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Obviously, there is a partition of IR2 into a �nite number of regions Vi and foreach such region there is a vertex vi of P such that f(c) = hc; vii2 for all c 2 Vi.Let T be an algebraic computation tree computing f of Example 1. Then thenumber of leaves of T is at least the number of 2-dimensional regions Vi with pairwisedi�erent vi. This follows from the fact that two di�erent polynomials in IR[x; y] cannot coincide, as functions, on an open subset of IR2. Therefore, since computationtrees are binary, we have that the depth of T is at least the log2 of this number. Thisargument is independent of the fact that the input space is IR2 (any IRn could beconsidered instead; just replace polygon by polyhedra and IR[x; y] by IR[x1; : : : ; xn]).We intend to replicate it for approximate computations.Now consider a tree T which computes a �-approximation of f in the sense thatthe output T (c) satis�es jf(c)� T (c)j � � for all c 2 IR2.If � 6= 0 a lower bound like the one above is no longer valid. To see why, considera regular n-sided polygon inscribed in the unit circunference centered at the origin.For large n the polygon becomes \close" to the circumference and for n large enoughf(c) is �-approximated by kck2 = c21 + c22. And this function can be computed withonly three operations. So the log2 n bound above is far to apply.Thus, in order to obtain meaningfull lower bounds one needs to impose somecondition on the value of �. We devote the next section to de�ne the main conceptsof the paper and to state our main theorem, where this condition is made explicit.In Section 3 we extend our main result to round-o� trees i.e., trees whose arithmeticoperations are subject to some form of error. Finally, in Section 4, we briey discussextensions to other settings such as randomized or parallel trees.1 Piecewise Polynomial Functions and Round-o� Com-putation TreesIn this paper we will only deal with trees whose computation nodes perform ad-ditions, subtractions or multiplications.1 It is immediate to prove that such a tree(with exact arithmetic) computes a very speci�c kind of functions, which we describein the next de�nition.De�nition 1 A function f : IRn ! IR is called piecewise polynomial if there existsa �nite partition IRn = [iVi of IRn into semi-algebraic sets Vi and for each i apolynomial fi 2 IR[x1; : : : ; xn] such that fjVi = fi.Without loss of generality we will assume that if i 6= j then fi 6= fj .The function f of Example 1 is piecewise polynomial. Another example of thiskind of function is provided by quanti�er elimination in the theory of the reals.Such a procedure de�nes a piecewise polynomial function by associating, to each1The extension of our results to the case of trees allowing divisions is an open problem.2



tuple of coe�cients of an input formula, a vector of coe�cients of an equivalentquanti�er-free formula.Apparently, computation of piecewise polynomial (or more generally, rational)functions was considered for the �rst time over the complex numbers rather thanover the reals, as in our case, by Strassen [1983] for the problem of computing GCDsof univariate polynomials.Before de�ning what we mean by approximation we emphasize that we areconsidering computation trees rather than decision trees. In particular we recallthat, associated to any leaf � of a computation tree T , there is a polynomialg� 2 IR[x1; : : : ; xn] such that, for any input x 2 IRn which reaches � in the courseof the computation, the output T (x) of T coincides with g�(x) (cf. [Blum, Cucker,Shub, and Smale 1998] for details).De�nition 2 Let T be an algebraic computation tree with input space IRn andoutput space IR, and let f : IRn ! IR be a function.We say that T approximates f with absolute accuracy � if for every input x 2 IRnthe output T (x) of T satis�es jT (x)� f(x)j � �.We say that T approximates f with relative accuracy � if for every input x 2 IRnthe output T (x) of T satis�es jT (x)� f(x)j � �jf(x)j.Remark 11) Approximate algorithms for a problem are a current practice to improve thee�ciency over the known algorithms computing the exact solutions of that problem.2) To the best of our knowledge very little is know on lower bounds for approxi-mate (or round-o�) computations. A worth noting exception is a paper by Rene-gar [Renegar 1987] which gives lower bounds for approximating zeros of univariatepolynomials.We now describe the condition we will impose on � in order to obtain lowerbounds for the depth of approximate computations. This condition takes the formof a bound � � � where � is a quantity depending only on the piecewise function f(rather than on the tree). We actually provide a family of conditions parameterizedby a positive parameter � whose meaning will be discussed soon.Let � > 0. If f is piecewise polynomial we de�new(�) = #fi j Vi contains an n-dimensional cube of side �g:For the rest of this paper we assume that � satis�es w(�) > 0. LetB� = inffb 2 IR j there exist cubes as above which are contained in [�b; b]ng:Denote by I� the set of indices i satis�ying the condition in the de�nition of w(�)and let d� = maxi2I� degree (fi) and C� = mini 6=ji;j2I� kfi � fjk13



