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Abstract. Systems biology uses large networks of biochemical reactions to

model the functioning of biological cells from the molecular to the cellular scale.

The dynamics of dissipative reaction networks with many well separated time
scales can be described as a sequence of successive equilibrations of different

subsets of variables of the system. Polynomial systems with separation are
equilibrated when at least two monomials, of opposite signs, have the same

order of magnitude and dominate the others. These equilibrations and the

corresponding truncated dynamics, obtained by eliminating the dominated
terms, find a natural formulation in tropical analysis and can be used for

model reduction.

1. Introduction.

Systems biology develops biochemical dynamic models of various cellular pro-
cesses such as signalling, metabolism, gene regulation. These models can reproduce
complex spatial and temporal dynamic behavior observed in molecular biology
experiments. The dynamics of multiscale, dissipative, large biochemical models,
can be reduced to that of simpler models, that were called dominant subsystems
[RGZL08, GRZ10, GR08]. Simplified, dominant subsystems contain less pa-
rameters and are more easy to analyze.

The notion of dominance is asymptotic and a natural mathematical framework
to capture multiple asymptotic relations is the tropical analysis. Motivated by
applications in mathematical physics [LM96], systems of polynomial equations
[Stu02], etc., tropical analysis uses a change of scale to transform nonlinear systems
into piecewise linear systems.

In this paper we provide some mathematical justifications for possible applica-
tions of the idea of tropicalization to systems biology models.

2. Tropicalized chemical kinetics

In chemical kinetics, the reagent concentrations satisfy ordinary differential
equations:

(2.1)
dxi
dt

= Fi(x), 1 ≤ i ≤ n.
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Rather generally, the rates are rational functions of the concentrations and read

(2.2) Fi(x) = Pi(x)/Qi(x),

where Pi(x) =
∑
α∈Ai

ai,αx
α, Qi(x) =

∑
β∈Bi

bi,βx
β, are multivariate polynomi-

als. Here xα = xα1
1 xα2

2 . . . xαn
n , xβ = xβ1

1 x
β2

2 . . . xβn
n , ai,α, bi,β, are nonzero real

numbers, and Ai, Bi are finite subsets of Nn.
The special case of mass action kinetics is represented by

(2.3) Fi(x) = P+
i (x)− P−i (x),

where P+
i (x), P−i (x) are positive coefficients polynomials, P±i (x) =

∑
α∈A±i

a±i,αx
α,

a±i,α > 0, and A±i are finite subsets of Nn.
In multiscale biochemical systems, the various monomials defining reaction

rates have different orders, and at a given time, there is only one or a few domi-
nating terms. Therefore, it could make sense to replace polynomials with positive
real coefficients

∑
α∈A aαx

α, by max-plus polynomials exp(maxα∈A(log(aα)+ <
log(x),α >)).

This heuristic can be used to associate a piecewise-smooth model to the system
of rational ODEs (2.1), in two different ways.

The first method was proposed in [NGVR12] and can be applied to any ra-
tional ODE system defined by (2.1),(2.2):

Definition 2.1. We call complete tropicalization of the smooth ODE system
(2.1),(2.2) the following piecewise-smooth system:

(2.4)
dxi
dt

= DomPi(x)/DomQi(x),

where Dom
(∑

α∈Ai
ai,αx

α
)

= sign(ai,αmax
) exp(maxα∈Ai

(log(|ai,α|)+ < u,α >

)). Here u = (logx1, . . . , logxn), < u,α > denotes the dot product, and ai,αmax
,

αmax ∈ Ai denotes the coefficient of the monomial for which the maximum is
attained. In simple words, Dom renders the monomial of largest absolute value,
with its sign.

The second method,proposed in [SCF+09], applies to the systems (2.1),(2.3).

Definition 2.2. We call two terms tropicalization of the smooth ODE system
(2.1),(2.3) the following piecewise-smooth system:

(2.5)
dxi
dt

= DomP+
i (x)−DomP−i (x),

The two-terms tropicalization was used in [SCF+09] to analyse the dependence
of steady states on the model parameters. The complete tropicalization was used
for the study of the model dynamics and for the model reduction [NGVR12,
RGZN12].

