
Universal Stratifications and a Bertini-type Theorem

Dima Grigoriev
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Abstract

A stratification of the set of critical points of a map is universal in the class of stratifi-
cations satisfying the classical Thom and Whitney-a conditions if it is the coarsest among
all such stratifications. We show that a universal stratification exists if and only if the
‘canonical subbundle’ of the cotangent bundle of the source of the map (constructed via
operations introduced by Glaeser) is Lagrangian. The proof relies on a new Bertini-type
theorem for singular varieties proved via an intriguing use of resolution of singularities.
Many examples are provided, including those of maps without universal stratifications.
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1 Introduction.

The notions and results used here are from several diverse areas, particularly ‘Stratification
Theory’, e.g. as in [18], ‘Resolution of Singularities’, related to Bertini Theorem in algebraic
geometry and ‘Complexity’ (of constructions in ‘Algebraic Geometry’), but the focus of these
areas proper is different. Nevertheless, the blend of these areas in the questions raised and the
results obtained here appears to be intriguing (and, perhaps, is important). Crucial to our
work is the constructiveness of the Glaeser bundle, which is a new invariant that we associate
with the classes of stratifications that possess classical Thom and Whitney-a (shortly TWa)
properties, see [8], [20], [23], [10] or Section 2. Roughly speaking universal is the coarsest
stratification in the latter class of TWa stratifications of the set of critical points of a map.

We show that a universal stratification exists if and only if the ‘canonical subbundle’
of the cotangent bundle of the source of the map (constructed via operations introduced
by Glaeser and referred to in this article as Glaeser bundle) is Lagrangian. (‘Thom’ and
‘Whitney-a’ properties, are very basic for any analysis within the subject of ”singularities
of mappings” and of several other subjects. Thus our criterion of universality applies to
all ‘reasonable’ classes of stratifications.) The proof relies on an Extension Theorem 5.9.
Crucial for the proof of the latter is our Bertini-type Theorem 7.2. Its proof makes an unusual
use of desingularization, see Section 1.3. Examples of universal TWa stratifications and of
non Lagrangian Glaeser bundles illustrate our results. Below, K = R or C and map
F : Kn → K l is polynomial (or analytic) and dominating, i. e. F (Kn) = K l .

We refer to an open in its closure constructible subset S of the critical points Sing(F )
as universal for the class of TWa stratifications if it is open and dense in a component of a
stratum for any TWa stratification of Sing(F ) . We also refer to the minimal by inclusion
set among closed subsets of T ∗Kn with fibers over Kn being subspaces of the respective
fibers of T ∗Kn and containing the differentials of the components of F as the Glaeser
bundle GF of map F . We say that a constructible set S is Gauss regular when there
is a unique continuous extension to all of S of the Gauss map of S , i. e. of the map which
sends nonsingular x ∈ S to the tangent space Tx(S) to S at x . (Algebraic curves with
analytically irreducible singularities are Gauss regular, but are not even C1-smooth, e. g.
curve {z3 = w2} ⊂ C2 .) Finally, we refer to the subsets of a bundle with the fibers over the
base being subspaces of the respective fibers of the bundle as subbundles.

At the first glance it seemed that Glaeser bundle GF could serve the purpose of identi-
fying TWa Gauss regular stratifications with all strata being universal, namely: by means of
partitioning of the critical locus by dimension of its fibers (private discussions with M. Gro-
mov, M. Kontsevich, T. Mostowski, A. Parusinski, N. Vorobjov, Y. Yomdin and others). But
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it does not always work, see Section 10.3 for example of not Lagrangian GF .
Note that a universal stratification of Sing(F ) if exists is essentially unique, as is precisely

spelled out in Corollary 4.2 (ii) of Proposition 4.1 . Finally, subbundles B(S) of the cotangent
bundle of the source of the mapping F that we associate with any stratification S (as in
the paragraph above Remark 3.3) are closed sets and contain the ‘Glaeser bundle’ GF of
F if and only if stratification S is a Gauss regular TWa stratification (Proposition 3.4). Of
course our original hope and motivation (as expressed in the previous paragraph) to study
TWa stratifications vis-a-vis the notion of an ‘universal’ stratum is rooted in this observation
(for an inexplicable reason previously not mentioned in the literature on stratifications).

1.1 Main construction, results and hopes - briefly.

Construction. We construct a closed bundle GF ⊂ T ∗Kn over the critical points Sing(F )
and partition Sing(F ) into ’quasistrata’ of points with the fibers of GF of constant dimen-
sion. It turns out (see Theorem 5.1) that TWa stratifications of Sing(F ) exist iff GF is a
Lagrangian subbundle of T ∗Kn , i. e. the fibers of bundle GF are orthogonal to the tangent
spaces at the smooth points of the quasistrata (e. g. is true when l = 1 , see [18]). Fibers
of GF are the orthogonal complements (to the tangent spaces at the smooth points of the
quasistrata) over an irreducible component S of a quasistratum only if S is universal
for the class of TWa stratifications of Sing(F ) , i. e. for any {S′j}j in the class, there is a
stratum S′j with S ∩ S′j being open and dense in both S and S′j . We relax condition of
smoothness of strata to a weaker assumption of Gauss regularity. Construction of bundle GF

involves Glaeser iterations of replacing the fibers of the successive closures by the respective
linear spans (see [9]), stabilizes after ρ(F ) ≤ 2n iterations (see [5]) and dim(GF ) = n for
K 6= R (see Claim 3.8 and Remark 3.9).

Main results:

1. Criterion: In Theorem 5.1 we prove that TWa stratifications of Sing(F ) with all
strata universal exist iff all fibers of Glaeser bundle GF are the orthogonal complements to
the respective tangent spaces to the quasistrata, and then the partition of Sing(F ) by the
dimension of fibers of GF yields the coarsest universal TWa stratification.

2. Extension. Proof of Theorem 5.1 relies on Theorem 6.1, in which under the assumptions
of a version of Whitney-a condition on the initial data we construct an extension (within a
Zariski open subset of the variety in question) of a component of the regular loci of singularities
to a Gauss regular subvariety with the prescribed values of the continuous extension of its
Gauss map over that component. Our construction of this extension is by means of

3. Bertini-type Theorem 7.2 . The proof of the latter unexpectedly (and essentially)
depends on a novel construction of a metric on desingularization that enables us to make use
of an ancient trick of logarithmic differentiation, see Section 1.3.

4. Our examples without universal TWa stratifications and of Fn : K4n+1 → K with
ρ(Fn) = n are in Sections 10.3 and 10.2. Every hypersurface occurs as a quasistrata of some
GF (Remark 10.3), but we wonder whether the quasistrata of all Lagrangian GF are smooth ?
To proceed with our investigation it is essential to clarify the validity of the following

Conjecture. Assume l = 1 and K = C . Then all irreducible components of Glaeser
bundle GF are n-dimensional and GF is the intersection of the subbundles of T ∗Kn|Sing(F )
of the orthogonal complements to the tangent spaces to the strata of TWa stratifications.
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1.2 Underlying motivations.

We consider stratifications of the set of the critical points Sing(F ) which satisfy Thom and
Whitney-a conditions. Our main goal is to identify the ’universal strata’. To that end
we consider a larger class of TWa stratifications with the condition of smoothness of strata
relaxed to a weaker assumption of Gauss regularity and require the strata to be open in their
respective closures, pairwise disjoint and, of course, to satisfy the classical TWa conditions.

Contribution towards the double-exponential lower bound conjecture. While
the notion of the universal stratum is basic and important in its own right our constructive
identification in Theorem 5.1 of the universal stratifications is a crucial step towards
a solution of a long-standing problem regarding the validity of a double-exponential lower
bound on the computational complexity of stratifications, see for example [6] or [22] . Due
to Theorem 5.1 it suffices to identify an example of a polynomial map F that admits our
‘universal’ stratification and has the ‘quasistrata’ associated with the Glaeser bundle GF

being of a ‘very high’, i. e. double-exponential in the dimension of the source, degree.
It turns out that the irreducible subsets (we call them Glaeser components) over which di-

mension of the fibers of Glaeser bundle GF equals the codimension of the respective Glaeser
component are universal even with respect to the class of TWa Gauss regular stratifications
(for the brevity sake we call the latter TWG-stratifications), see Corollary 3.5. We provide
various examples of mappings that admit universal TWG-stratifications, but the question of
recognition of an individual universal stratum remains open. We expect that the universal
strata in general are precisely the Glaeser components over which Glaeser bundle is of di-
mension n . The latter components we refer to as Lagrangian since off their singular locus
the restriction of the Glaeser bundle over these components is a Lagrangian submanifold of
T ∗Kn in the natural symplectic structure of the latter.

Constructive criterion of Theorem 5.1 ‘opens doors’ to the intriguing questions listed
at the very end of Section 1.1 and the question of identifying the individual universal strata.
Proof of Theorem 5.1 relies on Theorem 6.1, which in its own turn relies on Theorem 7.2.
On the other hand Bertini-type Theorem 7.2 and a surprizing use of desingularization in its
proof are perhaps some of the most exciting features of this article (see Section 1.3). Their
beautiful and important applications include the Extension Theorem 6.1 and our criterion of
universality in Theorem 5.1. Numerous examples of Section 10 are devoted to an illustration
of constructions and claims (rather than proofs) of our main results. Finally, the estimation
of the computational complexity of our constructions in Appendix 11 and Section 9 results in
a double-exponential complexity upper bound on the stratifications by the dimension of the
fibers of the Glaeser bundles and, as a consequence, on the universal TWa stratifications.

1.3 Key instrument: a Bertini-type Theorem for singular varieties.

Let G ↪→ U and S ↪→ U \ G be nonsingular algebraic (or analytic) subvarieties, U ⊂ Cn

open and dense, S a subvariety of U and G = S \S . Assume {Lj}1≤j≤k is a collection of
k > 1 polynomials on U vanishing on G with linearly independent dLj(x) at the points
x ∈ U and that the pair of S and bundle B of vector spaces B(x) := ∩j Ker dLj(x) ⊂ Cn

for x ∈ G satisfy a version of Whitney-a conditions on the pair, i. e. the limits of tangent
spaces Tx(S) for points x ∈ S converging to a point b ∈ G contain fiber B(b) of B at
b . Denote L(x, c) :=

∑
1≤j≤k cjLj(x) , where (x, c) ∈ U × Ck , and Lc(x) := L(x, c) .

For Bertini-type Theorem 7.2 the crucial content is that for a ‘generic’ c ∈ Ck not only
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d(Lc|S) does not vanish on V (Lc) := {x ∈ S : Lc(x) = 0} , but that for points x ∈ V (Lc)
‘nearby’ any fixed point x0 ∈ G there is also a lower bound (by a positive constant) on the
sizes of d(Lc|S)(x) (or, equivalently, that the angles between the tangent spaces to S and
to the hypersurface {Lc = 0} ↪→ U are separated by a positive constant from 0 ).

We sketch the key idea of our proof in the last paragraph of this subsection. To that end we
start with a reduction to a ‘nonsingular setting’ by means of an embedded desingularization
σ : N → U of S with an additional (standard) desingularization property of all Lj ◦ σ
being (locally) monomials that divide each other for appropriate (local) orderings, say j(a)
is the index of the ‘smallest’ amongst monomials Lj ◦ σ near point a . Thus the strict
transform

N := σ−1(S \ σ(Sing(σ))) ↪→ N of S under map σ

is nonsingular, while the ‘additional’ property implies nonsingularity of both the strict trans-
form Λ′ of {L = 0} ⊂ U × Ck under map σ̃ := σ × id : N × Ck → U × Ck and of
Λ := (N ×Ck) ∩ Λ′ . Note that with initial hypersurfaces {x ∈ U : Lj(x) = 0} , 1 ≤ j ≤ k ,
declared ‘exceptional’ the embedded desingularization property of map σ includes the prop-
erty of ‘normal crossing’ for the resulting exceptional set E := (∪1≤j≤kΛj) ∪ Sing(σ) , where
Λj ’s are the strict transforms of {Lj = 0}’s under map σ . The latter property means that set
E is a union of nonsingular (exceptional) hypersurfaces which are coordinate hyperplanes for
an appropriate choice of local analytic coordinates. (For a complete exposition see Section 8.)

By applying the standard Sard Theorem in this ‘nonsingular setting’, i. e. to the restriction
of the natural projection N × Ck → Ck to hypersurface Λ , we conclude that Λc :=
Λ ∩ (N × {c}) is nonsingular for ‘generic’ c ∈ Ck . Consequently for ‘generic’ c ∈ Ck

hypersurfaces {L = 0}∩(S×{c}) are nonsingular off σ(Sing(σ)) . To establish Theorem 7.2
it suffices then to apply the claimed above estimate at noncritical for map σ values x = σ(a)
‘nearby’ critical (also for map σ ) values x0 = σ(b) with b ∈ Λc (and a ‘nearby’ b ).

We derive the required lower bound on the sizes of d(Lc|S)(x) (for points x ∈ V (Lc)
‘nearby’ x0 ∈ G ) by means of ‘an estimate via a logarithmic differentiation’, namely:
for any b ∈ Λc∩σ−1(x0) and for a choice of local coordinates xi , such that the ‘exceptional’
hyperplanes containing b are {xi = 0} for 1 ≤ i ≤ q and one of the remaining coordinates
is a local equation of Λc , we introduce (with a help of Remark 8.2) a metric on N \Sing(σ)
‘nearby’ point b , namely: we ‘declare’ collection {dxi/xi}1≤i≤q∪{dxj}q<j to be orthonormal.
Also, for noncritical for map σ points a ∈ Λc ∩ σ−1(x) ‘nearby’ point b we introduce on
the spans L∗a ⊂ T ∗σ(a)C

n of {dLj(σ(a))}1≤j≤k a new norm equivalent to the original by
‘declaring’ these collections to be orthonormal. Note that the composite σ∗a|L∗a : L∗a → T ∗a N

of the pull back by σ with the restriction to T ∗a N vanishes on (Tσ(a)(S))⊥∩L∗a and coincides
with the composite of embeddings ia : L∗a|S := L∗a/(Tσ(a)(S))⊥ ↪→ T ∗σ(a)(S) followed by the
pull backs σ∗a : T ∗σ(a)(S) → T ∗a (N) . Also, since the embeddings ia are isometries it follows
that the norms of σ∗a|L∗a and of Aa := σ∗a|L∗a|S : L∗a|S → T ∗a (N) coincide.