where polynomials are identi�ed with their vectors of coe�cients. De�ne�� = C�2 0@ 2 (D��1)24 �1(D� + 1)B� � �N ��D� (D�+1)2 1Anwhere D� = maxfd� ; w(�)g, N� = w(�)D�n+ 1, andB� = ( BD2�� if B� � 1BD��1� if B� < 1:We can now state our main theorem.Theorem 1 If T approximates a piecewise polynomial function f with absolute ac-curacy � and � � ��then the depth k of T satis�es k � log2w(�):Remark 2 Before proving Theorem 1 it may be helpful to say a few words on themeaning of � . Let I be the set of indices such that dim Vi = n. Then, we can de�ne�� = inffr j Vi contains an n-dimensional cube of side r for all i 2 Ig:For � � �� the inclusion I� � I may be strict and therefore w(�) may be smallerthan w(��). But, in exchange, we have D� � D�� and C� � C��. Therefore, �� maybe greater than ��� . We conclude that by increasing � beyond �� the lower boundmay be decreased but the accuracy requirement may be relaxed. The exact form ofthis trade-o� will depend on the function f at hand and when applying Theorem 1we will choose a � which best �ts our interests.In proving Theorem 1 the following lemma is essential.Lemma 1 Let f 2 IR[x1; : : : ; xn] with degree xi(f) � d and M = kfk1. Letb1; : : : ; bn 2 IR, jbij � B, N 2 IN, N > d, and consider the uniform grid S withmesh �=N in the cube nYi=1[bi � �; bi]:Let S � S with jSj = s. Ifs > sn = Nn �1� �1� dN �n� = Nn � (N � d)n4



then there exists x 2 S such thatjf(x)j > � = M 0@2 (d�1)24 �1(d+ 1)B � �N� d(d+1)2 1Anwhere B = ( Bd2 if B � 1Bd�1 if B < 1:Proof. By induction on n.Base case, n = 1. In this case, s1 = d, so assume there is a subset S0 of Shaving d + 1 points w0; : : : ; wd in S such that jf(wi)j � � for i = 0; : : : ; d. Then,interpolating f at these points we express each coe�cient of f as a fractionPx2S0 axf(x)�where � = Ywi;wj2S00�j<i�d(wi � wj)is the determinant of the Vandermonde matrixV = 0BBBB@ 1 w0 w20 : : : wd01 w1 w21 : : : wd1... ...1 wd w2d : : : wdd 1CCCCAand ax are the determinants of suitable minors of V . The smallest possible value ofj�j occurs when w0; : : : ; wd are consecutive in S (i.e. wi �wi�1 = �=N) and in thiscase we have j�j � dYi=1� i�N�d�i+1 = � �N� d(d+1)2 dYi=1 i!:On the other hand, by bounding each of the d! terms in the de�nition of determinantwe have jaxj � Bd2d! if B � 1 and jaxj � Bd�1d! if B < 1. That is, jaxj � Bd!.Therefore, the absolute value of each coe�cient of f is less than(d+ 1)Bd!�� �N � d(d+1)2 Qdi=1 i! � (d+ 1)B�� �N � d(d+1)2 2 (d�1)24 �1the last inequality since dYi=1 i! � 2 d24 �1 for all d � 1. But thenM < (d+ 1)B�� �N � d(d+1)2 2 (d�1)24 �15