For both tropicalization methods, for each occurrence of the Dom operator, one
can introduce a tropical manifold, defined as the subset of Rn where the maximum
in Dom is attained by at least two terms. For instance, for n = 2, such tropical
manifold is made of points, segments connecting these points, and half-lines. The
tropical manifolds in such an arrangement decompose the space into sectors, in-
side which one monomial dominates all the others in the definition of the reagent
rates. The study of this arrangement give hints on the possible steady states and
attractors, as well as on their bifurcations [NGVR12].
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3. Tropical equilibration and permanence

In the general case, the tropicalization heuristic is difficult to justify by rigorous
estimates. However, this is possible when the polynomials defining the rhs of the
ODE system have dominant monomials, much larger than the other monomials.

To simplify, let us consider the class of polynomial systems, corresponding to
mass action law chemical kinetics :

(3.1)
dxi
dt

=

Mi∑
j=1

Pijx
αij

where αij are multi-indices, Pij are rate constants.
In order to introduce orders, we consider that coefficients Pij are integer powers

of a small positive parameter ε:

(3.2) Pij(ε) = εγij P̄ij .

where P̄ij do not depend or are O(1) on ε.
We also suppose that the cone R> = {x : xi ≥ 0} is invariant under dynamics

(3.1) and initial data are positive:

xi(0) > δ > 0.

The terms (3.2) can have different signs, the ones with P̄ij > 0 are production
terms, and those with P̄ij < 0 are degradation terms.

From the biochemical point of view, the choice (3.2) is justified by the fact that
biochemical processes have many, well separated concentration and time scales.
The orders of different monomials defining the system (3.1) are set by orders of the
parameters but also by the orders of the concentrations variables xi. We therefore
use a renormalization :

(3.3) xi = εai x̄i.

where ai are unknown powers chosen such that x̄i are bounded uniformly in ε (we
will see later when this choice is possible).

We seek for renormalization exponents ai such that only a few terms dominate
all the others, for each i-th equation (3.1) as ε → 0. Let us denote the number of
terms with minimum degree in ε for i-th equation as mi. Naturally, 1 ≤ mi ≤Mi.
After renormalization, we remove all small terms that have smaller orders in ε as
ε→ 0. We can call this procedure tropical removing. The system obtained can be
named tropically truncated system.

Let us denote αijl the lth coefficient of the multi-index αij . If all mi = 1 then
we have the following truncated system

(3.4)
dx̄i
dt

= εµiFi(x̄), Fi(x̄) = Pij(i)x̄
αij(i)

,

where j(i) is the index of the unique term with minimum degree in ε,

(3.5) µi = γij(i) +

n∑
l=1

α
ij(i)
l al − ai,

and

(3.6) µi < γij +

n∑
l=1

αijl al − ai for all j 6= j(i).
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If all mi = 2, in order to find possible renormalization exponents ai, it is necessary
to resolve a family of linear programming problem. Each problem is defined by a
set of pairs (j(i), k(i)) such that j(i) 6= k(i). We define µi by

(3.7) µi = γij(i) +

n∑
l=1

α
ij(i)
l al − ai = γik(i) +

n∑
l=1

α
ik(i)
l al − ai

and obtain the system of the following inequalities

(3.8) µi ≤ γij +

n∑
l=1

αijl al − ai for all j 6= j(i), k(i).

In order to define more precisely the separation between various terms, we use
the permanency concept, borrowed from ecology (the Lotka-Volterra model, see for
instance [Tak96]).

Definition 3.1. The system (3.1) is permanent, if there are two constants
C− > 0 and C+ > 0, a set of renormalization exponents ai, and a function T0, such
that after the renormalized variables (3.3) satisfy

(3.9) C− < x̄i(t) < C+, for all t > T0(x(0)) and for every i.

We assume that C± and T0 are uniform in (do not depend on) ε as ε→ 0.

For permanent systems, we can obtain some results justifying the two proce-
dures of tropicalization.

Proposition 3.2. Assume that system (3.1) is permanent. Let x, x̂ be the
solutions to the Cauchy problem for (3.1) and (2.4) (or (2.5)), respectively, with
the same initial data:

x(0) = x̂(0).