It is an easy consequence of the ‘logarithmic differentiation’ that in the introduced metric
the norms of σ∗a|L∗a coincide with the sizes of σ∗a(dLj(a)(σ(a))) and that the latter coincide
with |Lj(a) ◦ σ(a)| (up to the l2 norm of the exponents of the monomial Lj(a) ◦ σ ).
Moreover, the sizes of Aa(ηa) = σ∗a(ηa) for a ∈ Λc coincide with |Lj(a) ◦ σ(a)| , where
ηa := d(Lc|S)(σ(a)) The required lower bound on the sizes of ηa (at the points a ∈ Λc and
‘nearby’ point b ) then follows from the upper bound by the sizes of Aa(ηa) on the norms
of Aa , see Section 8 for complete details.
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1.4 Basic terminology, notations and a guide to the article.

Below, for a Gauss regular algebraic (or analytic) set S we denote by Ta(S) the unique
limiting position at a of the tangent spaces Tx(S) to S at the nonsingular points
x ∈ Reg(S) and drop the mention of map F in expression “TWa stratification of Sing(F )
for F ”, whenever the reference to F is clear. By an irreducible component of a constructible
set we mean here its intersection with an irreducible component of its closure. In Section 3
we describe a construction of Glaeser bundle GF involving iterations (starting with T :=
{(x, Span{dfj(x)}1≤j≤l)}x∈Kn , where Span denotes the K-linear hull of a family of vectors
in (TxKn)∗ ) of replacing the fibers of the successive closures by their linear spans. Thus,
GF is the minimal closed bundle of vector spaces over Sing(F ) which contains T |Sing(F ) .
The correspondence ‘ F → GF ’ is functorial with respect to isomorphisms preserving fibers
of F ‘near’ its critical value 0 (including with respect to C1 diffeomorphisms when K
is C or R ), see Section 3.

Let quasistrata Gk ⊂ Kn consist of the points of Sing(F ) whose fibers of GF are vector
spaces of dimension k . Assuming Thom stratification ‘near’ Sing(F ) exists, cf. [18] (e. g.
when l = 1 ), it follows that k ≥ l , dim(GF ) ≤ n and, consequently, the dimensions of the
quasistrata Gk are smaller or equal n− k (Lemma 3.7 and the remark following). We refer
to the bundle GF as Lagrangian whenever all submanifolds Reg(GF |Gk

) of Kn × (Kn)∗

are Lagrangian in the natural symplectic structure of the latter.
Following Introduction we review in Section 2 the classical notions of Thom and Whitney-

a stratifications and the canonicity property of the latter extending the classical notions to our
TWG-stratifications (for the sake of a stronger version of the canonicity property introduced
in Section 1.1 under the name of universality). We derive consequences of our constructions
related to the notion of Glaeser bundles in Section 3. All of the latter are simple (with the
exception of Claim 3.8 which is perhaps the least obvious).

The principal aim of this article is a constructive criterion for the existence of a universal
TWG-stratification {Si}i . Our Theorem 5.1 states that Sing(F ) admits a universal TWG-
stratification for F iff Glaeser bundle GF is Lagrangian. Consequently for any universal
TWG-stratification S = {Si}i of Sing(F ) sets S(m) :=

⋃
{i:dim(Si)=m} Si coincide with the

quasistrata Gn−m for every m . Partitions {Sk,i}i of quasistrata Gk into pairwise disjoint
constructible irreducible sets open in their respective closures induce partitions S := {Sk,i}k,i

of Sing(F ) . For a Lagrangian GF we consider the (nonempty) class of the latter partitions
with an additional property of dim(Sk,i) = n−k for all sets Sk,i (see the paragraph preceding
Proposition 4.7). We establish in Section 4 the simpler implication of our constructive
criterion, namely: if the bundle GF is Lagrangian then the latter partitions S form the
universal TWG-stratifications of Sing(F ) .

A more difficult converse implication is proved in Sections 5, 6, 7 and 8. It relies on
Proposition 5.9, which is of interest in its own right. A straightforward generalization of the
latter is Extension Theorem 6.1. It provides an extension of a (smooth) stratum G of a
singular locus of a variety S (algebraic or analytic, open in its closure and with G being
essentially its boundary) to a Gauss regular subvariety G+ of S with a prescribed tangent
bundle TG over G (under the necessary assumptions of our version of Whitney-a condition
for the pair of TG over G and S ). The key ingredient to both is our version of Bertini-type
Theorem 7.2 for singular varieties (briefly described in the previous Section 1.3), whose proof
in Section 8 makes an essential (and surprizing) use of the resolution of singularities.

In Section 10.2 we construct a family of Fn : K4n+1 → K with the index of stabilization
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ρ(Fn) = n . In Section 10.3 we prove that F := AX2 + 2B2XY + CY 2 does not admit
a universal TWG-stratification. Moreover, we show that for an appropriate variation of the
former example an arbitrary hypersurface appears as Gr for some r (see Remark 10.3).
We also consider in Sections 10.1 , 10.4 (discriminant-type) examples for which {Gr}r are
universal TWG-stratifications (and exhibit these stratifications explicitly). Finally, in the Ap-
pendix Section 11 we provide for the sake of completeness a calculation of the computational
complexity of the main construction in our Extension Theorem 6.1.

In abuse of notation in the remainder of the article we identify (occasionaly) the dual
(Kn)∗ with Kn , the cotangent bundle T ∗(Kn) with K2n , denote dF (x) :=
Span{{dfi(x)}1≤i≤l} , the variety of zeroes of a polynomial f by {f = 0} , refer to “Gauss
regular” as “G-regular” and to a nonsingular variety as a manifold.

This paper replaces and supersedes our earlier preprint [13].

2 Canonical TWa stratifications.

Recall that the traditional notion of stratification {Si}i , say of the set of critical points
Sing(F ) of F (meaning the points x such that dim(dF (x)) < l ) includes Sing(F ) = ∪i Si

with pairwise disjoint Si’s; the irreducibility, nonsingularity and openness in its closure of
each stratum Si (in the classical euclidean topology for K = C or R connectedness replaces
irreducibility); and also the frontier condition, i. e. that for each pair (Si , Sj) if Si∩Sj 6= ∅
then Sj ⊂ Si , as is e. g. in [8], [10]. Also, a pair of constructible nonsingular subsets
(Y , X) of Kn satisfies Whitney-a condition provided that limm→∞(ym, Tym(Y )) = (x, T )
for a sequence {ym ∈ Y }m<∞ , a point x ∈ X and a subspace T ⊂ Kn implies that
T ⊃ Tx(X) , see e. g. [7, 8, 10, 19, 20, 25, 26]. Finally, a constructible nonsingular subset
X ⊂ Kn satisfies Thom condition for a dominating map F : Kn → K l provided that
limm→∞(zm, dF (zm)) = (x, V ) for a sequence {zm ∈ Kn}m<∞ of noncritical points of F ,
a point x ∈ X and a (suitable l-dimensional) subspace V ⊂ (Kn)dual implies that V
is orthogonal to Tx(X) . Of course stratification {Si}i of Sing(F ) satisfies Whitney-a
or Thom (for a dominating map F : Kn → K l ) condition whenever every pair (Si , Sj)
satisfies Whitney-a or, respectively, every Si satisfies Thom condition.

In the present article for the sake of a concept of universality introduced in Section 1.1,
i. e. of a stronger version of the traditional notion of canonicity (see Remark 2.3 below),
we relax condition of smoothness and allow Si to be G-regular. We consider Gauss regular
stratifications {Si}i of Sing(F ) , i. e. all Si are G-regular, irreducible, open in their
respective closures and pairwise disjoint (but do not necessarily fulfil the frontier condition,
which may occur for TWG-stratifications naturally induced by Glaeser bundles GF , see
example in Remark 10.6). Extension of the notions of Thom (for a map F ) and of Whitney-
a conditions on stratifications to Gauss regular stratifications is straightforward.

Lemma 2.1 i) Thom stratifications exist iff the following condition holds:
(1) any irreducible constructible set S ⊂ Sing(F ) contains an open dense sub-

set So ⊂ Reg(S) such that if a sequence {(xm , dF (xm)) ⊂ K2n}m has a limit
limm→∞(xm , dF (xm)) = (x0 , V ) , where x0 ∈ So , xm ∈ Kn \ Sing(F ) and V is
an l-dimensional linear subspace of (Kn)∗ , then it follows V ⊥ Tx0(So) ;

ii) TWa stratifications exist iff (1) and the following condition hold:
(2) for any smooth irreducible constructible set M ⊂ Sing(F ) and any irreducible con-

structible set S ⊂ Sing(F ) there is an open dense subset So ⊂ Reg(S) such that if a
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sequence {(xm , Vm) ⊂ Kn × (Kn)∗}m has a limit limm→∞(xm , Vm) = (x0 , V ) , where
x0 ∈ So, xm ∈ M and subspaces Vm in (Kn)∗ are orthogonal to Txm(M) ⊂ Kn , then it
follows that subspace V ⊂ (Kn)∗ is orthogonal to Tx0(So) ⊂ Kn .

Proof. Since the proofs of i) and ii) are similar, we provide only a proof of ii). First
assume that {Si}i is a TWa stratification. Once again the proofs of properties (1) and (2)
are similar and we provide only a proof of (2). Take a unique Si (respectively, Sj ) such
that M ∩ Si (respectively, S ∩ Sj ) is open and dense in M (respectively, in S ). If
S \ Si is open and dense in S then the choice of So := (Sj ∩ Reg(S)) \ Si is as required in
(2). On the other hand the remaining assumptions of (2) can not hold which makes (2) valid,
but vacuous. (Property (1) holds due to the Thom property of {Si}i .) Otherwise S ⊂ Si

and the choice of So := Sj ∩ Reg(S) is as required in (1) and in (2) due to the Thom and
Whitney-a properties of {Si}i respectively. Indeed, it suffices to replace the sequence of
(2) by its subsequence for which exists limm→∞ Txm(M) =: W , and then to choose another
sequence {x′m}m of points in M∩Si with the ’distance’ between respective (xm , Txm(M))
and (x′m , Tx′m(M)) converging to zero. Then W = limm→∞ Tx′m(M) and is orthogonal to
V . On the other hand due to the Whitney-a property of the pair Si , Sj it follows that
W ⊃ Tx0(Sj) ⊃ Tx0(S) and therefore also Tx0(S) is orthogonal to V as required.

Now we assume that (1) and (2) are valid. We construct strata S1, S2, . . . by induction
on their codimensions, i. e. codim(S1) ≤ codim(S2) ≤ · · · . So assume that S1, . . . , Sk are
already produced with codim(Sk) = r , set Sing(F )\(S1∪· · ·∪Sk) =: Z being of codim(Z) :=
r1 > r and that Thom and Whitney-a properties are satisfied for stratification {Si}1≤i≤k of
Sing(F ) \ Z . Subsequently for every irreducible component S of Z of codim(S) = r1 (and
by making use of the noetherian property of the Zariski topology of S ) we choose a maximal
open subset of Reg(S) which satisfies both property (1) and the property (2) with respect
to the choices of sets Si , for 1 ≤ i ≤ k , as the set M of (2). By additionally choosing
each subsequent Sj in Sing(F ) \ (S1 ∪ · · · ∪ Sj−1) for k < j ≤ k1 we produce strata
Sk+1, . . . , Sk1 of codimensions r1 with codim((Sing(F )\ (S1∪ · · ·∪Sk1)) > r1 . Such choice
ensures Thom and Whitney-a properties of stratification {Si}1≤i≤k1 of set ∪1≤i≤k1Si , as
required in the inductive step, which completes the proof of ii).

Remark 2.2 Say l > 1 and F : Kn → K l is a dominating polynomial mapping. It is not
true that then necessarily exists a stratification that satisfies Thom condition with respect to
F , e. g. consider the ’local’ blowing up of the origin:

F : (z1, ..., zn) 7→ (z1 , z1 · z2 , . . . , z1 · zn)

(here origin is an isolated critical value). For the validity of properties (2) and, when l = 1 ,
of (1) of Lemma 2.1, see [26], [24], [17], [25], [10] and, respectively, [18]. For conditions on
F implying the validity of property (1) of Lemma 2.1 when l > 1 see e. g. [18], [8], [19].

Remark 2.3 Fix a class of stratifications. A stratification {Si}i of Sing(F ) = ∪iSi is
called canonical (or minimal), e. g. in [8] and [22], if for any other stratification {S′i}i

of Sing(F ) = ∪iS
′
i in this class with codim(S1) ≤ codim(S2) ≤ · · · and codim(S′1) ≤

codim(S′2) ≤ · · · it follows (after possibly reindexing {S′i} ) that S′1 = S1, . . . , S
′
k = Sk and

S′k+1 ( Sk+1 . Constructed in the proof of Lemma 2.1 Thom and TWa stratifications are
canonical in the corresponding classes. These respective canonical stratifications are clearly
unique. We extend to Gauss regular stratifications the concepts and constructions introduced
above for stratifications.
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3 Dual bundles of vector spaces for TWG-stratifications.

