, the result of [16] where the
first time optimal algorithm for ∆-list colouring is presented. We describe,
as a part of the main algorithm, a linear-time procedure for ∆-colouring
adapted for usage in our main algorithm, and which also can be applied to
general ∆-colouring problems. It also yields an algorithmic proof for the
Brooks’s Theorem. Our procedure appears to be quite practical.
An implementation of the entire algorithm together with the procedure
can be found in [20]. Finally, we remark that our work can be considered
as an algorithmic, and rather nontrivial, counterpart to Borodin’s result
[2].

2 Preliminaries

For a graph G, a proper colouring or just a colouring of G is a map c :
V (G) → N such that c(v) 6= c(u) whenever uv ∈ E(G). It is called a k-
colouring if at most k colours were used. It is natural to consider a more
restricted setting, where the allowed colours are prescribed for each vertex.
Formally, a list-assignment is a function L assigning to every vertex v ∈
V (G) a set L(v) of natural numbers, which are called admissible colours
for v. An L-colouring of G is a proper colouring c of G which assigns to
any vertex v a colour c(v) ∈ L(v). If |L(v)| ≥ k for every v ∈ V (G), then
L is a k-list-assignment. If |L(v)| ≥ deg(v) for every v ∈ V (G), then L
is a d-list-assignment. A partial L-colouring of G of a vertex subset S is
an L-colouring of the induced subgraph G(S). An L-colouring C of G is a
precolouring extension of a partial colouring C′ on the set S if C(v) = C′(v)
for all v ∈ S.
Thus, we are given a graph and a list-assignment function L, and the task
is either to find a proper L-colouring, or to establish its nonexistence. In a
precolouring extension of L-colouring problem we are given, in addition to
G and L, a precoloured set S ⊂ V with a proper colouring on G(S), and
the task is to extend this L-colouring to the all vertices of G or to find that
it is impossible.
Graph is called d-choosable if for any d-list assignment function L the L-
colouring Problem has a solution.

2.1 Terminology

For a graph G = (V, E) let E = E(G) denote the set of edges of G and
V = V (G) denote the set of vertices of G. For a subset S of vertices, G(S)



denotes the induced subgraph of G on S. In this paper we consider only
finite simple graphs, i.e. those without loops and multi-edges. We denote by
degG(u), or deg(u), the degree of u in G, i.e. the number of edges incident
with u. Let us from the very beginning assume that G is connected, since
the colouring problem can be solved separately for each component of G.
A cut vertex is a vertex after deletion of which the graph splits into more
than one component of connectivity. A two-connected graph is a graph
which remains connected after deletion of any vertex (here we assume that
an empty graph is connected). A block of G is a maximal by inclusion two-
connected induced subgraph of G. Let us recall some facts about blocks
and cut vertices, which one can find in [1] or in [6]:
– Two blocks can have at most one common vertex and if they have one

then it is a cut vertex of G.
– Any edge of G belongs to some block.
– A bipartite graph with the first part being the set of blocks of G and

the second one being the set of cut vertices of G such that every cut
vertex is adjacent to the blocks which contain it, is a tree.

We call such a tree of blocks and cut vertices a block tree.
Suppose we have a spanning tree T of G with a root r, and an edge orien-
tation towards the root. Such a tree is called normal if there is an oriented
path in T joining any two u, v ∈ V such that (u, v) ∈ E. In [6] it is proved
that every connected graph contains a normal tree. One can easily check
that the depth-first search spanning tree is a normal tree. Using this fact
one can easily see that the root of normal spanning tree of two-connected
graph is a leaf in this tree, since otherwise by deleting the root we will get
more than one component of connectivity.

2.2 Main results

Before discussing the algorithm, let us describe some natural requirements
on the input data. In the present paper we consider the most concise graph
representation, i.e. the vertices of the graph are represented by integers
from 1 to N = |V |, and E(G) is given as a set of pairs.

Definition 1. Let the maximum value of the colour for L be at most
c|E(G)|, for a constant c. Then we say that L satisfies the colour density
condition.

One needs the latter condition to efficiently handle colours. It is not re-
strictive, since it allows one to describe all possible essentially different
situations for L up to renumbering of the colours. The same condition on
the maximal colour value and numeration of vertices was imposed in [16].