which is in contradiction with the de�nition of �.Induction step, n � 2. Write f = PI fIXI where fI 2 IR[xn] and XI is amonomial in x1; : : : ; xn�1. Now, take fI0 such that kfI0k1 = M . By the base ofthe induction, for all but at most d points x in the setL = �bn � �; bn � � + �N ; bn � � + 2�N ; : : : ; bn � � + N�N = bn�we have jfI0(x)j > M �2 (d�1)24 �1 �N� d(d�1)2(d+ 1)B : (1)Therefore, there are more than sn�dNn�1 points in S whose last coordinate satis�es(1). We conclude that there exists one such point x� 2 L such that, moreover,jS \ fxn = x�gj � sn � dNn�1N � d = sn�1:Now apply the inductive hypothesis to the polynomial fjxn=x� 2 IR[x1; : : : ; xn�1]using that kfjxn=x�k1 > M �2 (d�1)24 �1 �N�d(d�1)2(d+ 1)Band the conclusion follows. 22 Proof of Theorem 1Recall that I� is the set of indices i satis�ying the condition of the de�nition ofw(�), D� = maxfw(�); d�g, and N� = w(�)D�n + 1. Let i 2 I� and consider thegrid S � Vi as in Lemma 1. We say that a leaf � of T is attached to Vi if � is reachedby at least Nn� =w(�) points of S.We claim that one leaf of T can not be attached to two di�erent sets Vi. From thisclaim it follows that k � log2w(�). Indeed, if k < log2w(�) then jLeaves(T )j < w(�)and, by the pigeonhole principle, there is a leaf of T attached to Vi. So, every Vihas a leaf attached to it. And, by hypothesis, each leaf of T is attached to at mostone Vi. But then jLeaves(T )j � w(�) and therefore, k � log2 w(�).To prove the claim, assume that there exist sets Vi and Vj , i 6= j 2 I� , suchthat a leaf � is attached to both of them. Let g� be the polynomial computed alongthe branch leading to � and C 0 = kfi � fjk1. Then either kfi � g�k1 � C0=2 orkfj � g�k1 � C0=2. We can assume, w.l.o.g., that the �rst inequality holds.Let S � S be the set of points reaching the leaf �. Then,jSj � Nn�w(�) :6



Since N� > w(�)D�n, we havejSj > Nn� D�nN� = Nn�1� D�n � Nn� � (N� �D�)n:Thus we can apply Lemma 1 to the polynomial f = fi� g� with M = C0=2, d = D�and B = B� and we deduce that there is a point x 2 S such thatjfi(x)� g�(x)j > C02 0@ 2 (D��1)24 �1(D� + 1)B� � �N ��D� (D�+1)2 1An � ��since C0 � C� . But this, together with the hypothesis on �� , contradicts the factthat jT (x)� fi(x)j � �. 2A lower bound for relative approximations easily follows from the proof of The-orem 1. Let H� = maxx2[�B� ;B� ]n jf(x)j:Corollary 1 If T approximates a piecewise polynomial function f with relative ac-curacy � and � � ��H�then the depth k of T satis�es k � log2w(�): 2Remark 3 In the sequel we will state our results only for approximations withabsolute accuracy �. Results for those with relative accuracy �, such as Corollary 1,follow immediately from the former.Remark 4 The lower bound in Theorem 1 (or that in Corollary 1) is on the depthof T . A more involved issue is the consideration of the topological complexity of f(cf. [Smale 1987] for this concept, see also [Vassiliev 1992]), i.e. the number of leavesof T . This number is essentially the amount of branching necessary for solving theproblem. In our discussion of Example 1 we saw that the topological complexity off is at least the number of 2-dimensional regions Vi with pairwise di�erent vi whichis at least w(�) for each � > 0.For the problem MAX, consisting of �nding the largest coordinate of an inputx 2 IRn and for which the number of pieces is n, the question of the topologicalcomplexity is open (see [Grigoriev, Karpinski, and Yao 1998] for the discussion andthe exponential lower bound for ternary rathen than the usual binary computationtrees). 7



Implicit in the proof of Theorem 1 is the fact that, if k = log2w(�), then thetopological complexity of T , TC(T ), satis�es TC(T ) � w(�). It is unclear to uswhether one can trade topological for arithmetical complexity, that is, whether onecan reduce the topological complexity of an approximated computation at the ex-pense of increasing the degree of the computed polynomials. We can prove, however,a trade-o� between these complexities (and the approximation accuracy �). Let Tbe an algebraic computation tree and g� the polynomial computed at leaf �. De�nedT = max� a leaf of T degree (g�):Note that dT � 2k where k is the depth of T . Now de�ne D(�;T ) = maxfd� ; dTg and�(�;T ) = C�2 0B@ 2 (D(�;T )�1)24 �1(D(�;T )+ 1)B(�;T ) � �N ��D(�;T ) (D(�;T )+1)2 1CAnwith B(�;T ) as in Section 1. The arguments of Theorem 1 yield the following.Theorem 2 If T approximates f with absolute accuracy � and� � �(�;T )then the topological complexity TC(T ) of T satis�esTC(T ) � w(�): 23 Round-o� treesA round-o� tree is an algebraic computation T whose arithmetic operations are sub-ject to some form of error. Typical examples arise when considering computationsin oating-point or �xed-point arithmetic.In what follows, we will prove lower bounds for round-o� trees. We will notrely on any special kind of error. These errors can be produced by rounding or bychopping, and can satisfy bounds either for their absolute or relative magnitude.Actually, the only hypothesis for our lower bounds to hold will be the usual boundon the outcome's accuracy and an additional hypothesis requiring that the sequenceof arithmetic operation performed by the tree produces an equally accurate result.Let's describe this more precisely.If � is a leave of T , denote by g� the polynomial computed with exact arithmeticalong the path ending in � and by fg� the function computed along this path whenerrors are allowed. 8