We will repeatedly apply the following construction. Let M , N be constructible sets open
in their Zariski closures (by default we consider Zariski topology, sometimes in the case of K
being C or R we also use euclidean topology). In the analytic case we assume alternatively
that M , N are analytic manifolds. Let V , W be vector spaces. For a subset T ⊂ M×V

we denote by T (0) := T and by T (1) ⊂ M ×V a bundle of vector spaces whose fiber T (1)
x

at a point x ∈ M is the linear hull of the fiber (T )x of the closure T ⊂ M × V , cf. [9] .
Defining in a similar way T (p+1) starting with T := T (p) , for p ≥ 0 , results in an increasing
chain of (not necessarily closed) bundles of vector spaces and terminates at T (ρ) such that
T (ρ) = T (ρ+1) with ρ ≤ 2 dim(V ) (see [5] ). We denote Gl(T ) = T (ρ) and refer to the
smallest ρ = ρ(T ) as the index of stabilization. The so called ’Glaeserization’ Gl(T ) of T
is the minimal closed bundle of vector spaces which contains T . We apply this construction
to T = {(x, dF (x))} where x ranges over all noncritical points of F . The result we denote
by G(p) := G

(p)
F := T (p)|Sing(F ) , for p ≥ 0 , and G := GF := Gl(T )|Sing(F ) (and still refer

to the smallest ρ = ρ(F ) as the index of stabilization). We mention that according to [15]
Thom stratifications with respect to F exist iff dim(G(0)) ≤ n , cf. Remark 3.10 and [18].
(We do not make use of the latter criterion in this article.)

Denote Gx := π−1(x)∩G , where π : T ∗(Kn)|Sing(F ) → Sing(F ) is the natural projection.
The proofs of the following Proposition and its corollary are straightforward.

Proposition 3.1 Let TM ⊂ M×V, TN ⊂ N×W and h−1 : N → M,H : N×W → M×V
be homeomorphisms which commute with the natural projections N×W → N, M×V → M .
Assume in addition that H is linear on each fiber of these projections and that H(TN ) = TM .
Then H(Gl(TN )) = Gl(TM ) , moreover H(T (i)

N ) = T
(i)
M for every i .

Corollary 3.2 Let M , N be nonsingular, TM ⊂ T ∗M, TN ⊂ T ∗N . If h : M → N
is an isomorphism such that for the pullback D∗h by h we have (D∗h)(TN ) = TM then
(D∗h)(Gl(TN )) = Gl(TM ) . Moreover, (D∗h)(T (i)

N ) = T (i)
M for every i .

For K = C or R the correspondence ‘F → GF ’ and the partition {Gr}l≤r≤n of
Sing(F ) introduced in Section 1.4 are functorial with respect to the C1 diffeomorphisms h
preserving fibers of F ’near’ its critical values.
(For an arbitrary K replace “ C1 diffeomorphisms” above by “isomorphisms”.)

With any Gauss regular stratification S = {Si}i , where Sing(F ) ⊃ ∪iSi , we associate a
subbundle B = B(S) of T ∗(Kn)|Sing(F ) of vector subspaces of (Kn)∗ such that for every
i and a smooth point a ∈ Si the fiber Ba := (Ta(Si))⊥ ⊂ (Kn)∗ and for a singular point
a of Si the fiber Ba is defined by continuity, by making use of Si being G-regular. Note
that the dimension of fibers dim(Ba) = codim(Si) for a ∈ Si .

Remark 3.3 Note that for any Gauss regular stratification S = {Si}i of Sing(F ) bundle
B(S) = ∪iB(S)|Si and for any stratum Si bundle B(S)|Si is an irreducible n-dimensional
Gauss regular set open in its closure. Thus, B(S)|Si are irreducible components of B(S) .

Proposition 3.4 A Gauss regular stratification S of Sing(F ) is a TWG-stratification iff
GF ⊂ B(S) and B(S) is closed.
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Proof. It follows by a straightforward application of definitions that Thom and Whitney-a
properties for any Gauss regular stratification S = {Si}i of Sing(F ) are equivalent to

G(1) ⊂ B(S) and, respectively, that set B(S) is closed. Due to the definition of bundle G
proposition follows.

Corollary 3.5 It follows due to the preceding Remark and Proposition that all n-dimensional
irreducible components of GF appear as irreducible components of B(S) for any
TWG-stratification S = {Si}i of Sing(F ) (provided that the TWa stratifications of Sing(F )
exist). Therefore every irreducible component G of Gr with (GF )|G being n-dimensional
is a universal stratum.

Remark 3.6 Let {Si}i be a TWG-stratification of Sing(F ) . Then for every 0 ≤ m ≤ n
the union

⋃
dim(Si)=m Si coincides with (

⋃
dim(Si)≥m Si) \ (

⋃
dim(Si)>m Si) and therefore is

open in its closure. Also due to Proposition 3.4 it is G-regular. Moreover, if we replace any
subfamily of {Si}i of the same dimension m by its union S , we would again obtain a
TWG-stratification if only S is open in its closure.

Below (and throughout the article) (GF )x and Gx denote the fibers of bundle GF at
the respective points x ∈ Sing(F ) . Also, r := codim(Sing(F )) := n− dim(Sing(F )) .

Lemma 3.7 The following three statements are equivalent:
• TWa stratifications exist;
• TWG-stratification exist;
• condition (2) of Lemma 2.1 and the following property hold:
(1’) any irreducible constructible set S ⊂ Sing(F ) contains an open dense subset S0 ⊂

Reg(S) such that for any x0 ∈ S0 we have Tx0(S) ⊥ (GF )x0 .

Lemma 2.1 implies (assuming TWa stratifications of Sing(F ) exist) that
codim(Sing(F )) ≥ mina∈Sing(F ){dim(Ga)} ≥ l and, due to Lemma 3.7, dim(GF ) ≤ n .

Proof. For the proof of (1’) above note that property (1’) with Gx0 being replaced by
G

(1)
x0 is a straightforward consequence of the Thom property of stratification S with respect

to F and condition (1) of Lemma 2.1 , which Thom property implies. By making use then of
condition (2) of Lemma 2.1 consecutively property (1’) with Gx0 being replaced by G

(p)
x0 , for

p ≥ 1 , follows and implies property (1’) as stated, since G = G(p) for p = ρ(F ) . Otherwise
the proof is similar to that of Lemma 2.1 with the exception that we replace Reg(S) with
the maximal (by inclusion) open subset U of S to which by continuity the Gauss map of
S uniquely extends from Reg(S) .

Claim 3.8 Assume that Thom stratification of Sing(F ) exists (e. g. if l = 1 , see [18]),
and that K 6= R , then Sing(F ) = ∪j≥rGj . Also, then quasistrata Gj are open and dense
in irreducible components of Sing(F ) of dimension n − j (if such exist). In particular,
quasistratum Gr 6= ∅ and dim(GF ) = n .

Remark 3.9 In the example of F : R2 → R defined by F := x3 + x · y4 the critical points
Sing(F ) = {0} , the fiber at 0 of the Glaeser bundle GF is spanned by dx , i. e. is
1-dimensional, and therefore dim(GF ) = 1 < 2 =: n .
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Proof of Claim. It suffices to verify that a generic point of an irreducible component
of Sing(F ) of dimension n − j belongs to Gj , since the openness is due to the upper
semicontinuity of the function g : x → dim(Gx) .

We first reduce to the case of l = 1 . Indeed, let U be an open set such that U∩Sing(F )
is smooth, irreducible and of dimension n−j . We may assume w.l.o.g. that 0 ∈ U∩Sing(F )
and that for the 1-st component f := f1 of F : Kn → K l the differential df(0) = 0
(which anyway holds after a linear coordinate change in the target K l of map F ). By
making use of the reduction assumption for f (the case of l = 1 ) it follows that (Gf )a

are the orthogonal complements of the tangent spaces Ta(Sing(f)) ⊂ Ta(Sing(F )) for a in
an open dense subset V of U ∩ Reg(Sing(f)) . We may also assume by shrinking U and
replacing 0 , if needed, that 0 ∈ V , that dim(GF )a is constant for a ∈ U ∩ Sing(F ) and
that U ∩ Sing(f) = V is smooth, open and dense in an irreducible component of Sing(f) .
Inclusions Sing(f) ⊂ Sing(F ) and (Gf )a ⊂ (GF )a , for a ∈ Sing(f) , are straightforward
consequences of the definitions. We continue the proof following

Remark 3.10 Note that replacing the assumption of the existence of Thom stratification
of Sing(F ) by the assumption that dim(G(0)) ≤ n and following the proof above would
then imply that (GF )a = (Gf )a , for a ∈ V , and, moreover, that dim(U ∩ Sing(F )) =
dim(U ∩Sing(f)) . In particular, it would follow that (GF )a are the orthogonal complements
of the tangent spaces Ta(Sing(F )) = Ta(Sing(f)) for a ∈ U ∩ Sing(F ) , cf. with i) of
Lemma 2.1 and a criterion dim(G(0)) ≤ n for the existence of Thom stratifications of
Sing(F ) for mapping F from [15].

By making use of the existence of Thom stratifications of Sing(F ) for mapping F
and consequently of (1’) of Lemma 3.7 applied to F it follows (GF )a are orthogonal to
Ta(Sing(F )) for a ∈ U ∩ Sing(f) . Therefore, by making use of the inclusions above, it
follows that (GF )0 = (Gf )0 and T0(Sing(f)) = T0(Sing(F )) , in particular implying that
dim(U ∩ Sing(f)) = dim(U ∩ Sing(F )) . Hence also (U ∩ Sing(f)) = (U ∩ Sing(F )) , which
suffices by making use of the established above inclusions.

In the case of l = 1 and by once again making use of (1’) of Lemma 3.7 it suffices
w.l.o.g. to consider the case of the restriction of F to a plane of dimension j intersecting
transversally an irreducible component Z of Sing(F ) of dimension n− j (if such exists)
at a , thus reducing the proof to the case of l = 1 and of a being an isolated critical point.
In the latter case it suffices to show that (GF )a = Kn .

If K is algebraically closed our claim follows since for any c2 , . . . , cn ∈ K due to
Fi(a) := ∂F

∂xi
(a) = 0 , 1 ≤ i ≤ n , the germ at a of Γ := {Fi − ci · F1 = 0 , 2 ≤ i ≤ n} is at

least 1-dimensional, thus producing dx1 + c2 · dx2 + · · · + cn · dxn in (G(0)
F )a ⊂ (GF )a by

means of limits of dF (a)/||dF (a)|| along Γ , as required.

4 Universality and Lagrangian bundles.

We start by introducing a partial order on the class of TWG-stratifications of Sing(F ) (note
that it differs from the order defined in Ch.1 [8], see Remark 2.3). For any pair S = {Si}i

and S ′ = {S′j}j of TWG-stratifications of Sing(F ) and for every Si there exists a unique
j = j(i) such that Si ∩ S′j is open and dense in Si , and reciprocally for every S′j there
exists a unique i = i(j) such that Si ∩ S′j is open and dense in S′j . We say that S is
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larger than S ′ (or, in other words S is ’almost everywhere finer’ than S ′ ) if for every Si

and j := j(i) holds i = i(j) . In particular, the universality of a TWG-stratification means
that it is the largest with respect to this partial order.

Proposition 4.1 For a pair of TWG-stratifications S , S ′ of Sing(F ) TWG-stratification
S is larger than S ′ iff bundle B := B(S) ⊂ B′ := B(S ′) .

Proof. Let S be larger than S ′ . For each i we have that Si ∩ S′j (where j := j(i) )
is open and dense in both Si , S′j , while dim(Si ∩S′j) = dim(Si) = dim(S′j) . Therefore, for
any point a ∈ Si ∩ S′j we have Ta(Si) = Ta(S′j) , i. e. B(Si)a = B(S′j)a . It follows for any
point b ∈ Si that Bb = B(Si)b ⊂ B′

b since the Gauss map of Si is continuous on Si and
B′ is closed due to Proposition 3.4.

Conversely, let B ⊂ B′ . For every Si let j := j(i) , then Si ∩ S′j is open and dense in
Si . It follows that for any point a ∈ Si ∩S′j inclusion Ta(Si) ⊂ Ta(S′j) holds and therefore
Ba ⊃ B′

a implying that Ba = B′
a and dim(Si) = dim(S′j) , hence Si ∩ S′j is open and

dense in S′j , i. e. i(j) = i .
Proposition 4.1 and Remark 3.6 imply the following corollary.

Corollary 4.2 i) If B(S) = B(S ′) for a pair of TWG-stratifications S = {Si}i and
S ′ = {S′j}j of Sing(F ) then for all k constructible sets S(k) :=

⋃
dim(Si)=k Si and

S ′(k) :=
⋃

dim(S′
j)=k S′j coincide and are G-regular;

ii) For universal TWG-stratification S of Sing(F ) the unions S(k) , 0 ≤ k ≤ n , of
equidimensional strata are independent on the choices of S .

Remark 4.3 TWG-stratifications exist iff for any point x ∈ Reg(Gk) fiber Gx of GF

at x is orthogonal to Tx(Gk) . Indeed, existence of TWG-stratifications of Sing(F ) (for
F ) implies claimed orthogonality due to (1’) of Lemma 3.7. Conversely, the existence of
TWG-stratifications follows from Lemma 3.7 by making use of the existence of Whitney-a
stratifications [26], [20], [17], [25].