Theorem 1. There is a linear time algorithm which, for a given graph G
and d-list-assignment function L satisfying the colour density condition,
either finds an L-colouring of G, or reports its nonexistence.

Our algorithm is effectively based on the following theorem characterising
all the list assignments and graphs which have an admissible assignment.

Theorem 2. 1 Let G = (V, E) be a graph, with the set of blocks B, and L
a d-list-assignment for G. Then G has no d-list colouring if and only if:

1 Due to the space limitation we have placed the proof of theorem 2 in the appendix.



1. Every B ∈ B is either a clique or an odd cycle.
2. There exists a map S which assigns to each pair (v, B), where v ∈ B ∈

B, a set of colours S(v, B) satisfying the following conditions:

(a)
⋃

B: v∈B∈B
S(v, B) = L(v)

(b) S(v, B)
⋂
S(v, B′) = ∅ for any B 6= B′ ∈ B with v ∈ B ∩B′.

(c) |S(v, B)| = degG(B)(v) for any v ∈ B
(d) S(v, B) = S(u, B) for any u, v ∈ B

Remark 1. Conditions 2a and 2c of the theorem imply condition 2b; the
condition 1 is just the Erdős’ characterisation of the d-choosable graphs.
Note that the appearance of cliques and odd cycles is not a coincidence,
due to Brooks Theorem [5], that says that a connected graph H that is
neither a clique nor an odd cycle satisfies χ(H) ≤ ∆(H).

Remark 2. This theorem is a reformulation of the Borodin’s result [2]. One
more variant of the Borodin’s result one can find in [12].

In other words, the theorem states that non-colourable instances of d-list
colouring problem can be described as follows. In the block tree of G we can
split every list of a cut vertex v into t disjoint parts and leave only one such
part for a block containing v (each part should corresponds to exactly one
block) in such a way, that now it is impossible to find a proper colouring of
any block using only the lists of admissible colours of its vertices (for each
cut vertex in the block we have to use the part of the list we have left for
these block and vertex). (See Fig. 1)
Keeping in mind this characterisation while reading the algorithm descrip-
tion may make the latter more transparent. The algorithm for Theorem 1
is described in Section 3.

3 d-List Colouring Problem

INPUT:
A graph G = (V, E) and list-assignment L with L(v) ≥ degG(v) for every
vertex v ∈ V .

TASK:
Find a proper L-colouring of G or deduce that there is none.

To simplify the presentation, let G be a connected graph. However almost
the same algorithm works for not necessarily connected graphs.

3.1 Algorithm

Let us give a few definitions before we start describing an algorithm.

Definition 2. We call a block a leaf block if it contains at most one cut
vertex, i.e. it corresponds to a leaf vertex in the block tree T .
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Fig. 1. A graph and L-assignment that does not lead to a L-colouring. The colour list of
each cut vertex is split into a number of lists according to the statement of Theorem 2.

Definition 3. We call an ordered pair of two adjacent vertices (u, v) dis-
tinguished by the colour i if i ∈ L(u) \ L(v).

In the main algorithm we will use the following auxiliary procedures:

1. Recursive deletion of vertices. It finds a desired d-colouring of a
connected graph G, if G has a vertex v with |L(v)| > degG(v).

2. Search for blocks of G. It finds the representation of each block by
the set of its vertices.

3. Search for a colour distinguishing the pair (u, v). It requires us
to introduce one boolean array C of the size c|E(G)|, which we reuse
by every application of the procedure.

4. ∆-colouring of a connected graph. For a connected graph H that
is neither a clique nor an odd cycle, the procedure finds a proper ∆-
colouring.

Now we are ready to describe the algorithm.

– STEP 1. Suppose there exists v ∈ V with |L(v)| > degG(v). The
recursive deletion of vertices will give us a colouring we seek and
we terminate the algorithm.

– STEP 2. A) Find all blocks of G and the corresponding block tree
T .

1. Find the blocks of G using search for blocks of G.
2. For each vertex v of G find a list of the blocks containing v.



3. Construct a bipartite graph H0 with one part consisting of all
blocks and another one consisting of all cut vertices and with
E(H0) = {(v, B) | v ∈ B}.

4. Construct a block tree T as the breadth-first search tree of H0, i.e.
find the corresponding order B on the blocks and cut vertices.