De�nition 3 Let T be a round-o� tree with input space IRn and output space IR,and let f : IRn ! IR be a function.We say that T approximates f with absolute accuracy � if for every input x 2 IRnthe output T (x) of T satis�es1) jT (x)� f(x)j � �, and2) If the round-o� computation of T with input x leads to the leave �then jfg�(x)� g�(x)j � �.Similarly, we say that T approximates f with relative accuracy � upon replacing� by �jf(x)j in the two conditions above.Remark 5 Notice that the adjectives \absolute" and \relative" can apply to boththe errors occuring along the computation (round-o� errors) and the accuracy ofits outcome. However, there is no need to bound in the same way the accuracyand the round-o� errors and one �nds instances of algorithms with combinationsof di�erent kinds. For instance, algorithms in numerical linear algebra, say forlinear equation solving, usualy consider both relative round-o� errors and relativeaccuracy (see [Demmel 1997]); relative round-o� errors are actually common innumerical analysis since they correspond to oating-point arithmetic. The mainresult of [Cucker and Smale 1997] considers absolute round-o� errors but in�niteaccuracy in the answer (the problem considered there, being decisional, does notallow for approximate answers). Also, for some results on integration (cf. [Koiran1995]), absolute accuracy is considered for exact algorithms. The list of combinationsmay continue but we will stop here.A version of Theorem 1 for round-o� trees follows.Theorem 3 Let T be a round-o� tree with depth k. If T approximates a piecewisepolynomial function f with absolute accuracy � and� � ��2then k � log2 w(�).Proof. One proceeds as in the proof of Theorem 1 to show that if k < log2(w(�)then there is a point x 2 IRn whose computation ends in a leave � of T satisfyingjf(x)� g�(x)j > �� :But since T �-approximates f we havejf(x)� T (x)j � � � ��2 and jT (x)� g�(x)j � � � ��2the latter since T (x) = fg�(x). Therefore jf(x)�g�(x)j � �� which is a contradiction.29



4 ExtensionsTheorem 1 can be extended to some contexts where trees are endowed with addi-tional capabilities. In this section we briey discuss how this is carried out for twosuch capabilities: randomization and parallelism. We will state our results only forexact approximation trees. The result for round-o� trees holds as well in the caseof randomized trees but we do not know how to prove it for parallel trees.4.1 Randomized TreesOne can de�ne randomized versions of approximation trees by allowing \coin toss-ing" and requiring the output to be a �-approximation with high probability. Moreprecisely, we consider trees with input space IRn�f0; 1gm (for the arguments whichfollow the exact value of m is not important) and we �x a con�dence degree � satis-fying 0 < � � 1. Then, such a tree approximates f with absolute accuracy � when,for each x 2 IRn and for at least �2m points b in f0; 1gm, we have jT (x; b)�f(x)j � �.Assume that this happens and let X be the union of the grids S associated tothe sets Vi with i 2 I� . Then there exists a point b� 2 f0; 1gm such that for at least�jX j points in X we have jT (x; b)� f(x)j � �. Fix the coin tossing b� and call thesepoints good (with respect to b�).Lemma 2 At least �2��w(�) sets Vi contain more than �2Nn� good points.Proof. Let � be the number of sets Vi containing more than �2Nn� good points.Then jgood pointsj � �Nn� + (w(�)� �)Nn� �2and since the number of good points is at least �Nn� w(�) the result follows. 2To replicate the proof of Theorem 1 we now consider the deterministic treeresulting from replacing the coin tossing by the �xed point b� and we modify thequantities appearing in the de�nition of �� to allow for the con�dence �. Thus, wede�ne I(�;�) to be the subset of I� with those indices i such that Vi satis�es Lemma 2.Then, one de�nes d(�;�); C(�;�); D(�;�), N(�;�) and �(�;�) as in Section 1.Notice that d(�;�) � d� , C(�;�) � C� , etc. and so �(�;�) � �� .Theorem 4 If T is a randomized tree which approximates f with absolute accuracy� and con�dence �, and � � �(�;�)then the depth k of T satis�es k � log2��2w(�)� :10