For a (constructible) closed subbundle B ⊂ T ∗(Kn)|Z (of the cotangent bundle T ∗(Kn)
of Kn restricted over a subset Z ⊂ Kn and where subbundle, as is common throughout
this article, means only that the fibers Bx , x ∈ Z , of B are vector subspaces of the fibers
(Kn)dual at x ∈ Z of bundle T ∗(Kn)|Z ) we consider its ’quasistrata’

B(k) := {x ∈ Z : dimK(Bx) = k}, 0 ≤ k ≤ n .

(This construction applied to bundle B = GF of course results in quasistrata B(k) = Gk .)

Definition 4.4 We refer to an irreducible component B of the quasistrata B(k) , 0 ≤ k ≤ n,
as Lagrangian if for points x ∈ Reg(B) the tangent spaces Tx(B) are the orthogonal
complements of Bx . We refer to a bundle B as Lagrangian whenever all irreducible
components of B(k) , 0 ≤ k ≤ n , are Lagrangian.

Remark 4.5 For any closed bundle B Lagrangian components of its quasistrata B(k) are
automatically G-regular (cf. Remark 3.6) and of dimension n− k .

Remark 4.6 Claim 3.8 implies that for every (n−k)-dimensional irreducible component C
of Sing(F ) there exists a Lagrangian component of Gk dense in C . Consequently the
Lagrangian components of {Gk}0≤k≤n are dense in Sing(F ) .
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Due to the upper-semicontinuity of the function Sing(F ) 3 x → dimK(Bx) sets B(k) are
constructible and open in their respective closures. We consider partitions {Sk,i}i of B(k)

(and consequently partitions S := {Sk,i}k,i of Sing(F ) ) into pairwise disjoint constructible
irreducible sets Sk,i open in their respective closures. For a Lagrangian bundle B the
class of such partitions with an additional property that dim(Sk,i) = n − k for all Sk,i is
not empty. (We may construct such partitions for example by means of splitting sets B(k)

into a sequence of its irreducible components and then defining Sk,i for i ≥ 1 to be the
i-th irreducible component of B(k) without the union of the preceding ones.) According
to Proposition 3.4 partitions S form TWG-stratifications of Sing(F ) whenever bundle
B ⊃ GF and B(S) is a closed set.

Proposition 4.7 If closed bundle B is Lagrangian then there is a bijective correspondence
between the irreducible components of its quasistrata B(k) , 0 ≤ k ≤ n , and the irreducible
components of B . Also, the irreducible components B̃ of B are of dimension n and
Reg(B̃) are Lagrangian submanifolds of T ∗(Kn) in the natural symplectic structure of the
latter.

Proof. As a straightforward consequence of Definition 4.4 bundle B is a union of
n-dimensional (constructible) sets B|B with B being the irreducible components of the
quasistrata B(k) , 0 ≤ k ≤ n , and Reg(B|B) are Lagrangian submanifolds of T ∗(Kn) .
Therefore the closures of B|B are the irreducible components B̃ of B implying the
remainder of the claims of Proposition 4.7 as well.

Theorem 4.8 The first two of the following statements are equivalent and imply the third:
(i) bundle GF is Lagrangian;
(ii) TWG-stratifications of Sing(F ) exist and each irreducible component of Gk ,

r ≤ k ≤ n , is of dimension n− k ;
(iii) each irreducible component of GF is of dimension n .

Remark 4.9 In the example of Remark 10.2 there are only 2 irreducible components of
GF , both are of dimension n = 5 and GF is not Lagrangian.

Proof of Theorem 4.8. First (i) implies (ii) since quasistrata {Gk}r≤k≤n form a
TWG-stratification due to Proposition 3.4 and Remark 4.5. Now assume (ii). Then (1’) of
Lemma 3.7 implies that for any irreducible component G̃ of Gk there is an open dense
subset G̃(0) ⊂ G̃ such that Tx(G̃) ⊥ Gx holds for any point x ∈ G̃(0) . Since dim(G̃) = n−k
it follows that Gx is the orthogonal complement to Tx(G̃) for any point x ∈ G̃(0) , which
implies (i). Finally, (i) implies (iii) is proved in Proposition 4.7.

Subbundles B := B(S) of T ∗(Kn)|Sing(F ) constructed for any TWG-stratification S
of Sing(F ) in the paragraph preceding Remark 3.3 contain bundle GF and are Lagrangian.
Conversely, if a Lagrangian subbundle B ↪→ T ∗(Kn)|Sing(F ) contains GF and partition
S = {Sk,i}k,i of Sing(F ) is constructed as is described (for a Lagrangian B ) above
Proposition 4.7 then S provides a TWG-stratification of Sing(F ) due to Proposition 3.4
and Remark 4.5 and, consequently, B(S) = B . We summarize these observations in

Theorem 4.10 There is a bijective correspondence between the classes of TWG-
stratifications S of Sing(F ) with all quasistrata B(S)(k) , 1 ≤ k ≤ n , fixed and
between closed Lagrangian subbundles of T ∗(Kn)|Sing(F ) that contain GF .
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Moreover Propositions 4.1, 3.4, Theorem 4.8 and Corollary 4.2 imply

Corollary 4.11 In the bijective correspondence of Theorem 4.10 Lagrangian bundles GF

correspond to the universal TWG-stratifications of Sing(F ) .

In the next section we establish the converse statement.

5 A constructive criterion of universality.

Results of this and of the following section essentially depend on the validity of the conclusions
of Claim 3.8 (which, in general, are not valid for K = R , cf Remark 3.9). We therefore
assume for the remainder of this article that for our dominating polynomial (or analytic)
map F : Kn → K l bundle GF is n-dimensional over appropriate open dense subsets of
every irreducible component of Sing(F ) . (For K 6= R the latter assumption holds due to
Claim 3.8.)

The following Theorem partly justifies the title of the article.

Theorem 5.1 Universal TWG-stratifications of Sing(F ) (with respect to F ) exist iff
bundle GF is Lagrangian.

Proof of Theorem 5.1. The ‘if’ implication is the main content of Corollary 4.11 .
Below we prove the remaining implication. Let r := n− dim(Sing(F )) .

Assume that the ‘only if’ implication does not hold and let G be a not Lagrangian
irreducible component of some Gk , r ≤ k ≤ n with a maximal in the lexicographic ordering
pair (n − k , m := dim(G)) . We recall (see Claim 3.8 or in the case K = R by an
assumption above) that the minimal r for which Gr 6= ∅ equals r = n − dim(Sing(F )) .
Therefore all irreducible components of Gr are Lagrangian since Gr is open in Sing(F ) , in
particular k > r . We have m = dim(G) < n− k (see Theorem 4.8) because condition (1’)
of Lemma 3.7 implies that dim(Gt) ≤ n− t , r ≤ t ≤ n . Denote by S = {Si}i a universal
TWG-stratification of Sing(F ) = ∪iSi whose existence is the assumption of Theorem 5.1 .

Let R ⊂ Sing(F ) . Throughout the remainder of the article we denote by G⊥|R ⊂
T (Kn)|R the bundle of vector spaces whose fibers are the orthogonal complements to the
fibers of subbundle G|R ⊂ T ∗(Kn)|R .

Denote by W the union of all Lagrangian irreducible components of {Gt}r≤t≤k . Due
to the choice of G it follows that ∪r≤t<kGt ⊂ W . On the other hand, W is the union
of all Lagrangian irreducible components of {Gt}r≤t≤n with dimensions greater or equal to
n− k . Hence dim(Sing(F ) \W ) < n− k .

Remark 5.2 Following construction that appears in the proof of Lemma 2.1 (cf. Remark 2.3)
one can produce a TWG-stratification S ′ = {S′j}j of Sing(F ) = ∪jS

′
j extending the

family of all irreducible components contained in W . Then B({Si}i)|W = G|W due to
Propositions 3.4 and 4.1. Similarly, B({Si}i)|L = G|L for L being the union (dense in
Sing(F ) ) of all open in Sing(F ) Lagrangian components of the appropriate quasistrata Gj

(cf. Claim 3.8).

Plan of proof of the ‘only if ’ implication of Theorem 5.1 is to derive a contradiction
with our assumption ‘to the contrary’ by means of Proposition 5.9 which we prove in Sections 6
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and 7, see Remark 6.3. To that end we first show (in Claim 5.3) that W is a union of some
strata of S = {Si}i . Next, in Claim 5.6, we prove that within an appropriate open set UG
with G ∩ UG dense in G the latter is the boundary S∪ \ S∪ of the union S∪ ⊂ W of all
strata of S of the smallest possible dimension among strata with the boundaries containing
G . Here our arguments must take into account a possibility that the boundary of S∪ may
differ from the union of the boundaries of the strata contained in S∪ , cf. the paragraph
preceeding Lemma 2.1. (As a consequence of the latter one is not necessarily able to take
as S∪ simply a single stratum of S , though of course G is contained in the boundaries
of some strata of S .) Consequently, Proposition 5.9 provides an irreducible G-regular
extension G+ of an open and dense subset of G into an appropriate stratum contained
in S∪ (picked in Corollary 5.7), which enables an extension of a family of G-regular strata
{Q\G+}Q⊂W

⋃
{G+} , with W1 :=

⋃
Q⊂W (Q\G+)

⋃
G+ ⊂ Sing(F ) , to a TWG-stratification

{S̃j}j of Sing(F ) . The latter contradicts the universality of S , which would complete the
proof.

Claim 5.3 Let Q be a stratum of S . Then either Q∩W = ∅ or Q is an open and dense
subset of a Lagrangian component P ⊂ W . In particular, W coincides with the union of
an appropriate subfamily of {Si}i .

Proof. Indeed, first consider a stratum Q of S such that Q ∩ W is dense in Q and
denote t := n − dim(Q) . Since Q is G-regular, B(S) ⊃ G and B(S)|Q∩W = G|Q∩W

it follows that Q ⊂ ∪q≤tGq and Q ∩W ⊂ Gt (in particular t ≤ k ). On the other hand,
set G(t) := ∪q≥tGq is closed (since function g : x → dim(Gx) is upper semicontinuous) and
therefore Q ⊂ Q ∩W ⊂ G(t) . Hence Q ⊂ Gt .

Consider an irreducible component P of Gt such that Q ∩ P is dense in our Q .
The latter implies that dim(P) ≥ n − t and since P ⊂ Gt it follows ( n − t ≥ dim(P)
and therefore) dim(P) = n − t . Thus P is Lagrangian and P ⊂ W (since t ≤ k ). We
conclude that Q ⊂ (Q∩ P) ∩ Gt ⊂ P ∩ Gt = P ⊂ W and dim(Q) = n − t = dim(P) , as
required.

Now, assume that a stratum Q of S has a non-empty intersection with a Lagrangian
irreducible component P ⊂ W of Gt (and therefore dim(P) = n − t for some t ≤ k ).
Then, using B(S)|P∩Q = G|P∩Q and in view of the definition of B(S) , it follows that
dim(Q) = n − t . As we have shown above dim(Sing(F ) \W ) < n − k ≤ n − t . Therefore
Q ∩ W is dense in Q . In the latter case we have already proved that Q ⊂ W , which
completes the proof of the claim.

Corollary 5.4 Let Q be a stratum of S with dim(Q) > dim(G) and Q ⊃ G . Then
Q ⊂ Gn−q , where q = dim(Q) > n− k > dim(G) , and Q ⊂ W .

Proof. Due to our assumptions either G ∩ Q or G ∩ (Q \ Q) is dense in G . If
Q ∩ W = ∅ then either Q ⊂ G(k−1) or Q ∩ (Gk \ W ) is dense in Q . In the latter
case dim(Q) ≤ dim(Gk \W ) = dim(G) , which is contrary to the choice of Q . And in the
former case G ⊂ Q ⊂ G(k−1) contrary to G being an irreducible component of Gk . Hence
Q∩W 6= ∅ and due to the claim above Q ⊂ W .

Consider the union S∪ of all strata Q of S of the smallest possible dimension with
Q \ Q containing G , say s := dim(S∪) .
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Remark 5.5 Due to the upper semi-continuity of function g : x → dim(Gx) and Claim 3.8
(or, when K = R , the replacing it assumption of the paragraph preceeding Theorem 5.1) the
inclusions G ⊂ ∪r≤t<kGt ⊂ W hold. Therefore Claim 5.3, Corollary 5.4 and Remark 3.6
imply that S∪ is not emply, S∪ ⊂ (Gn−s ∩W ) = Gn−s and that S∪ is G-regular.

Claim 5.6 Let W be an irreducible component of S∪ \ S∪ such that W contains G .
Then G is dense in W . (Hence such W is unique). In particular, G is an irreducible
component of S∪ \ S∪ and thus within an appropriate open neighbourhood of G holds

S∪ \ S∪ = G = G .

Proof. Assume the contrary. Then dim(W) > dim(G) . Denote by tW the minimal
value of g : x → dim(Gx) on W (attained on an open dense subset of W in view of the
upper semicontinuity of function g ). Then tW ≥ t := n− s = dim(Gx) for x ∈ S∪ ⊂ W
because W ⊂ (S∪ \ S∪) . Pick a stratum Q of S such that W ∩ Q is dense in W .
Then Q ⊃ G and since dim(Q) ≥ dim(W) > dim(G) inclusion Q ⊂ W holds due to
Corollary 5.4, implying (W ∩ G) ⊃ (Q ∩ G) . Since G ⊂ (Gk \ W ) it follows Q ∩ G is
empty, i. e. G ⊂ (Q \Q) . Since also Q ⊂ W and due to the choice of s we conclude that
dim(Q) ≥ s . On the other hand n− dim(Q) = dim(Gx) = tW for x ∈ (W ∩Q) by making
use of Remark 5.2 and Claim 5.3, which implies s = n − t ≥ n − tW = dim(Q) . Therefore
s = dim(Q) and both Q ⊂ S∪ and, due to Q ∩W 6= ∅ , inequality Q ∩ (S∪ \ S∪) 6= ∅
holds, leading to a contradiction.