Then the difference y(t) = x(t)− x̂(t) satisfies the estimate

(3.10) |y(t)| < C1ε
γ exp(bt), γ > 0,

where the positive constants C1, b are uniform in ε. If the original system (3.1)
is structurally stable in the domain ΩC−,C+ = {x : C− < |x| < C+}, then the
corresponding tropical systems (2.4) and (2.5) are also permanent and there is an
orbital topological equivalence x̄ = hε(x) between the trajectories x(t) and x̄(t)
of the corresponding Cauchy problems. The homeomorphism hε is close to the
identity as ε→ 0.

The proof of the estimate (3.10) follows immediately by the Gronwall lemma.
The second assertion follows directly from the definition of structural stability which
means that orbits of the dynamical system are smoothly deformed under small
perturbations.

Permanency property is not easy to check. The following straightforward
lemma gives a necessary condition of permanency of the system (3.1).

Lemma 3.3. Assume a tropically truncated system is permanent. Then, for
each i ∈ {1, . . . , n}, the i-th equation of this system contains at least two terms.
The terms should have different signs for coefficients pij, i.e., one term should be
a production one, while another term should be a degradation term.
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Proof. Let us suppose that mi = 1 for some i, or mi > 1, but all terms have
the same sign s. Let us consider this equation. Then one has, for s = 1,

dxi
dt

> εµiδi(C
−, C+) > 0.

Therefore, xi(t) > δt+xi(0) and the system cannot be permanent. If s = −1, then

dxi
dt

< −εµ̃iδi(C
−, C+) < 0.

Again it is clear that the system cannot be permanent. �

We call “tropical equilibration”, the condition in Lemma 3.3. This condition
means that permanency is acquired only if at least two terms of different signs have
the maximal order, for each equation of the system (3.1).

The tropical equilibration condition can be used to determine the renormaliza-
tion exponents, by the following algorithm.

Step 1. For each i let us choose a pair (j(i), k(i)) such that j, k ∈ {1, . . . ,Mi}
and j < k. The sign of the corresponding terms should be different.

Step 2. We resolve the linear system of algebraic equations

(3.11) γij(i) − γik(i) = −
n∑
l=1

α
ij(i)
l al +

n∑
l=1

α
ik(i)
l al,

for al, together with the inequalities (3.8).
Notice that although that Step 2 has polynomial complexity, the tropical equi-

libration problem has a number of choices that is exponential in the number of
variables at Step 1.

Assume that, as a result of this procedure, we obtain the two terms toric system

(3.12)
dx̄i
dt

= εµi(F+
i (x̄)− F−i (x̄)), F±i = Pij± x̄

αij
± .

One can expect that, in a ”generic” case1, all µi are mutually different, namely

(3.13) µ1 < µ2 < ... < µn−1 < µn.

We can now state a sufficient condition for permanency. Let us consider the
first equation (3.12) with i = 1 and let us denote y = x̄1, z = (x̄2, ..., x̄n)tr. In this
notation, the first equation becomes

(3.14)
dy

dt
= f(y) = b1(z)yβ1 − b2(z)yβ2 , b1, b2 > 0, βi ∈ R.

According to (3.13) here z(t) is a slow function of time and thus we can suppose that
bi are constants (this step will be rendered rigorous at the end of this section, by
using the concept of invariant manifold and methods from [Hen]). The permanency
property can be then checked in an elementary way.

Lemma 3.4. Equation 3.14 has the permanence property if and only if

β1 < β2.

For fixed z in these cases we have

y(t, z)→ y0(z) as t→∞.

1supposing that multi-indices αij are chosen uniformly, by generic we understand almost

always except for cases of vanishing probability, see also [GR08]
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Proof. Consider the function f(y) = b1y
β1 − b2y

β2 . Under the condition
β1 < β2, f is negative for sufficiently large y > 0, and positive for sufficiently small
y > 0. Moreover, f has a single positive root y1 on (0,+∞). Therefore, all the
trajectories of dy/dt = f(y) tends to y1 as t → ∞ and, for any δ > 0, the interval
(y1 − δ, y1 + δ) is a trapping domain. This proves the permanency. �

Let us note that tropical equilibrations with permanency imply the existence
of invariant manifolds. This allows to reduce the number of variables of the model
while preserving good accuracy in the description of the dynamics. The following
Lemma is useful in this aspect.