– B) Take the last block B in the order B and its unique cut vertex v0.
In the next steps we are trying to reduce G by cutting off B \ {v0}, or
find a desired colouring.

– STEP 3. Try to find in B a pair of distinguished by a colour vertices
(u, v), such that u is not a cut vertex, i.e. u 6= v0.

1. If there is such a pair in B, say (u, v) distinguished by the colour
c, then we colour u with c and delete it from G. In the remaining
graph, |L(v)| > deg(v). Also the graph G′ = G \ {v} is connected.
We colour G′ by the recursive deletion of vertices and termi-
nate.

2. Otherwise we proceed to the next step.

– STEP 4. Check whether the block B is a clique or an odd cycle. Can
be done by pre-computing vertex degrees of G.

1. If B is a clique or an odd cycle, we reduce G by cutting off B \
{v0}. Since in STEP 3 v0 and a vertex v adjacent to v0 are not
distinguished by a colour, we have L(v0) ⊇ L(v). We reduce L(v0)
by L(v). Then we return to the STEP 2 B) with next after B in
B block. Here we use a property of order B to reduce efficiently
L(v0).

2. Other possibilities for B. In this case we necessarily get a desired
colouring and terminate.

• Colour G(V \ V (B)) by applying the recursive deletion of
vertices in G(V \B).

• Delete from L(v0) all the colours which are present among
neighbours of v0.

• Check if v0 has the same as the other vertices in B set of
admissible colours.

• If v0 does not, then for the remaining not coloured vertices
a pair (v0, u), where u is any vertex adjacent to v0 in B, is
distinguished by a colour. We complete the colouring of the
whole graph as in STEP 3.1 and terminate.

• Otherwise we apply ∆-colouring procedure to B.

3.2 Implementation of procedures

Here we give a description of our auxiliary procedures in details together
with their complexity analysis.

The recursive deletion of vertices. Suppose there exists v ∈ V with
|L(v)| > degG(v). Put v in a stack O and delete it from the graph.

Then the remaining graph again should have a vertex with the same prop-
erty, since G is a connected graph and |L(u)| ≥ deg(u) for any u ∈ V . We
repeat the previous action for this vertex, i.e. put it in O and delete it from
G, and keep doing such deletion until there are no vertices left in G.



Then we take the first vertex from the O and colour it with any admissible
colour, then take the second one and again colour it with any admissible
colour which does not occur among its already coloured neighbours and so
on (we succeed to colour every such vertex because we have appropriately
chosen vertices in the O). Eventually we colour all the vertices of G.

Remark 3. This procedure also works well for graphs which have more than
one component of connectivity if in each such component there is a vertex
w with |L(w)| > deg(w).

Proposition 1. The recursive deletion of vertices in G and subsequent
colouring, works in linear in the size of the graph time.

Proof. We can compute the degrees of all vertices of G in linear time.
Indeed, after putting any vertex in O, any of its neighbours can be put in
O immediately after it. So we can make a depth-first search starting with a
vertex, which has degree less than its list size, and put in O corresponding
vertex at each step of that search. All of this works in linear time.
To colour all the vertices in O in linear time it is sufficient to colour each
vertex u ∈ O in O(|L(u)|) time.
As we have the bound on the maximal colour value we can create in linear
time, during the initialisation of the algorithm, an array C0 of boolean
values of size equal to maximum value among all possible colours and with
initial False values.
At the colouring step of the procedure for a vertex u we match in C0 with
True the colours of all already coloured neighbours of u and then search
in L(u) for a colour c with False value of C0[c]. When we have found c, we
reset back to False, by one pass along the neighbours of u, all the values of
C0. Thus we return C0 to the initial state and we can use it again for other
vertices. Then we colour u with c. This concludes the proof, since we use
only O(|L(u)|) time to colour u; also in total we use only c|E(G)| of space,
since we create the array only once.

Search for blocks of G. The algorithm for finding all blocks in linear
time can be found, e.g. in [17].

Search for a colour distinguishing the pair (u, v). As we have
the bound on the maximal colour value we can in linear in |L| time create,
during the initialisation of the algorithm, an array C of boolean values of
size equal to the maximum value among all possible colours and with initial
False values. Then we can mark with True value all the colours which are
in L(v) and then verify whether there is a colour c in L(u) for which C[c]
is False, and finally reset all the True values of C back to False. Thus we
either find a distinguishing colour or check that there are no such a colour,
in linear in |L(u)|+ |L(v)| time.