Corollary 5.7 Let Q be a stratum of S of dim(Q) = s with Q \ Q ⊃ G . Let S∗ :=
Q∩S∪ ⊃ Q . Then S∗ is an irreducible subset of W ∩Gn−s = Gn−s and S∗ \S∗ = G = G
within an open set UG with G ∩ UG dense in G .

Proof. Inclusion S∗ ⊂ S∪ ⊂ W ∩ Gn−s = Gn−s is the main content of Corollary 5.4.
Note that S∗ is irreducible since S∗ = Q ⊃ G and that sets G ∩S∪ and (S∗ \S∗)∩S∪ are
both empty. Therefore S∗ ∩ G = ∅ and (S∪ \ S∪) ⊃ (S∗ \ S∗) ⊃ G . Hence due to Claim 5.6
also S∗ \ S∗ coincides with G on an open neighbourhood of an open dense subset of G .

Remark 5.8 We may choose an open in Kn set UG so that G ∩UG = G ∩UG 6= ∅ . Since
Q∩UG ⊃ G ∩UG 6= ∅ it follows that Q∩UG 6= ∅ . Consider S := S∗ ∩UG ⊃ Q∩UG (as in
Corollary 5.7). Then Q ⊃ S ⊃ Q ∩ UG = Q = S∗ (due to Q being irreducible) and therefore
S = S∗ and S is irreducible. Hence G ∩ UG = (S∗ \ S∗) ∩ UG ⊃ (S \ S) ∩ UG ⊃ G ∩ UG ,
which implies

(S \ S) ∩ UG = G ∩ UG = G ∩ UG (1)

and that S is open in its closure. Finally, S is G-regular (and is a dense subset of a
Lagrangian component of Gn−s ) since S ⊂ W ∩ Gn−s = Gn−s .

In the remainder of this and in the following Section we use notation U for UG , G and
S for G ∩UG and, respectively, for S∩UG from Remark 5.8, in particular S is irreducible.

Proposition 5.9 There is an irreducible G-regular constructible set G+ open in its closure
such that G+ ⊂ S , dim(G+) = n−k and G+ contains an open dense subset of G . Finally

G⊥|G+∩G = T (G+)|G+∩G .
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We prove Proposition 5.9 in Sections 6, 7.
Deduction of Theorem 5.1 from Proposition 5.9. The bundle of vector spaces

associated (as in the paragraph preceeding Remark 3.3) with a family of G-regular strata

F := {Q \ G+}Q⊂W

⋃
{G+} , W1 :=

⋃
Q⊂W

(Q \ G+)
⋃
G+ ⊂ Sing(F ) (2)

(where the union ranges over all strata Q of S such that Q ⊂ W ) coincides over
W1 \ G+ with G, is Lagrangian and is closed due to the latter and Proposition 5.9. Since
W \W1 ⊂ G+ \ G+ and dimensions of (G+ \ G+) and (Sing(F ) \W ) are less than n− k
it follows that dim(Sing(F ) \ W1) < n − k . Therefore, as in the Remark 5.2, the family
F extends to a TWG-stratification {S̃j}j of Sing(F ) = ∪jS̃j .

As we have established above in Claim 5.3 set W and therefore Sing(F ) \W are the
unions of several strata of S . Hence there exists a stratum P of S such that (Sing(F )\W ) ⊃
P and G ∩ P is open and dense in G . Since being universal TWG-stratification {Si}i is
larger than {S̃j}j it follows by Proposition 4.1 that for any point x ∈ G∩G+∩P there is an
inclusion B(P)x ⊂ B(G+)x = Gx for the fibers of G ; hence dim(B(P)x) ≤ dim(Gx) = k
and dim(P) ≥ n−k . But on the other hand n−k ≤ dim(P) ≤ dim((Sing(F )\W ) < n−k .
Thus the assumption (on the first lines of the proof of Theorem 5.1) of the existence of a non
Lagrangian component G in {Gj}j leads to a contradiction, i. e. G is Lagrangian.

6 Extension Theorem for singular varieties.

Proof of the more difficult implication of our main result Theorem 5.1 we complete in this
section. To that end we prove here Proposition 5.9 as a special case of an Extension The-
orem 6.1 important in its own right. The main ingredient of the proof of the latter is our
Bertini-type Theorem for singular varieties introduced in Section 1.3.

Extension Theorem 6.1 essentially provides an extension of a nonsingular part of the
singular locus of an algebraic variety to a Gauss regular subvariety with a prescribed tangent
bundle over the singularities under the assumptions of Whitney-a type conditions on the data.
(To apply the latter notion in the setting of Proposition 5.9 we will allow the adjacent strata
to be Gauss regular.)

Assume X ↪→ U is an irreducible algebraic (or analytic) subvariety of an open U ⊂ Kn ,
that a Gauss regular S ⊂ X is open and dense in X , Reg(X) ⊂ S and that G := X \S is
nonsingular. Besides the pair of strata {S , G} in U the data for our version of Whitney-a
property includes a subbundle TG of the restriction over G of the tangent bundle T (U)|G
of U such that TG contains the tangent bundle T (G) of G . When TG = T (G) and S
is nonsingular property W-a below is the standard Whitney-a condition on strata {S , G} .

W-a property : if exists limi→∞(xi, Txi(S)) = (x0 , T ) , where x0 ∈ G , subspace
T ⊂ Tx0(U) , {(xi , Txi(S))}i ⊂ S × T (U)|S and the limit limi→∞ Txi(S) = T is in the
Grassmanian of (dim S)-dimensional subspaces of Kn , then T ⊃ (TG)x0 .

Theorem 6.1 (Extension Theorem)
Assume U , S , G and TG ⊂ T (U)|G are as in the preceding paragraph and satisfy

property W-a. Then there is an open subset U ′ of U and an irreducible Gauss regular
closed subvariety G+ of S ∩U ′ , such that G+ contains G ∩U ′ , the latter set is open and
dense in G and

TG |G+∩G = T (G+)|G+∩G .
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Let m := dim(G) and k := n− (dim(TG)−m) .

Remark 6.2 When dim(S) = n− k Theorem 6.1 is obviously valid with G+ := S ∩ U .

Remark 6.3 Proposition 5.9 is a special case of Theorem 6.1 with constructed in Section 5
open U := UG ⊂ Kn , a G-regular irreducible dense subset S ⊂ W ∩ U of a Lagrangian
component of {Gt}r≤t≤k with G = U ∩S \S (see Remark 5.8) and TG := G⊥|G ⊂ T (U)|G ,
where G := GF . Bundle T (G) ⊂ TG due to Remark 4.3. Finally, the validity of property
W-a for {U , S , G , TG} is equivalent to T (S)⊥|G ⊂ G|G and is a consequence of
bundle G being closed in T (U)|Sing(F ) and S of Remark 5.8 being dense in a Lagrangian
component of Gn−s . (Note that dim(S) > n− k , see Corollary 5.4.)

Proof of Theorem 6.1. We assume K = C (or R ) and in the algebraic case extend
the result to an arbitrary algebraically closed field employing the Tarski-Lefschetz principle.
Application of the Tarski-Lefshetz principle requires the estimates of degrees of the output
in terms of the degrees of the input, which here is straightforward due to a constructive and
explicit nature of the proof below (see also remarks following Theorem 7.1 below).

First we construct a (k + m) × n matrix M = (Mj,i)1≤j≤k+m , 1≤i≤n with the entries
being polynomials over K = C (or R ) in n variables such that for a suitable open V ⊂ G

TG |V = T (G)|V ⊕Ker(M)|V . (3)

In particular, the rank of M equals k + m at all points of V .
Consider a Noether normalisation π : G → Km being a restriction of a linear projection

π : Kn → Km . Then Kn = Km⊕Kn−m , where Kn−m = Ker(π) and Km = π(Kn) . We
may assume w.l.o.g. that the first m coordinates are the coordinates of the first summand
and the last n −m coordinates are the coordinates of the second summand. We choose in
the tangent space to Kn a basis ∂

∂Xi
corresponding to X-coordinates. In abuse of notation

we identify Kn−m = Tx(Kn−m) ⊂ Tx(Kn) for points x ∈ Kn−m .
Let Ũ ⊂ Km be an open set such that (3) holds for V := π−1(Ũ) ∩ G , π(V ) = Ũ and

such that the dimension of any fiber of bundle

TG |V ∩ (V ×Kn−m)

equals n−k−m (e. g. any open Ũ such that over V the tangent spaces to G are mapped
onto Km isomorphically would do). Then there is a matrix of size (k + m)× n , say M ,
with the entries being polynomials in n variables such that

Ker(M)|V = TG |V ∩ (V ×Kn−m) .

Of course we may assume w.l.o.g. that Mj,i = δj,i for 1 ≤ j ≤ m , 1 ≤ i ≤ n (where δj,i

denotes the Kronecker’s symbol). This provides matrix M and set V satisfying (3).
One can construct an open subset U ′ ⊂ Ũ and (by means of an interpolation in Kn−m

parametrized by points in U ′ , e. g. as in Appendix) functions Lj(X) , 1 ≤ j ≤ k , rational
in the first m and polynomial in the last n−m coordinates such that all Lj , 1 ≤ j ≤ k ,
vanish on V ′ := π−1(U ′)∩ G (while their denominators do not) and for every point x ∈ V ′

∂Lj

∂Xi
(x) = Mj+m , i(x) for 1 ≤ j ≤ k , m + 1 ≤ i ≤ n .
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Multiplying by the common denominator and keeping the same notation Lj , 1 ≤ j ≤ k ,
for the resulting polynomials we conclude that all Lj vanish on G , their differentials
dLj(x) , 1 ≤ j ≤ k , are linearly independent for any x ∈ V ′ and also, due to (3), that⋂

1≤j≤k Ker(dLj)|V ′ = TG |V ′ . Therefore by shrinking neighbourhood U , if need be, and
replacing G by G∩U we may assume that U ⊂ π−1(U ′) , that dL1 , . . . , dLk are linearly
independent at every point in U and that⋂

1≤j≤k

Ker(dLj)|G = TG . (4)

Remark 6.4 We may w.l.o.g. assume dim({Lj |S}1≤j≤k) := dimK(Span{Lj |S}1≤j≤k) ≥ 2 ,
where Span denotes the K-linear hull of a family of functions. Indeed, dim(S) > n− k =
dim(TG) − dim(G) implies d := dim({Lj |S}1≤j≤k) > 0 . It remains to exclude the case of
d = 1 . In the latter case we may assume w.l.o.g. that dim({Lj |S}2≤j≤k) ≥ 1 and then
change L1 by adding to it an appropriate generic element of the square of the ideal IG of
all polynomials vanishing on G . This would not change the value of dL1 at the points of
G , but on the other hand dim({Lj |S}1≤j≤k) for the new choice of L1 will increase due to
dimension of I2

G/IS as a vector space over K being infinite, as required.

7 Bertini-type Theorem and completion of proof of Extension

To complete the proof of Theorem 6.1 we will use Theorem 7.2 stated below and proved
following the completion of the ongoing proof of Extension Theorem 6.1. In this Bertini-type
Theorem 7.2 we assume that collection {U , S , G , TG} satisfies the W-a property and that
collection {Lj}1≤j≤k of polynomials vanishing on G with linearly independent differentials
over U satisfies property (4), that dim(S) > n − k and dim({Lj |S}1≤j≤k) ≥ 2 . We
then construct a codimension one in S irredicible Gauss regular closed subvariety Ŝ−1 :=
Ŝ−1(S) ↪→ S with G being its boundary such that {U , Ŝ−1 , G} and bundle TG over G
satisfy the W-a property (and then proceed by induction on dim(S)).

We will use the notion of normal crossing : a collection of varieties is a (simultaneous)
normal crossing at a point, say a , provided that in appropriate local analytic coordinates
centered at this point every variety from this collection and passing through a is a coordinate
subspace. (Of course this property is open with respect to the choice of points a .) Due to
the assumptions on {Lj}1≤j≤k (which match the properties of the collection constructed
within the proof of Theorem 6.1 in the previous section) the collection of the hypersurfaces
Hj := {Lj = 0} ∩ U , 1 ≤ j ≤ k , is a normal crossing in U , i. e. at every point of U .
Moreover, since S is irreducible (as is the S of Theorem 6.1) it follows that set Reg∗(S)
of all points in S ∩ U at which {Hj}1≤j≤k and S is a normal crossing is an open and
dense subset of Reg(S ∩ U) (since Reg∗(S) ⊃ Reg(S) \

⋃
Hj 6⊃S Hj 6= ∅ ). We also denote

Sing∗(S) := S ∩ U \ Reg∗(S) .
The exposition of our Bertini-type Theorem 7.2 below is for the case of K = C or R

(e. g. items ii) and v) ). The set up is similar to that preceeding Theorem 6.1 and of the
‘output’ above of the construction in its proof, i. e. X ↪→ U is an irreducible algebraic (or
analytic) subvariety of an open U ⊂ Kn , a Gauss regular S ⊂ X is open and dense in
X with Reg(X) ⊂ S and a nonsingular G := X \ S . Also, the fibers of the bundle TG
over G are determined by a collection {Lj}1≤j≤k of polynomials satisfying the properties
listed in the first paragraph of the current section. Let L(x, c) :=

∑
1≤j≤k cjLj(x) for
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c = (c1, . . . , ck) , (x, c) ∈ U × Ck , and for a ‘fixed’ c let Lc(x) := L(x, c) . In the
algebraic case a version of Bertini-type theorem in a form that allows to reduce the proof for
an arbitrary algebraically closed field K of characteristic zero to the proof in the K = C case
by employing the Tarski-Lefschetz principle is as follows:

Theorem 7.1 Assume that dim({Lj |S}1≤j≤k) ≥ 2 and the collection {U , S , G , TG} of
the preceeding paragraph satisfies the W-a property. Then for c ∈ Kk off a proper algebraic
subset Z of Kk the hypersurface S−1 := {Lc = 0} ∩ S of S is nonsingular, there is an
irreducible component Ŝ−1 of S−1 whose boundary contains G and {U , Ŝ−1 , G , TG}
satisfies the W-a property.