Lemma 3.5. Consider the system

(3.15)
dy

dt
= f(y, z) = b1(z)yβ1 − b2(z)yβ2 , b1, b2 > δ1 > 0, βi ∈ R.

(3.16)
dz

dt
= λF (y, z),

where z ∈ Rm, λ > 0 is a parameter and the function F enjoys the following
properties. This function lies in an Hölder class

F ∈ C1+r, r > 0,

and the corresponding norms are uniformly bounded in Ω = (0,+∞)×W , for some
open domain W ⊂ Rm:

|F |C1+r(Ω) < C2.

Assume that the condition of Lemma 3.4 holds. We also suppose that bi are smooth
functions of z for all z such that |z| > δ0 > 0. Assume that z ∈W implies |z| > δ0.

Let y1(z) be the unique solution of f(y, z) = 0.
Then, for sufficiently small λ < λ0(C2, b1, b2, β1, β2, δ0, δ1) equations (3.15),

(3.17) have a locally invariant and locally attracting manifold

(3.17) y = Y (z, λ), Y ∈ C1+r(W ),

and Y has the asymptotics

(3.18) Y (z, λ) = y1(z) + Ỹ , Ỹ ∈ C1+r(W ),

where

(3.19) |Ỹ (z, λ)|C1+r(W ) < Csλ
s, s > 0.

Proof. This lemma can be derived from Theorem 9.1.1 from ([Hen], Ch.
9). �

The generic situation described by the conditions (3.13) leads to trivial “chain-
like” relaxation towards a point attractor, provided that we have permanency at
each step. More precisely, all the variables have separate timescales and dissipative
dynamics. The fastest variable relaxes first, then the second fastest one, and so
forth, the chain of relaxations leading to a steady state.

The following theorem describes a less trivial situation, when some timescales
are not totally separated and limit cycles are possible.
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Theorem 3.6. Assume µ1 < µ2 < ... < µn−1 ≤ µn holds.
i) If the procedure, described above, leads to the permanency property at each

step, where i = 1, 2, ..., n− 2, and if the successive application of the lemma 3.5 for
the tropically truncated toric system (3.12) uniquely defines the locally invariant
smooth manifold

(3.20) x̄i = Xi(x̄n−1, x̄n), Xi ∈ C1+r, i = 1, ..., n− 2, r > 0.

Then, the original system has an invariant manifold close to (3.20)

(3.21) x̄i = Xi(x̄n−1, x̄n) + φ(x̄n−1, x̄n, ε), i = 1, ..., n− 2.

where the corrections φi satisfy

|φi(·, ·, ε)|C1+r → 0 (ε→ 0).

ii) If the procedure, described above, leads to the permanency property at each
step, where i = 1, 2, ..., n − 2, and the last two equations of the tropically trun-
cated system have a globally attracting hyperbolic rest point or globally attracting
hyperbolic limit cycle, then the tropically truncated system is permanent and has
an attractor of the same type. Moreover, for sufficiently small ε the initial system
also is permanent for initial data from some appropriate domain Wε,a,A and has
an analogous attracting hyperbolic rest point (limit cycle) close to the attractor of
the truncated system.

iii) If the rest point (cycle) is not globally attracting, then we can say nothing
on permanency but, for sufficiently small ε, the initial system still has an analo-
gous attracting hyperbolic rest point (limit cycle) close to the attractor of truncated
system and the same topological structure.

Proof. i This follows from Lemma 3.5, which can be applied inductively, step
by step.

ii) Suppose that the tropically truncated system (TTS) has a globally attracting
compact invariant set A . Let Π be an open neighborhood of this set. We can
choose this neighborhood as a box that contains A . Then, for all initial data x(0),
the corresponding trajectory x(t), x(0) lies in Π for all t > T0(x0, Π). Therefore,
our TTS is permanent. Here we do not use the fact that the cycle (rest point) is
hyperbolic.