∆-colouring of a connected graph. We use a linear time algorithm
for ∆-colouring by Lovász [14]. But there is another, easier, way to deal
with the ∆-colouring and we will describe it in Section 4, which also pro-
vides a new constructive proof of the Brooks Theorem.



3.3 Proof of correctness of the algorithm

STEP 1. We compute all vertex degrees in G and check for each vertex
whether |L(v)| > degG(v).
STEP 2.
A) Find all blocks of G and the corresponding block tree T . We consider
the representation of each block by the set of its vertices; also we construct
for each vertex a list of all blocks it contains. To recall the definition of
block tree, one can think of a bipartite graph H with one part consisting
of all blocks and another consisting of all cut vertices (that is vertices
which belong to at least two blocks) and with E(H) = {(B, v) | v ∈ B};
by construction H is a tree and is called the block tree. For complexity
reasons we need to construct T as the breadth-first search tree, i.e. we
require that T has the specific order on blocks and cut vertices.

Remark 4. We have to do the search for blocks as the unsolvable in-
stances of the problem are described in terms of certain conditions on
blocks [7].

For tree representation it is useful to view an orientation towards the root.
So we add an artificial vertex to G and join it to a vertex of G. Thus we
add an artificial block to T . Let us take this artificial block B0 to be a
root of T . Let us pick a block B0 and consider the order B in which blocks
appear in a breadth-first search on T with the root in B0.
B) Let B be the last block of T in B.

Note that B is a leaf block. Let us denote by v0 the cut vertex of B, i.e.
the unique cut vertex in T joined with B. Since B is the last in B, and B
is the order of a breadth-first search, all the other neighbours of v0 that
appear after v0 in B, are leaf blocks.
STEP 3.
Case A. Suppose we have found a pair of vertices (u, v) distinguished by
the colour c, such that u is not a cut vertex in B.
Then we colour u with c and delete it from G. In the remaining graph,
|L(v)| > deg(v). Also the graph G′ = G \ {v} is connected. So we can
colour G′ by the recursive deletion of vertices.
Case B. If there are no such pairs then for all non-cut vertices w, v ∈ B
we have L(v) = L(w), whereas for the cut vertex v0 one has L(v0) ⊇ L(v).
Consequently, all the vertices of B \ {v0} have the same degree. Then we
come to the STEP 4.

At the next step of the algorithm we either reduce G by cutting off B\{v0}
or find a colouring of G by recursive deletion of vertices.

STEP 4. All lists for non cut vertices of B are the same and that one is
contained in the list of cut vertex of B.
According to the Brooks Theorem [5] (cf. Remark 1) there are two cases.
(That can be distinguished by pre-computing vertex degrees)

Case I (B is either a clique or an odd cycle)
We need to make the reduction of L(v0) very carefully, since |L(v0)| can
be much bigger than the size of B. We describe it in details in Section 3.4.

Case II (remaining possibilities for B) In this case due to classification
by Erdős [7] we know that G should have a proper colouring for any list-
assignment function.



3.4 Complexity analysis of the algorithm
Clearly each of the Steps 1 and 2 takes only O(|G|+ |L|) time.

STEP 3. Part 1. Search of a distinguished by a colour pair of vertices
in B \ {v0}.
Proposition 2. Search for a distinguished by a colour pair of vertices
(u, v), such that u, v 6= v0, can be done in linear in the block’s size time,
where by the size of a block we mean the number of edges plus number of
vertices in this block.

Proof. We can consider a spanning depth-first search tree of B with the
root in v0 and check only pairs of admissible colour sets for adjacent vertices
in this tree. Since B is a block, v0 has unique neighbour in the tree. So
we do double check for two adjacent vertices u and v twice, at first for the
pair (u, v) then for (v, u).
Now let us show that the total time of all checks is linear in

∑
v∈B\{v0}

|L(v)|.

By every check of u and v which are not cut vertices we either get that
L(u) = L(v), or find a pair of distinguished by a colour vertices together
with such colour. In the latter case we terminate the search of the pair. In
the former case we see that the check works in linear in min(|L(u)|, |L(v)|)
time. So the total time will be linear in

∑
v∈B\{v0}

|L(v)|.