Application of the Tarski-Lefshetz principle requires the estimates of degrees of the out-
put in terms of the degrees of the input. The estimate on the degrees of polynomials
Lj , 1 ≤ j ≤ k , in terms of the degrees of polynomials defining collection {U ,S,G, TG} is
straightforward following the proof of Theorem 6.1 and Remark 6.4 . Also, the estimate on
the degrees of polynomials defining algebraic set Z ⊂ Kk in terms of bounds on the alge-
braic data after the application of desingularization within the proof of Theorem 7.2 below is
straightforward (since set Z is the set of critical values of the appropriate projections from
the proof of Theorem 7.2). Finally, the bounds on the algebraic data after the application
of desingularization in terms of the degrees of polynomials defining collections {U ,S,G, TG}
and {Lj}1≤j≤k is a consequence of the estimate of complexity of desingularization in [4] .

Theorem 7.2 (A Bertini-type Theorem for singular varieties)

Assume W-a property for {U , S , G , TG} of the paragraph preceeding Theorem 7.1 ,
dim(S) > n − k and dim({Lj |S}1≤j≤k) ≥ 2 . Then for a generic c ∈ Kk the following
properties hold:

i) {Lc = 0} ∩Reg∗(S) is dense in S−1 := {Lc = 0} ∩ S manifold of codimension 1 in S ;
ii) for compacts K ⊂ (S ∩ U) ⊂ Kn the norms of d(Lc|S)(a) = dLc(a)|Ta(S) , for

a ∈ {Lc = 0} ∩ Reg∗(S) ∩ K , are larger than a positive constant (depending on K );
iii) the boundary (S−1 \ S−1) ∩ U of set S−1 in U coincides with G ;
iv) Reg(S−1) ⊃ (S−1 ∩ Reg(S)) and S−1 is G-regular in U ;
v) for any sequence of points in S−1 and their tangent spaces to S−1 converging to a ∈ G

and, respectively, to a subspace Q ⊂ Ta(Kn) holds Q ⊃ TG(a) implying T (S−1)⊥|G ⊂ T⊥G ;
vi) replacing S−1 by an irreducible component Ŝ−1 of S−1 whose boundary contains

G the properties iii)-v) remain valid and, therefore, property v) with Ŝ−1 replacing S−1

means that collection {U , Ŝ−1 , G , TG} satisfies the W-a property.

Remark 7.3 For the sake of clarity we include (though do not make use of) the following:
• Of course in ii) of Theorem 7.2 we may equivalently replace “the norms of d(Lc|S)(a) =

dLc(a)|Ta(S) are separated from 0 ” by “the angles between the gradient grad Lc(a) of Lc

at a and the tangent spaces Ta(S) to S at a are separated from π/2 ”.
• Due to S being irreducible and {Lc = 0} ∩ S 6= S it follows that the irreducible

components of S−1 are equidimensional. An irreducible component Ŝ−1 of S−1 whose
boundary contains G exists since the union of boundaries of the irreducible components of
S−1 contains the boundary G of S−1 (property iii) ) and G is irreducible.
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Deduction of Theorem 6.1 from Theorem 7.2. Starting with Ŝ0 := S we construct
sets Ŝ−i := Ŝ−1(Ŝ−i+1) , 1 ≤ i ≤ e := dim(S) − n + k , consecutively applying e times
Theorem 7.2 followed by Remark 6.4. Then due to iii) of Theorem 7.2

(Ŝ−e \ Ŝ−e) ∩ U = G (5)

and, moreover,

T (Ŝ−e)⊥|G = T⊥G (6)

since the Gauss map of Ŝ−e extends as continuous (uniquely) to all of G (due to v) of
Theorem 7.2). Indeed, if a sequence of points from Ŝ−e converges to a point a ∈ G
with their tangent spaces to Ŝ−e converging (in the respective Grassmanian) to a subspace
Q ⊂ Kn then Q ⊃ TG(a) and then Q = TG(a) due to dim(Q) = dim(TG(a)) = n − k .
Therefore using (5) set Ŝ−e can be enlarged to an irreducible, G-regular and open in Ŝ−e

subset G+ := Ŝ−e ∪ G of dimension n− k satisfying (6), as required in Theorem 6.1.

8 Proof of Bertini-type Theorem for singular varieties.

We prove iii) for an arbitrary choice of c ∈ Kk . Of course dim((S−1)a) ≥ dim(S) − 1 ≥
n − k > m = dim(G) , where (S−1)a denotes the germ of S−1 (as an analytic set) at
a ∈ G . Also (G)a ⊂ ((S ∩ {L = 0}) \ G)a , where ”(·)a” is a notation for the germ of ”·” at
a . On the other hand, ((S ∩ {L = 0}) \ G)a = ((S \ G) ∩ {L = 0})a = (S−1)a , since
(S)a = (S \G)a due to G being the boundary of S in U . Thus G ⊂ (S−1 ∩U) and (since
S ∩ G = ∅ ) it follows that (S−1 \ S−1) ⊃ G . Finally, definition of S−1 and G being the
boundary of S in U imply that G = (S \ S) ∩ U ⊃ (S−1 \ S−1) ∩ U ⊃ G , as required.

Properties i) and ii) of Theorem 7.2 imply both iv) and v). Inclusion Reg(S−1) ⊃
{L = 0}∩Reg(S) = S−1∩Reg(S) is a straightforward consequence of i) and ii). The remainder
is a consequence of the following property: if the limits of two sequences of subspaces of Kn

exist, then the limit of the respective intersections of these subspaces also exists and coincides
with the intersection of the limits of the sequences, provided that the angles between the
respective subspaces in the sequences are separated from 0 by a positive constant.

‘Property vi) follows from iii)-v)’ using that S−1 is open in its closure.

Thus it remains to prove i) and ii). We start with the Proof of i):

Reduction to a ‘nonsingular setting’ via an embedded desingularization fol-
lowed by a combinatorial one. We start with an embedded desingularization σ : N → U
of S ∩ U ⊂ U by means of successive blowings up along smooth admissible centers (e. g. as
in [16], [1] or [3]) with hypersurfaces Hj := {Lj = 0} , 1 ≤ j ≤ k , treated as exceptional.
We may treat Hj ’s as exceptional since collection {Hj}1≤j≤k is a normal crossing at the
points of U . In particular, the following holds:

0. map σ : N \ σ−1(Sing∗(S)) → U \ Sing∗(S) is an isomorphism;
1. the (so-called) strict transform N := σ−1((S ∩ U) \ σ(Sing(σ))) of S ∩ U is smooth;
2. Sing∗(S) = σ(Sing(σ)) and Sing(σ) = σ−1(σ(Sing(σ))) = ∪i≥1Hi+k , where each

Hi+k is a smooth (so-called) exceptional hypersurface and in addition each Hi+k is the strict
transform of the set of the critical points of the successive i-th intermediate blowing up;
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3. each Hi ∩N , i ≥ 1 , is smooth and dim(Hi ∩N) = dim(N)− 1 for i ≥ k + 1 ;
4. the family {Hi}i≥0 , where we denote H0 := N , forms a normal crossings in N .

For any hypersurface {f = 0} ⊂ U the strict transform of {f = 0} under map σ is

Λ(f) = σ−1({f = 0}) \ Sing(σ) ⊂ N .

Remark 8.1 Due to property 2. above the local equation of Λ(f) can be constructed by
factoring out from f ◦ σ the maximal monomial in exceptional hypersurfaces. In particular,
assume that f depends on parameter c ∈ Kk and map σ̃ := σ × id : N ×Kk → U ×Kk .
With f |c being the evaluation of f at c , hypersurfaces Λ(f |c) ⊂ N and Λ(f) ⊂ N ×Kk

being the strict transforms under maps σ and σ̃ respectively, it follows that if for a particular
value of c hypersurface Λ(f)|c := Λ(f) ∩ (N × {c}) ⊂ N is smooth then

Λ(f |c) = Λ(f)|c , (7)

where N × {c} is identified with N . Of course for a sufficiently generic value of c ∈ Kk

equality (7) holds in any case.

Denote Λj := Λ(Lj) ⊂ N , 1 ≤ j ≤ k , and Λ := Λ(L) ⊂ N ×Kk (hypersurfaces Λj and
Λ are the strict transforms of hypersurfaces in U and in U ×Kk under maps σ and σ̃
respectively). Hypersurfaces Λj , 1 ≤ j ≤ k , are smooth and together with Sing(σ) form
normal crossing in N due to the choice of admissible centers of blowings up (see e. g. [1] or
[3]). In addition, for each j , 1 ≤ j ≤ k , the difference between the divisors of Lj ◦ σ and
Λj is the exceptional divisor Ej supported on Sing(σ) = ∪i≥k+1Hi ⊂ N (each divisor Ej

being of the form Ej =
∑

i nj,i[Hi] and all integers nj,i ≥ 0 ).
By means of following the embedded desingularization we started with by a composite of

combinatorial blowings up (i. e. the blowings up with centers of all successive blowings up
being the intersections of some of the accumulated and ‘declared’ exceptional hypersurfaces,
where the latter are the strict transforms Λj of {Lj = 0} , 1 ≤ j ≤ k) we may assume
(Theorem 1.13 in [1]) that besides properties 0.-4. also holds:

5. the principal ideals generated by Lj ◦σ , 1 ≤ j ≤ k, are (locally) linearly ordered with
respect to inclusions implying, in particular, that the pull back J of the ideal generated by
all Lj , 1 ≤ j ≤ k , under the map σ : N → U is principal and locally ‘near’ any point a is
generated by one of the Lj ◦ σ , 1 ≤ j ≤ k . (For such j = j(a) it follows that a 6∈ Λj .)

Application of Sard Theorem on desingularization. As a consequence of property
5. hypersurface Λ is nonsingular. Indeed, for any point (a, c) ∈ Λ there exists j := j(a) ,
1 ≤ j ≤ k , for which ideal J = (Lj ◦ σ) in a neighbourhood of point a ∈ N . Therefore,
function

λ :=

∑
1≤i≤k ci(Li ◦ σ)

Lj ◦ σ

is regular at (a, c) and ∂λ
∂cj

(a, c) = 1 , while Λ = {λ = 0} .
The standard version of Sard Theorem implies that for a choice of an appropriate generic

c = (c1, . . . , ck) the fiber Λc of the restriction to Λ of the natural projection p : Λ → Kk

is nonsingular in σ−1(U) . Note that Sard Theorem applies because if x ∈ N \ Sing(σ)
and c 6= 0 then a straightforward calculation (by making use of the linear independence
of differentials dLj , 1 ≤ j ≤ k , in U ) shows that the rank of the Jacobian matrix of
projection p at (x, c) ∈ Λ equals k .
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To complete the proof of i) we apply Sard Theorem to the restriction of projection p to
(N × Kk) ∩ Λ . Note that (N × Kk) ∩ Λ = {(x, c) ∈ N × Kk : λ(x, c) = 0} in the local
coordinates on N ×Kk chosen as above and is nonsingular (since the partial derivative of
λ with respect to cj at (x, c) equals 1 ). Due to an assumption of Theorem 7.2

dim({Lj ◦ σ|N}1≤j≤k) = dim({Lj |S}1≤j≤k) ≥ 2 .

Pick Lj1 |S , Lj2 |S , 1 ≤ j1 < j2 ≤ k , being linearly independent over K . It follows that
there is a point x ∈ N \ Sing(σ) and cj1 , cj2 ∈ K such that

cj1Lj1(σ(x)) + cj2Lj2(σ(x)) = 0 , cj1(dLj1)(σ(x)) + cj2(dLj2)(σ(x)) 6= 0

holds. Such x ∈ N \ Sing(σ) exists since otherwise

(Lj2(dLj1)− Lj1(dLj2))(σ(x)) = 0 for all x ∈ N \ Sing(σ) ,

which would imply a linear dependence of Lj1 |S , Lj2 |S contrary to their choice. Set
cj = 0 for all j 6= j1 , j2 . Then again by means of a straightforward calculation the rank
of the Jacobian at (x, c) of projection p : (N × Kk) ∩ Λ → Kk equals k and therefore
Sard Theorem implies that N ∩ Λc is nonsingular for appropriate generic c , where N is
identified with N × {c} . Since σ is an isomorphism off Sing∗(S) (which is the property
0. of σ ) it follows that if {L = 0} ∩ Reg∗(S) 6= ∅ then it is a smooth hypersurface of
Reg∗(S) of dimension dim(S) − 1 . To complete the proof of i) it suffices to show that
N ∩ Λc 6⊂ Sing(σ) = ∪i≥1Hi+k and that, moreover, N ∩ Λc \ Sing(σ) is dense in N ∩ Λc .

Both properties follow by specifying an appropriate generic choice of c further, e. g.
a choice of c such that Λc intersects transversally every HJ × {c} would do, where
HJ = ∩j∈JHj for any acceptable index set J ⊂ {i ≥ 0} . We achieve the latter by once
again applying Sard Theorem to the restriction of projection p to (HJ×Kk)∩Λ . Of course,
for J such that p(HJ ×Kk ∩ Λ) is not dense in Kk it follows that HJ × {c} ∩ Λc = ∅
for a generic choice of c ∈ Kk , and otherwise Sard Theorem applies and implies for an
appropriate generic choice of c the desired transversality, which completes the proof of i).