Permanency of the initial system follows from hyperbolicity of A . Hyperbolic
sets are persistent (structurally stable [Rue89]). Since this set is globally attract-
ing, all TTS is structurally stable (as a dynamical system). This implies that the
initial system has a hyperbolic attractor close to A , since initial system is a small
perturbation of TTC in Π.

iii) If the set A is only locally attracting, the last assertion of the Theorem
follows from persistency of hyperbolic sets. �

Remark. Theorem 3.6 implicitly supposes that all fast variables xi, i = 1, 2, ..., n−
2 can be expressed as functions of the remaining slow variables xn−1, xn. It does
not consider the situation when the successive application of the lemma 3.5 leads
to degenerate equilibria. This situation typically occurs when the tropically trun-
cated system has conservation laws, i.e. linear combinations of the fast variables
are invariant with respect to the truncated fast dynamics. This case, asking for
variable aggregation and new slow variables will be discussed in detail elsewhere.
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4. Geometry of tropical equilibrations

In this section we provide a geometrical interpretation of tropical equilibrations.
We consider networks of biochemical reactions with mass action kinetic laws. Each
reaction between reagents Ai is defined as∑

i

αjiAi →
∑
k

βjkAk.

The stoichiometric vectors αj ∈ Nn, βj ∈ Nn have coordinates αji and βjk and
define which species are consumed and produced by the reaction j and in which
quantities. The mass action law means that reaction rates are monomial functions
and read

(4.1) Rj(x) = kjx
αj .

where kj > 0 are kinetic constants. The network dynamics is described as follows

(4.2)
dx

dt
=
∑
j

kj(βji − αji)xαj .

After parameters and variables rescaling, kj = k̄jε
γj , x = x̄εa we obtain

(4.3)
dx̄i
dt

= (
∑
j

εµjkj(βji − αji)x̄αj )ε−ai ,

where

(4.4) µj = γj+ < a,αj > .

Definition 4.1. Two reactions j, j′ are equilibrated on the species i iff:
i) µj = µj′ ,
ii) (βj −αj)i(βj′ −αj′)i < 0,
iii) µk ≥ µj for any reaction k 6= j, j′, such that (βk −αk)i 6= 0.

Remarks. Definition 4.1 ensures the conditions of Lemma 3.3 and is thus equiv-
alent to tropical equilibration of the species i.

According to (4.4) and Definition 4.1, the equilibrations correspond to vectors
a ∈ Rn where the minimum in the definition of the piecewise-affine function fi(a) =
minj(γj+ < a,αj >) is attained at least twice.

Let us consider the equality µj = µj′ . This represents the equation of a n− 1
dimensional hyperplane of Rn, orthogonal to the vector αj −αj′ :

(4.5) γj+ < a,αj >= γj′+ < a,αj′ >

For each species i, we consider the set of reactions Ri that act on this species,
namely the reaction k is in Ri iff (βk − αk)i 6= 0. The finite set Ri can be
characterized by the corresponding set of stoichiometric vectors αk.

The set of points of Rn where at least two reactions equilibrate on the species i
corresponds to the places where the function fi is not locally affine (the minimum
in the definition of fi is attained at least twice).

For each species, we also define the Newton polytope Ni, that is the convex
hull of the vectors αk, k ∈ Ri. The hyperplanes defined by (4.5) and corresponding
to equilibrations of two reactions on the same species i are orthogonal to edges
of the Newton polytope Ni. Ni is also the Newton polytope of the polynomial
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Pi(x) =
∑
j kj(βji − αji)xαj that defines the rhs of the ordinary differential equa-

tion satisfied by the species i.
We can now state the following

Proposition 4.2. There is a bijection between the locus Ti of vectors a where
the min-plus polynomial fi(a) is not linear and the tropical manifold of the poly-
nomial Pi(x) that defines the rhs of the ordinary differential equation satisfied by
the species i. The reaction equilibrations correspond to vectors a included in Ti but
satisfying also the condition ii) of Definition 4.1.

Remarks. This property can be used to put into correspondence reaction equi-
librations and slow invariant manifolds. Indeed, if a reaction equilibration exists,
this leads to a slow manifold that is close to some parts of the tropical manifold of
Pi(x). For instance, a reaction equilibration described by (4.5) will correspond to
an invariant manifold close to a hyperplane orthogonal to αj −αj′ . The condition
ii) of Definition 4.1 is needed for equilibrium (the equilibrated reactions have to
have opposite effects on the species i, one has to produce and the other has to
consume the species). Without this condition, the dynamics would simply cross
the tropical manifold with no deviation. However, the condition ii) is not sufficient
for stability of the equilibration (permanence). A sufficient stability condition is
given by Lemma 3.4 and reads (αj −α′j)i(βj −αj)i > 0.