Part 2. Check whether a pair (u0, v0) is distinguished by a colour in linear
in L(u0) time, where u0 is adjacent to v0 in B.

Remark 5. Since B is a block and we consider the depth-first search span-
ning tree with the root in v0, we need only to make one check for v0 and its
unique neighbour u0 in the tree. But we cannot allow ourselves doing this
check even in linear in |L(v0)|+ |L(u0)| time in straightforward manner for
all blocks pending at v0. Since |L(v0)| may be much bigger than the size
of B and furthermore v0 may be the cut vertex for many small blocks like
B, the total time can be quadratic in input size, e.g.for G = Kn−1,1. For
the same reasons we are not allowed to make a straightforward reduction
of L(v0) in Step 4.

To avoid multiple checks described in Remark 5 and reductions of L(v0)
for large L(v0) we can remember the True values of L(v0) in C and use it
not for one pending at v0 block but for all such blocks. So strictly speaking
we do the following:
– Introduce at the beginning of the algorithm a new array C′ with |C′| =
|C| of boolean, initially marked with False values.

– If the cut vertex of a leaf block B differs from the previous one, say
v′0, then we do the following.
1. Revert C′ to initial state of only False values in |L(v′0)| time, just

going once along L(v′0).
2. Mark in C′ by True values the colours of L(v0).

– For a leaf block B with the cut vertex v0 check the pair (u0, v0) in
linear in |L(u0)| time. One can do it by one passing along L(u0) and
checking if C′[c] is True for c ∈ L(u0).

For the search of a distinguishing colour for the pair (u0, v0) it suffice to
use C′ instead of L(v0), since in the search we only check whether a colour
i ∈ L(u0) belongs to L(v0).



STEP 4.

Effective reduction of L(v0). Since we do not need the whole list L(v0),
while v0 is a cut vertex, at any reduction we can efficiently maintain only
C′ instead of L(v0). Thus at every reduction of L(v0) we just mark back
with False all the colours of L(u0) in C′ and do not change L(v0) yet. We
will really change L(v0) only when we cut off all the leaf blocks pending
at v0 and when v0 becomes a non-cut vertex. By definition of B we will do
such change only once for v0, so the total time of reducing lists for all cut
vertices will take a linear time. After such “fake” reduction of L(v0) we
colour all vertices in B \ {v0} and delete them from G. Then we go back
to Step 2 B) and find other leaf block in the reduced graph.

Thus Step 3 and Step 4 work in O(|B|) time for each particular block B
and to maintain C′ for each cut vertex in total takes O(|L|) time. Adding
up all above together, we see that the algorithm works in O(|G|+ |L|) time.

4 Constructive proof of the Brooks theorem

∆-Colouring of a two-connected graph which is neither a clique nor
an odd cycle. We describe an algorithm different from Step 4 III. Here we
may suppose that all vertices in B \ {v0} (v0 is the unique cut vertex in
B) have the same list of admissible colours. Hence all the vertices in B \v0

have the same degree.
To this moment we know that B is a block, i.e. two-connected graph.
Moreover we have found a depth-first search spanning tree for B (it is
just a part of depth-first search tree for G). And also we have described a
procedure of recursive deletion of vertices. So using all of this we can now
describe a quite simple algorithm for colouring of G. The only difficult place
in this algorithm is the number of combinatorial cases we are considering.
So the description of the algorithm will consist of working out these cases,
as follows.
– Suppose we have found two non-adjacent vertices, say u and v, in

B \ {v0} such that if we do the following:
• colour u and v with the same colour
• delete this colour from L(w) for each neighbour w of v or u
• delete both u and v from G,

then the remaining graph have a recursive deletion of vertices. We call
such vertices u and v a good pair. Thus if we have found a good pair
then we can easily colour G in linear time.

– If degG(u) = 2 for an u ∈ B \{v0}, then B is a cycle and we know that
B is not an odd cycle. So it is even. Let us colour B \ {v0} then delete
from L(v0) the colour of its two neighbours in B and then colour the
remaining graph, since it has recursive deletion of vertices.