Proof of ii). We summarize consequences of application of Sard Theorem in

Remark 8.2 For a choice of an appropriate generic c ∈ Kk it follows that the family
{Hi}i≥0 with Λc form a normal crossings in N := N × {c} .

Adjusting metrics on U and on S .

Remark 8.3 By means of replacing the standard Hermitian metric on Kn for K = C ,
respectively Euclidian for K = R , by an equivalent (over any compact subset of U )
Hermitian, respectively Riemannian, metric on U ⊂ Kn we may assume w.l.o.g. that
dL1(a) , . . . , dLk(a) , a ∈ U , is an orthonormal basis in L∗a := Span({dLj(a)}1≤j≤k) .

Remark 8.4 For a ∈ S near G inclusions Ωa := L∗a/L∗a ∩ Ta(S)⊥ ↪→ Ta(S)∗ via the
restrictions of functionals from L∗a to Ta(S) are isometries.

Metrics on desingularization convenient for ‘logarithmic differentiation’: we
introduce metrics on N \ Sing(σ) ‘nearby’ any point b̃ ∈ N ∩Λc ∩ Sing(σ) ⊂ N as follows.
In a neighbourhood of b̃ the smooth variety N admits an analytic coordinate chart C
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with the origin at b̃ and every exceptional hypersurface H intersecting C by a coordinate
hyperplane {xH = 0} of C , unless the intersection is empty. (In the algebraic case we may
also use the notion of an affine ’etale’ coordinate chart of [1], [2].) In a neighbourhood of b̃
the local ideal Jb̃ is generated by a single Lj ◦σ for a suitable j (property 5. of map σ ),
and the function h := λ|c has a non-vanishing differential at b̃ , since N ∩Λc is nonsingular
due to the choice of c as shown in the proof of i). We shrink the neighbourhood C so that
dh does not vanish at all points of C . In addition, due to Remarks 8.2 and 8.1, we may
assume that h is one of the non-exceptional coordinates on C . We define an auxiliary norm
on Tã(N)∗ for ã ∈ C \ Sing(σ) via an imposition of the following:{

dxH

xH
, dxi

}
H,i

is an orthonormal basis on Tã(N)∗ , (8)

where {xH , xi}H,i are the coordinates in C with the former ones corresponding to the
exceptional hypersurfaces and the latter {xi}i being the remaining coordinate functions
(including function h ). A straightforward calculation shows that the Hermitian (Riemannian
for K = R) metrics on C\Sing(σ) introduced by means of (8) do not depend on the coordinate
choices that preserve exceptional hypersurfaces, i. e. are isomorphic over compacts in C (here
we do not make use of this fact), cf. [11].

The key estimate by means of ‘logarithmic differentiation’. We now will complete
the proof of Theorem 7.2 relying on the following lemma

Lemma 8.5 For ã ∈ (N ∩ Λc ∩ C) \ Sing(σ) the norm of d(Lc ◦ σ)|ã ∈ Tã(N)∗ equals
|Lj ◦ σ(ã)| . Moreover, the latter majorizes the norm of ((σ|S)∗ã)|Ωσ(ã)

: Ωσ(ã) → Tã(N)∗ (up
to a multiplicative constant depending only on a compact K ⊂ C for ã ∈ K ).

Remark 8.6 The norms of the composites Ψã : L∗σ(ã) → Tã(N)∗ of the restrictions to
L∗σ(ã) of the pull backs σ∗ã : Tσ(ã)(U)∗ → Tã(N )∗ with the maps dual to the inclusions
Tã(N) ↪→ Tã(N ) coincide with the norms of (linear) maps ((σ|S)∗ã)|Ωa

: Ωa → Tã(N)∗ , i. e.
the restrictions to Ωa of the pull backs (σ|S)∗ã : Ta(S)∗ → Tã(N)∗ (since maps Ψã are
also the composites of the quotient maps L∗a → Ωa with ((σ|S)∗ã)|Ωa

). Therefore it suffices
to majorize (up to a multiplicative constant) the norms of the maps Ψã by |Lj(a)| for
j = j(ã) (the index j though does not depend on ã ∈ C ).

Lemma 8.5 implies a lower bound (depending on the choice of a compact K ⊂ C) on the
norms of (dL|S)(a) ∈ Ωa at the points a ∈ {L = 0}∩Reg∗(S)∩σ(K) = Reg∗(S)∩σ(Λc∩K) .
Since σ is a proper map the item ii) of Theorem 7.2 follows.

Proof of Lemma 8.5. Recall (see property 5. of map σ ) that Lj ◦ σ , j = j(ã) ,
coincides (up to an invertible function) with

∏
b̃∈H xnH

H in C (w.l.o.g. we may assume that
they coincide). Due to Remark 8.1 and, since h(ã) = 0 , it follows that

d(Lc ◦ σ)|ã = d((Lj ◦ σ) · h)|ã = Lj(a) · dh|ã .

Due to the choice of the norms on Tã(N)∗ (see (8)), for ã ∈ C \ Sing(σ) , it follows that the
norm of dh|ã equals 1 . Therefore the norm of d(Lc ◦ σ)|ã is |Lj(a)| , as required.

Due to Remark 8.6 it remains to bound the norms of the maps Ψã : L∗a → Tã(N)∗ . Note
that because Lj ◦σ is (in C ) a common factor of all Li ◦σ , 1 ≤ i ≤ k , and since the norms
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of d(Lj ◦σ)|ã due to (8) coincide with
√∑

b̃∈H n2
H · |Lj(a)| , it follows that the norms of all

d(Li ◦ σ)|ã are majorized by |Lj(a)| (up to a multiplicative constant depending only on the
choice of K provided that ã ∈ (N ∩ Λc ∩ K) \ Sing(σ) ). The required upper bound on the
norms of Ψã : L∗a → Tã(N)∗ follows since the latter norms are bounded by k1/2 times the
maximum of the norms of the images of the orthonormal basis {dLi(a)}i in L∗a .

9 Complexity of universal TWG-stratifications.

To provide a complexity upper bound on constructing the Glaeser bundle of vector spaces
GF = G = G(ρ) ⊃ · · · ⊃ G(1) ⊃ G(0) = T (see Section 3) and the quasistrata Gk assume that
the components fi ∈ Z[x1, . . . , xn], 1 ≤ i ≤ t of the polynomial map F = (f1, . . . , ft) have
integer coefficients. Let 2R bound the absolute values of the coefficients, and integer d bound
the degrees of the polynomials. We consider two cases: K = C or K = R , although one
could study other algebraically or real closed effectively represented fields K , then R would
bound the bit-size of the coefficients [12].

To proceed consecutively from bundle G(p) to G(p+1) , 0 ≤ p < ρ ≤ 2 · n , one has to
carry out two basic subroutines (see Section 3): to produce the closure of a constructible set,
and for a given bundle M to construct the bundle M ′ of vector spaces whose fibers being
linear hulls of the respective fibers of M . An algorithm producing the closure is exhibited
in [12]. For the second subroutine given a quantifier-free formula over field K describing
M , one can describe M ′ by means of a formula with quantifiers over K in a straightforward
way. To the latter formula one can apply a quantifier elimination algorithm of [12] resulting
in a quantifier-free formula describing M ′ . This yields an upper bound RO(1) · dnO(ρ)

on
the complexity of constructing G and the complexity of Gk . Recall that the quasistrata Gk

provide a universal TWG-stratification, provided that G is Lagrangian (Corollary 4.11). Note
that in an example from Section 10.2 the index of stabilization ρ grows linearly with n .

We would like to mention that a similar double-exponential complexity upper bound RO(1) ·
dnO(n)

on stratifications (though without property of universality) was obtained in [22], [6].
On the other hand, there is an obvious exponential complexity lower bound RO(1) · dO(n) .

It would be interesting to understand, whether this double-exponential bound is sharp?

Note that the computational complexity bound of [4] for the resolution of singularities (in
terms of the primitive-recursive functions) is a considerably larger bound.

10 Examples.

10.1 A family of F : KN → K which admit universal TWG-stratifications.

We give an example of a family of polynomial maps F : KN → K

F := Fn =
∑

1≤i≤j≤n

Ai,jXiXj ∈ K[{Ai,j}, {Xi}] , N = n +
(

n + 1
2

)
,

that admit universal TWG-stratifications of Sing(F ) . The latter turn out to be stratifications
in the traditional sense (of the first paragraph of Section 2) with the index of stabilization
ρ(F ) = 1 (i. e. G(1) = GF ).
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Of course Sing(F ) = {Xi = 0}1≤i≤n . Let for the sake of brevity G := GF and bundle
B := G(1) (as in the construction of Section 3 for map F ).

Any nonsingular n×n matrix C over K induces an isomorphism of KN → KN , which
for brevity we also denote C (of course isomorphisms C preserve the ranks of quadratic
forms). Therefore, for any particular point a = ({ai,j}, {0}) ∈ Sing(F ) with quadratic form
fa :=

∑
1≤i≤j≤n ai,jXiXj being of a rank q the dimension of the fiber Ba of bundle B

at a coincides with the dimension of the fiber of bundle B at the point a(q) with the
corresponding quadratic form being fa(q) =

∑
1≤i≤q X2

i , e. g. due to Corollary 3.2.
We identify the set of all quadratic forms fa of rank q with the constructible set

B(q) ⊂ Sing(F ) of the corresponding points a ∈ Sing(F ) . A straightforward calculation
shows that dim(B(q)) = qn − q(q − 1)/2 . Once again by means of Corollary 3.2 (and of
an appropriate isomorphism C : KN → KN ) it follows that B(q) is smooth and that fibers
Ga are of a constant dimension k(q) at all points a ∈ B(q) , i. e. Bk(q) = B(q) . (Since
l = 1 Thom stratification of Sing(F ) exists by [18] and therefore due to (1’) of Lemma 3.7
inequality k(q) ≤ codimBk(q) holds.) Below we calculate k(q) , which would allow us to
conclude (by making use of Theorem 4.8) that each Bk(q) is Lagrangian and therefore that
B = G , Bk(q) = Gk(q) and that stratification {Bk(q)}0≤q≤n of Sing(F ) (by rank of fa for
a ∈ Bk(q) ) is a universal TWG-stratification.

Consider curves γ : K 3 t 7→ γ(t) ∈ KN with the origins at a(q) = γ(0) and
parametrized by x ∈ Kn as follows:

Xi = t3xi , 1 ≤ i ≤ q ; Xj = t2xj , q < j ≤ n ; Aii = 1 , 1 ≤ i ≤ q ;
Ajj = t , q < j ≤ n ; Aij = 0 , i 6= j .

A straightforward calculation of the limit along this curve of the normalized differential
dF/||dF || shows that

∑
1≤i≤n xidXi ∈ Ba(q) . Consider similarly limits along curves with the

same origin at a(q) and defined as follows: Aii := 1 if 1 ≤ i ≤ q and Aij := 0 for pairs of
i , j with 1 ≤ i < j ≤ n or q < i = j ≤ n , while Xi = 0 for 1 ≤ i ≤ q and Xj = txj for
q < j ≤ n . A straightforward calculation implies that the ‘coordinate’ projection of Ba(q) to
the subspace spanned by {dAij}1≤i≤j≤n contains the image under the degree two Veronese
map of points (x1, ..., xn) ∈ Kn with coordinates xi = 0 for 1 ≤ i ≤ q . It follows that
subspace Ba(q) of (KN )∗ contains dXi for 1 ≤ i ≤ n , and dAj,s for q < j ≤ s ≤ n , i. e.
k(q) ≥ (n + (n− q)(n− q + 1)/2) = codimBk(q) implying k(q) = codimBk(q) . Consequently
each (de facto smooth) quasistratum Bk(q) is Lagrangian, G = B and, due to Theorem 4.10
and its Corollary 4.11, partition {Bk(q)}0≤q≤n of Sing(F ) is a universal TWa stratification
of Sing(F ) . Summarizing

Proposition 10.1 For

F = Fn =
∑

1≤i≤j≤n

Ai,jXiXj ∈ K[{Ai,j}, {Xi}]

the index of stabilization ρ(F ) = 1 and strata Bk(q) = {a = ({aij}, {0}) : rk(fa) = q} ⊂
Sing(F ) form a universal TWa stratification of Sing(F ) with respect to F .
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10.2 A family of examples of Fn : K4n+1 → K with universal
TWG-stratifications and the index of stabilization ρ(Fn) = n .

Let q(x, y, u, v, w) := u·x2+2w·x·y+v ·y2 and produce recursively the following polynomials:
q1 := q(x1 , y1 , u1 , v1 , w) , qk+1 := q(xk+1 , yk+1 , uk+1 , vk+1 , qk(·)) , k ≥ 1 . Denote

F := Fn , Fn(~x , ~y , ~u , ~v , w) := qn(~x , ~y , ~u , ~v , w) ,
where ~x , ~y , ~u , ~v ∈ Kn and xk , yk , uk , vk for 1 ≤ k ≤ n denote their respective
k-th coordinates, i. e. F depends on N = 4n + 1 independent variables. Let hk :=
uk · vk − q2

k−1(·) , 1 ≤ k ≤ n . Then F = un · x2
n + 2qn−1 · xn · yn + vn · y2

n and Sing(F ) =
{xn = yn = 0} . By making use of Corollary 3.2 and example from Section 10.1 it follows
that for points a ∈ Sing(F ) with dqn−1(a) 6= 0 the fibers of bundle G(1) are

1. G
(1)
a = Span{dxn ; dyn} if hn(a) 6= 0 , i. e. G2 = Sing(F )\{hn = 0} off {dqn−1 = 0} ;

2. G
(1)
a = Span{dxn ; dyn ; dhn} if hn(a) = 0 , dhn(a) 6= 0 , i. e. off {dqn−1 = 0}

quasistratum G3 = Sing(F ) ∩ {hn = 0} \ {dhn 6= 0} ;

3. G
(1)
a = Span{dxn ; dyn ; dun ; dvn ; dqn−1} , if hn(a) = 0 , dhn(a) = 0 , i. e.

G5 = Sing(F ) ∩ {hn = 0 , dhn = 0} off {dqn−1 = 0} .