5. Tropical approach to the permanency problem

We have shown in the previous sections that tropical ideas can be used to sim-
plify complex systems, by tropical removing. During this procedure, permanency
has to be checked at intermediate steps on tropically truncated systems. Lemma 3.4
allows to check permanency for toric systems with separated time scales. We pro-
vide here another approach to permanency, that can be applied to more general
situations. We consider only upper estimates. The lower estimates can be found in
a similar way.

Like in the preceding sections the truncated system is obtained by removing
from the non-tropicalized system (2.1) all the terms excepting the maximum or-
der terms. We denote the corresponding vector field by F tr and the truncated
differential equations read:

(5.1)
dxi
dt

= F tri (x).

Let us first formulate a Lemma.

Lemma 5.1. Assume that non-tropicalized system (2.1) has a smooth Lyapunov
function V (x) defined on the cone Rn

> such that

(5.2) dV (x(t))/dt ≤ 0

on trajectories x(t) = (x1(t), ...xn(t)) of (2.1) and

(5.3) V (x)→∞ as |x| → ∞.

Then, if x(t) is a trajectory of (2.1) such that |x(0)| < δ′, then there is a constant
C0(δ′) such that

(5.4) |x(t)| < C0, t > 0.
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Proof. Indeed, if |x(t)| are unbounded as t→ +∞, one has supt>0 V (x(t)) =
+∞, but (5.2) entails V (x(t)) ≤ V (x(0)). �

Let us consider the tropical version (5). Assume that the truncated version has
a strong Lyapunov function V tr(x). For a truncated vector field F tr this function
satisfies

(5.5) < ∇V tr(x(t)),F tr(x(t)) >≤ −κ|∇V tr(x(t))||F tr(x(t))|, κ > 0

on trajectories x(t) = (x1(t), ...xn(t)) of (2.1) and

(5.6) V tr(x)→∞ as |x| → ∞.

Here x ∈ Rn
>.

Such a function can be found for some tropical versions of two component
systems. For example, if

(5.7) dx/dt = k1x
ayb,

(5.8) dy/dt = −k2xayb,

where a, b > 0 and k1, k2 > 0, we can define V tr by

(5.9) V tr = x+ βy,

where βk2 > k1. Then ∇V = (1, β), and (5.5), (5.6) hold.

Lemma 5.2. Assume the tropicalized system (5) has a smooth Lyapunov func-
tion V tr(x) defined on the cone Rn

> such that (5.5), (5.6) hold. Assume that Fi(x)

and F tri (x) are multivariate polynomials of x such that deg(F tri ) > deg(F̃i), where

F̃i = Fi − F tri .
Then, if x(0) < δ′, then there is a constant C0(δ′) such that solutions of non-

tropicalized system (3.1) satisfy

(5.10) |x(t)| < C0, t > 0.

Proof. Let us compute the derivative dV tr/dt on trajectories of the initial
(non-tropicalized) system. We have the relation

(5.11) dV tr(x(t))/dt =< ∇V tr(x(t)),F tr(x(t)) > + < ∇V tr(x(t)), F̃ (x(t)) > .

Using the definition of strong Lyapunov functions, from (5.11) one has

(5.12) dV tr(x(t))/dt ≤ |∇V tr(x(t))|(−κ|F tr(x(t))|+ |F̃ (x(t))|).

But for large |x| one has |F̃ (x)| < κ|F tr(x(t))|, because |F̃ (x)| = o(|F tr(x)|), |x| →
∞. Therefore, (5.12) gives then

(5.13) dV tr(x(t))/dt ≤ 0.

This shows that |x(t)| cannot increase to +∞, and finishes the proof. �
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6. Application to chemical reactions kinetics

As an application, we discuss the Michaelis-Menten mechanism of catalysed
reaction. This model can be schematically described as :

S + E
k1


k−1

ES
k2→ P + E,

where S,E,ES, P represent the substrate, the enzyme, the enzyme-substrate com-
plex and the product, respectively.