Sketch of proof. We say that a leaf � is attached to Vi if � is reached by atleast Nn(�;�)=w(�) good points in S.Again, we claim that a leaf can not be attached to two di�erent sets Vi and fromthis claim it follows the theorem. Indeed, ifk < log2��2w(�)�then jLeaves(T )j < �w(�)=2 and, by the pigeonhole principle, there is a leaf of Tattached to Vi. So, every Vi has a leaf attached to it. And, by hypothesis, each leafof T is attached to at most one Vi. But thenjLeaves(T )j � �2� �w(�) � �2w(�)and therefore, k � log2(�2w(�)).The claim is proved as in Theorem 1. 2Remark 6 When dealing with decision problems, the con�dence degree � is as-sumed to be greater than 1=2 (or in other words, the probability error " = 1 � �is assumed to be smaller than 1=2). This is due to the fact that an algorithm con-sisting of tossing a coin and answering Yes or No according to the outcome of thatcoin tossing (and independently of the input) is already a probabilistic algorithm ofcon�dence 1=2. Theorem 4 shows that such a simple algorithm is not going to workin the non-decisional case.We also mention that a complexity lower bound for a probabilistic tree decidingan arrangement of hyperplanes or a polyhedron was obtained in [Grigoriev 1998].This bound is logarithmic in the number of faces.4.2 Parallel TreesParallel computations can be modelled by a particular kind of trees. If p denotes thenumber of processors, at each computational node, the tree performs an arithmeticoperation and stores its result in at most p coordinates of the state space. Also, ateach branching node, the sign of at most p such coordinates is tested, giving thusrise to 2p possible outcomes. An elementary computation yields an upper bound of2pk leaves for such a tree with depth k. Since in most parallel models the numberof processors is bounded by 2k this upper bound becomes 2k2k .If the computations are performed exactly (without errors) it turns out that mostof these leaves are irrelevant in the sense that there are no points in IRn reachingthem. More precisely, Yao [1981] (see also [Monta~na and Pardo 1993]) shows thatin this case, the number of leaves which are reached by points in IRn is bounded by2O(k2n):11



Notice that from this it follows the inequalityk � 
0@s log jLeaves(T )jn 1A :We remark that an upper bound close to the latter lower one (for small dimen-sions) for the parallel complexity of deciding an arrangement of hyperplanes or apolyhedron (as in Remark 6) was given in [Grigoriev 1997].An almost verbatim repetition of the proof of Theorem 1 yields the followingwhich, we recall, we can only prove for exact trees.Theorem 5 If T is a parallel tree which approximates f with absolute accuracy �and � � ��then the depth k of T satis�esk � 
0@s log2 w(�)n 1A : 2Remark 7 The requirement of exact arithmetic for T in Theorem 5 seems unavoid-able if we want to use Yao's bound on the number of relevant leaves. To see why,consider a set of s lines in IR2 given by linear polynomials `1; : : : ; `s and assume thatthese lines pass through a common point �. Now consider a branch node which teststhe signs of `1; : : : ; `s at a point x. If x = � and round-o� errors are allowed whencomputing `i(�), i = 1; : : : ; s, we may get up to 2s possible outcomes.ReferencesBlum, L., F. Cucker, M. Shub, and S. Smale (1998). Complexity and Real Compu-tation. Springer-Verlag.B�urgisser, P., M. Clausen, and A. Shokrollahi (1996). Algebraic Complexity The-ory. Springer-Verlag.Cucker, F. and S. Smale (1997). Complexity estimates depending on condition andround-o� error. To appear in Journal of the ACM.Demmel, J. (1997). Applied Numerical Linear Algebra. SIAM.Grigoriev, D. (1997). Nearly sharp complexity bounds for multiprocessor algebraiccomputations. Journal of Complexity 13, 50{64.Grigoriev, D. (1998). Randomized complexity lower bounds. In 30th annual ACMSymp. on the Theory of Computing, pp. 219{223.12
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