– Two descendant neighbours of a vertex u in the depth-first search span-
ning tree, i.e. normal tree, with v0 as a root, are a good pair. Indeed,
one can easily derive that these two descendants are not adjacent from
the fact that a tree with root v0 is normal. Also one can see that if
we delete from B these two descendants, then in the remaining graph
there always will be a path from u to any other vertex. These two
things show the goodness of the pair.



– If our depth-first search spanning tree is not a path, then we can effi-
ciently, i.e. in linear in block’s size time, find such a pair. In this case
we are done.

– So our tree is just a path w0, w1, w2, . . . , wk−1, v0, and, as above, v0

is the unique cut vertex of B for G. For convenience let v0 = wk.
Consider the closest to w0 vertex, say wt, on the path, which is not
adjacent to w0, and so degG(w0) ≥ t− 1.
1. The pair (w0, wt) is good when either there is a vertex among

w1, w2, . . . , wt−1 which is adjacent to something else than w0, w1,
. . . , wt, or t + 1 ≤ k and wt+1 is adjacent to w0.
This is true, as w0 and wt are not adjacent and there cannot
be more than two components of connectivity in the graph B \
{w0, wt}, since w0 is a leaf in the normal tree (the vertices w1, w2,
. . . , wt−1 will be connected in B \ {w0, wt} and so will be v0 with
remaining vertices).

2. Suppose degG(w0) ≥ t+1, then w1 is adjacent to a wl with l ≥ t+1,
since degG(w1) = degG(w0) ≥ t+1. By case 1 above, we have found
a good pair.

3. If t − 1 = degG(w0), then wt−1 is not adjacent to some wr with
r < t− 1, as degG(w0) = degG(wt−1) and wt−1 is adjacent to wt.
Hence wr and wt−1 are a good pair, since wr and wt−1 are both
adjacent to w0 and wt.

4. Suppose t = degG(w0) and that we are not in case 1. Hence w0, w1,
. . . , wt−1 and w1, . . . , wt form cliques, as t = degG(w0) = · · · =
degG(wt) and no wi with 1 ≤ i ≤ t − 1 is adjacent to wj with
j ≥ t + 1. Also k ≥ t + 2, as w0 is not adjacent to wt and wt+1,
but there is a vertex wi adjacent to w0 with i > t. We can assume
i > t + 1, since the possibility, when i = t + 1, we have considered
in the case 1. Thus, as degG(wt) = degG(w0) > 2, wt−1 and wt+1

are a good pair.

Remark 6. The same algorithm works for the ∆-colouring of a 2-connected
graph H. Indeed, we can take any vertex of H as a cut vertex v0 and we
can easily colour H in linear in the size of H time if there is a vertex u
with degH(u) < ∆(H).

Remark 7. This algorithm also provides a proof of Brooks Theorem [5] for
two-connected graphs, since if the graph is not a clique or an odd cycle we
can apply the algorithm and get the proper colouring.

Acknowledgement. We thank Oleg Borodin and Alexander Kostochka for
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Appendix. Proof of theorem 2.

Sufficiency. Suppose we have found such a map S and by a contradiction
G has a L-colouring C. It is clear that G can not be a block, since otherwise
by the Brooks Theorem it has no colouring. Let us consider a leaf block B
in the tree of blocks and cut vertices. As we have mentioned in step 4 of the
algorithm, the cut vertex v0 of this block could not have a colour from the
set S(v0, B) in C, otherwise we get a contradiction with Brooks Theorem
for G(B). Hence for the graph G′ = G((V \B)

⋃
{v0}) and assignment L′:

– L′(v) = L(v), v ∈ V \B
– L′(v0) = L(v0) \ S(v0, B)

the map S ′ satisfies all condition from the theorem, where S ′ is a restriction
of S to G′. Also C restricted to V (G′) is an L′-colouring of G′. Thus by
the method of infinite descent we arrive at contradiction.
Necessity. Suppose we have a graph G and a list assignment L such
that G is non-L-colourable. Let us see how the algorithm works for G and
L. It should give us a negative answer. So it should work till the graph
G becomes empty. It means that we eliminate according to the case II of
step 4 one by one all the blocks of G. Thus any block of G is either a clique
or an odd cycle, and by setting S(v0, B) to be the set of colours deleted
from L(v0) at the step of deleting B, we get a map in the theorem.