The rate functions obey mass-action laws. We denote by x = [S] and y = [SE],
the concentration of substrate and enzyme-substrate complex, respectively. The
reaction mechanism has two conserved quantities e0 = [E] + [ES], s0 = [S] +
[ES] + [P ]. Using the conservation laws we obtain the following reduced system:

x′ = −k1x(e0 − y) + k−1y,

y′ = k1x(e0 − y)− (k−1 + k2)y.(6.1)

Let us consider that the initial data satisfies 0 ≤ y(0) ≤ e0, 0 ≤ x(0) + y(0) ≤ s0.
Then, from (6.1) it follows that

(6.2) 0 ≤ y ≤ e0, 0 ≤ x+ y ≤ s0, 0 ≤ x.

This type of constraints are typical for reduced systems resulting from ODE
systems with conservation.

We solve now the tropical equilibration problem. Using rescaled variables x =
x̄εa1 , y = ȳεa2 , k1 = k̄1ε

γ1 , k−1 = k̄−1ε
γ−1 , e0 = ē0ε

γe , s0 = s̄0ε
γs , (6.1) becomes:

x̄′ = −k̄1ē0εγ1+γe x̄+ k̄1ε
γ1+a2 x̄ȳ + k̄−1ε

γ−1+a2−a1 ȳ,

ȳ′ = k̄1ē0ε
γ1+γe+a1−a2 x̄− k̄1εγ1+a1 x̄ȳ − (k̄−1ε

γ−1 + k̄2ε
γ2)ȳ.(6.3)

The two tropical equilibration equations for x and y read:

γ1 + γe = min(γ1 + a2, γ−1 + a2 − a1),(6.4)

γ1 + γe + a1 − a2 = min(γ1 + a1,min(γ−1, γ2)).(6.5)

We should add to these, the constraints (6.2) imposed by the dynamics:

(6.6) a2 ≥ γe, min(a1, a2) ≥ γs.

We can distinguish between two situations.
Let us first consider that γ−1 < γ2. In this case (6.5) is equivalent to (6.4) (it

can be derived from the latter by adding a1 − a2 to both sides). This situation
corresponds to k−1 much larger than k2 and means that the enzyme-substrate
complex is recycled to a much larger extent than it is transformed into the reaction
product. We can find two solutions for the tropical equilibration problem and two
different tropically truncated systems (TTS).

The first solution demands large concentrations of substrate and corresponds
to saturation of the enzyme (saturation regime):

a1 < γ−1 − γ1, a2 = γe,

x̄′ = εγ1+γe(−k̄1ē0x̄+ k̄1x̄ȳ),

ȳ′ = εγ1+a1(k̄1ē0x̄− k̄1x̄ȳ).(6.7)
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The second solution works for small concentrations of substrate (linear regime):

a1 > γ−1 − γ1, a2 = a1 + γe + γ1 − γ−1,
x̄′ = εγ1+γe(−k̄1ē0x̄+ k̄−1ȳ),

ȳ′ = εγ−1(k̄1ē0x̄− k̄−1ȳ).(6.8)

In order to further characterize these two functioning regimes, we consider the third
variable z̄ = (x + y)ε−γs . The choice of this variable is dictated by the TTS. In
general, conserved quantities of the TTS (total mass of fast cycles) can be slow
variables of the full system [RGZN12]. If this variable is slower than both x and
y, the regime is called quasi-equilibrium [GRZ10, Gor11] and consists in rapid
exchanges between substrate and enzyme and a much slower transformation of the
total mass [S] + [SE] into [P ]. In both cases the equation for z̄ reads:

(6.9) z̄′ = −εγ2+a2−γs k̄2ȳ.

A sufficient condition for quasi-equilibrium (ensuring both γ2 +a2−γs > max(γ1 +
γe, γ1 + a1) and γ2 + a2 − γs > max(γ1 + γe, γ−1) in the first and second of the
cases above, respectively) is γ2 > γ1 + γs.

The second situation is when γ−1 > γ2. This case leads to negligible recycling
of the enzyme-substrate complex that is rapidly transformed into reaction product.
Quasi-equilibrium is no longer possible, but we have another interesting equilibra-
tion corresponding to fast consumption of one of the variables. The QSS variable
is necessarily equilibrated and fast. The remaining variable is slow. This corre-
sponds to the well known quasi-steady state (QSS) regime of the Michaelis-Menten
mechanism, first discussed by Briggs and Haldane [GRZ10, Gor11, RGZN12].

In this case (6.4),(6.5) are no longer equivalent:

γ1 + γe = min(γ1 + a2, γ−1 + a2 − a1),(6.10)

γ1 + γe + a1 − a2 = min(γ1 + a1, γ2).(6.11)

We obtain four solutions to the tropical equilibration problem and four different
truncated systems. In three of these solutions, only one variable is equilibrated
(see Table 1). The solutions 1 and 4 correspond to rapid complex consumption in
saturated and linear regimes, respectively. It is the case discussed by Briggs and
Haldane. The solutions 2 and 3 correspond to very small concentrations of the
substrate.

7. Conclusion

Tropical analysis provides useful tools for understanding the dynamics of bio-
chemical networks. In this paper we have studied the simple example of an en-
zymatic reaction, but some other applications have been discussed elsewhere, see
[NGVR12, SCF+09]. We have shown that depending on the values of the param-
eters and concentrations, biochemical networks with multiple time scales can have
several asymptotic regimes. During such regimes, the dynamics can be approxi-
mated by truncated systems obtained by tropicalization of the ordinary differential
equations describing the chemical kinetics. Tropical geometry can guide the con-
struction of such truncated systems. An important step in this construction is
the calculation of tropical equilibrations leading to slow invariant manifolds. We
showed that there is one to one correspondence between tropical equilibrations and
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Table 1. Tropical equilibrations of the Michaelis-Menten model with
negligible recycling γ2 < γ−1. All these equilibrations have a geometrical
interpretation illustrated in Figure 1.

No Condition Truncated system Regime

1 a1 < γ2 − γ1 x′ = εγ1+γe(−k̄1ē0x̄+ k̄1x̄ȳ) y QSS if
a2 = γe y′ = εγ1+a1(k̄1ē0x̄− k̄1x̄ȳ) a1 < γe

2 γ2 − γ1 < a1 < γ−1 − γ1 x′ = εγ1+γe(−k̄1ē0x̄+ k̄1x̄ȳ) x QSS if
a2 = γe y′ = −εγ2 k̄2ȳ γ2 > γ1 + γe

3 a1 > γ−1 − γ1 x′ = εγ1+γe(−k̄1ē0x̄+ k̄−1ȳ) x QSS if
a2 = a1 + γe + γ1 − γ−1 y′ = −εγ2 k̄2ȳ γ2 > γ1 + γe

4 a1 > γ2 − γ1 x′ = −εγ1+γe k̄1ē0x̄ y QSS if
a2 = a1 + γe + γ1 − γ2 y′ = εγ2(k̄1ē0x̄− k̄2ȳ) γ2 < γ1 + γe

O A1

A2

A3

O’ A1’

A2’

A3’

Newton polygon

x

y xy

Tropical manifolds γ−1 < γ2

O A1

A2

A3

O’ A1’

A2’

A3’

Tropical manifolds γ−1 > γ2

Figure 1. Newton polygon and tropical manifolds for x (in blue) and
for y (in red) variables of the Michaelis-Menten model. If γ−1 < γ2 the
two manifolds coincide in the limit ε → 0, meaning that both variables
are equilibrated. The vertices of the Newton polygons correspond to
monomial terms in the ODEs (different vertex shapes mean different
signs of the monomials). Only two edges of the Newton polygon relates
vertices of opposite signs, which means that there are two equilibrations;
these correspond to the branches OA3 ≡ O′A3 and OA1 ≡ O′A′1 of the
tropical manifolds. If γ−1 > γ2, the two tropical manifolds for x and for
y share a common half-line, but no longer coincide. This leads to four
possible equilibrations as in Table 1: O′A′1 (solution 1), OO′ (solution
2), OA3 (solution 3), and O′A′3 (solution 4).

well defined parts of the tropical manifolds of the polynomials defining the ordi-
nary differential equations. In the future, effective algorithms will be needed for the
tropical equilibration problem, whose complexity is exponential in the number of
variables. This will be essential for large scale applications in systems biology. Also,
our methods will be generalized to include the case when the tropically truncated
fast subsystem has conservation laws, when aggregated slow variables are needed.
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