4. In the cases 1. and 2. fibers G
(1)
a = (G(0))a , but in the case 3. fibers G

(1)
a 6= (G(0))a ={

ω = Undun + Vndvn + Qn−1dqn−1 + Xndxn + Yndyn : Un · Vn = (Qn−1/2)2
}

, where ω
denotes a 1-form at a .

Denote D1 := Span{dxn ; dyn ; dun ; dvn} . Note that

dF = x2
ndun + y2

ndvn + 2xnyndqn−1 + 2(unxn + qn−1yn)dxn + 2(qn−1xn + vnyn)dyn .

Results above rely on elementary calculations of Section 10.1 summarized below:

hn = det
(

un qn−1

qn−1 vn

)
and for any sequence of points from KN converging to a point

a ∈ Sing(F ) the following holds

i) the size of { ∂F
∂xn

; ∂F
∂yn

} dominates {x2
n , y2

n , 2xn · yn} at a if hn 6→ 0 ,
ii) the limits of dF/||dF || are the 1-forms ω = Undun + Vndvn + Qn−1dqn−1 + Xndxn + Yndyn

with Un · Vn = Q2
n−1/4 , since the coefficients of dF at dun , dvn , dqn−1 satisfy

x2
n · y2

n = (2xn · yn)2/4 .

When hn(a) = 0 the latter also follows from the orthogonality of ω ∈ G
(1)
a to Ta({hn = 0})

(see (1’) of Lemma 3.7) and dhn = vn · dun + un · dvn + 2qn−1 · dqn−1 , implying that ω is
proportional to dhn , while un · vn = q2

n−1 for points in {hn = 0} .
We now turn to a simple, but crucial observation that the coefficients of dF at

dun , dvn , dqn−1 satisfy inequality
√
|xn|2 + |yn|2 ≥ (

√
2)−1 · |2xn · yn| . Hence the

limits of dF/||dF || evaluated at the points that converge to Sing(F )∩{dqn−1 = 0} are the
1-forms with vanishing coefficients at all differentials of the independent variables on which
qn−1(·) depends. In particular, combining with the preceding summary of the arguments of
Section 10.1 properties 1. and 2. follow without making assumption dqn−1(a) 6= 0 and also

5. G
(1)
a = D1 for a ∈ Zn−1 := Sing(F ) ∩ {hn = 0, dhn = dqn−1 = 0} ⊂ {qn−1 = 0}

holds.
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Summarizing G2 = Sing(F ) \ {hn = 0} , G3 = Sing(F ) ∩ {hn = 0 , dhn 6= 0} and with
G′5 := Sing(F ) ∩ {hn = 0 , dhn = 0 , dqn−1(a) 6= 0} bundle G(1)|G2∪G3∪G′5 = G|G2∪G3∪G′5 .
Also G′5 = {xn = yn = un = vn = qn−1 = 0 , dqn−1 6= 0} , and
Zn−1 = {xn = yn = un = vn = xn−1 = yn−1 = 0} = Sing(F ) \ (G2 ∪ G3 ∪ G′5) .

Detour. The two Remarks-Examples below are straightforward consequences of the latter
observation and the preceding it summary of the arguments of Section 10.1.

Remark 10.2 With notations G = GF̃ , G(p) = G
(p)

F̃
for a function

F̃ := u · x2 + 2w2 · x · y + v · y2

depending on 5 variables the following holds:
inequality dim G

(1)
a ≤ 4 for all a ∈ Sing(F̃ ) ; bundles G and G(1) coincide; quasistrata

G2 = {x = y = 0 , u ·v−w4 6= 0} , G3 = {x = y = 0 , u ·v−w4 = 0 , (u , v) 6= 0} and G4 =
{0} are smooth and form as strata a TWa stratification, say S , of Sing(F̃ ) ; quasistrata G2

and G3 are Lagrangian, but the quasistratum G4 is not Lagrangian ( dimG4 = 0 < 5− 4 !).
Also, G|G2 and G|G3 are 5-dimensional irreducible components of G and G|G4 is in the
closure of G|G3 .

Remark 10.3 Let non-zero polynomial g ∈ K[z1, . . . , zm] and Fg := F̃ (x, y, u, v, g(z)) ,
where F̃ is from the preceding Remark. Denote G := GFg , G(p) := G

(p)
Fg

. Then for
polynomial Fg depending on m + 4 variables the following holds:
dim G

(1)
a ≤ 4 for all a ∈ Sing(Fg) ; bundles G and G(1) coincide; the quasistrata are

G2 = {x = y = 0 , u · v − g(z)4 6= 0} , G3 = {x = y = 0 , u · v − g(z)4 = 0 , (u , v) 6= 0}
and G4 = {x = y = u = v = g(z) = 0} ; only quasistratum G4 is not Lagrangian; the
irreducible components G|G2 and G|G3 of G are (m + 4)-dimensional and G|G4 is in the
closure of G|G3 . Curiously, an arbitrarily chosen hypersurface {g = 0} appears as
a quasistratum.

We now turn to a calculation of fibers of G(2) for F . Note that dqn−1−2xn−1yn−1dqn−2 =

x2
n−1dun−1 + y2

n−1dvn−1 + 2(un−1xn−1 + qn−2yn−1)dxn−1 + 2(qn−2xn−1 + vn−1yn−1)dyn−1

and bundles G = G(2) = G(1) off Zn−1 ⊂ {xn−1 = yn−1 = 0} . It follows by making use
of Corollary 3.2 and of the calculations like in the summary of the arguments of Section 10.1
that for points b from G′5 converging to a point a ∈ Zn−1 ⊂ {qn−1 = 0 , dqn−1 = 0} with
dqn−2 6= 0 the span of the limits of the 1-forms from the fibers Gb of G (it includes the
limits of dqn−1/||dqn−1|| ) coincides with the fibers of bundle G(2) , namely:

1’. G
(2)
a = Span{dxn−1 ; dyn−1} ⊕D1 if hn−1(a) 6= 0 , i. e. G6 = Zn−1 \ {hn−1 = 0}

off {dqn−2 = 0} ;
2’. G

(2)
a = Span{dxn−1 ; dyn−1 ; dhn−1} ⊕D1 if hn−1(a) = 0, dhn−1(a) 6= 0 , i. e. off

{dqn−2 = 0} quasistratum G7 = Zn−1 ∩ {hn−1 = 0} \ {dhn−1 6= 0} ;
3’. G

(2)
a = Span{dxn−1 ; dyn−1 ; dun−1 ; dvn−1 ; dqn−2} ⊕ D1 , if hn−1(a) = 0 ,

dhn−1(a) = 0 , i. e. G9 = Zn−1 ∩ {hn−1 = 0 , dhn−1 = 0} off {dqn−2 = 0} .
4’. In the cases 1’. and 2’. fibers G

(2)
a = (G(1))a , but in the case 3’. fibers G

(2)
a 6⊂ (G(1))a

and the latter consists of all 1-forms ω ∈ G
(2)
a with coefficients Un−1 , Vn−1 , Qn−2 at
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dun−1 , dvn−1 , dqn−2 that satisfy equation Un−1 · Vn−1 = (Qn−2/2)2 . Denote D2 :=
Span{dxn−1 ; dyn−1 ; dun−1 ; dvn−1} ⊕D1 .

Once again, due to the observation that the coefficient of dqn−1 at dqn−2 is dominated
by its coefficients at dun−1 , dvn−1 , it follows that for points b ∈ Sing(F ) converging to a
point a ∈ {dqn−2 = 0} the limits of the 1-forms from fibers G

(1)
b (which by definition include

the limits of dqn−1/||dqn−1|| ) consist only of the 1-forms with vanishing coefficients at all
differentials of the independent variables on which qn−2 depends. In particular, properties
1’. and 2’. follow without making assumption dqn−2(a) 6= 0 and the fiber of bundle G(2)

at a is
5’. G

(2)
a = D2 for a ∈ Zn−2 := Zn−1 ∩ {hn−1 = 0 , dhn−1 = dqn−2 = 0} ⊂ {qn−2 = 0} .

Summarizing G5 = G′5 , G6 = Zn−1 \{hn−1 = 0} , G7 = Zn−1∩{hn−1 = 0 , dhn−1 6= 0}
and with G′9 := Zn−1 ∩ {hn−1 = 0 , dhn−1 = 0 , dqn−2 6= 0} bundle G(2)|G6∪G7∪G′9 =
G|G6∪G7∪G′9 . Also G′9 = Zn−1 ∩ {un−1 = vn−1 = qn−2 = 0 , dqn−2 6= 0} , and
Zn−2 = Zn−1 ∩ {un−1 = vn−1 = xn−2 = yn−2 = 0} = Zn−1 \ (G6 ∪ G7 ∪ G′9) .

Thus G(1) 6= G(2) and G = G(2) off Zn−2 . Calculation of fibers of G(p) , p > 2 ,
for points from Zn−2 is similar (recursively on p ), in particular implying that G9 = G′9 .
Summarizing

Proposition 10.4 Quasistrata {Gr}r for polynomial F (in 4n+1 independent variables)
are smooth, Lagrangian, form a TWa stratification and hence a universal TWG-stratification.
The index of stabilization ρ(F ) of F equals n .

10.3 Example of F : K5 → K with no universal TWG-stratification.

For F := F̃ from Remark 10.2 we have shown that there is a non Lagrangian quasistratum
of G := GF and therefore due to Theorem 5.1 Sing(F ) does not admit a universal TWG-
stratification. In this example of Remark 10.2 quasistratum G4 and curve {x = y = 0 , u =
v = t2 , w = t} (defined parametrically) are the non-Lagrangian G and a G-regular extension
G+ of the proof of Theorem 5.1. (Note that most of the proof of Theorem 5.1 covering three
sections starting Section 5 is devoted to a construction of G+ .) Consequently, the partition
of Sing(F̃ ) by sets B2 := G2 , B3 := G3 \ G+ , B4 := G+

is a TWa stratification, say S̃ , and the associated bundle B(S̃) 6= B(S) , where S is the
TWa stratification of Sing(F ) constructed in Remark 10.2. Illustrating the punch line of the
proof of Theorem 5.1, we may now show directly that there does not exist a universal TWG-
stratification of Sing(F̃ ) . Assuming the contrary say Suni is a universal TWG-stratification
of Sing(F ) . Denote by B(Suni) its bundle of vector spaces. Construction of the Glaeser
bundle G and an elementary Proposition 3.4 imply that over Sing(F ) \ {0} = G2 ∪ G3

bundles G , B(S) , B(S̃) and B(Suni) coincide since quasistrata G2 and G3 of G from
Remark 10.2 are Lagrangian, see Corollary 3.5. Due to Proposition 4.1 also G ⊂ B(Suni) ⊂
(B(S) ∩ B(S̃)). Combining with G0 = B(S̃)0 then B(Suni)0 = G0 = the 4-dimensional
subspace of (T0(K5))dual orthogonal to ∂

∂w ∈ T0(K5) . Finally, Suni is universal and
{0} is a stratum of S implying {0} is a stratum of Suni and consequently contradiction
B(Suni)0 = (T0(K5))dual 6= G0 = B(Suni)0 follows thus proving

Proposition 10.5 There is no universal TWG-stratification of Sing(F̃ ) , where polynomial
F̃ = u · x2 + 2w2 · x · y + v · y2 .
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Remark 10.6 Formulae of (3) provide a family F of strata of a TWG-stratification of
subset W1 of Sing(F ) . The latter stratification fails frontier condition and set W1

coincides with Sing(F ) when F = F̃ = u · x2 + 2w2 · x · y + v · y2 . Indeed, with curve
{x = y = 0 , u = t3 , v = t2 , w = t} as set G+ of formula (3) it follows that family

F = {G2 \ G+ ; G3 \ G+ ; G+}

is a family of strata of a TWG-stratification of Sing(F̃ ) . Of course this (naturally induced
by a not Lagrangian Glaeser bundle GF̃ ) TWG-stratification of Sing(F̃ ) fails the frontier
condition since ∅ 6= {(0, 0, 0, 0, 0) , (0, 0, 1, 1, 1)} = G3 \ G+ ∩ G+ 6= G+ .

10.4 A universal TWG-stratification and the ‘multiplicities of roots’.

Let
f := f̂q+2 =

∑
0≤i≤q

AiX
iY q−i ∈ K[A0, . . . , Aq, X, Y ] ,

where ([A0 : · · · : Aq], X, Y ) ∈ Pq(K) × K2 . In this example we consider affine charts
{Ai 6= 0} ' Kq ×K2 , 0 ≤ i ≤ q , of Pq(K) ×K2 and setting Ai = 1 the corresponding
mappings F := f̂q+2 : Kq+2 → K . Then, similarly to the preceding examples, Sing(F ) =
{X = Y = 0} , admits Thom stratification (due to l = 1 , see Remark 2.2) and, assuming
that all irreducible components of the quasistrata Gk , n−dim(Sing(F )) ≤ k ≤ n associated
with the Glaeser bundle G := GF of F are of dimension n−k (which we will show below)
it follows that also (ii) of Theorem 4.8 applies.

Following the original notations of Section 3 let G(p) := G
(p)

f̂n
. We prove here that the

index of stabilization ρ(f̂n) = 2 , i. e. that G(1) 6= G(2) = G , bundle G = Gf̂n
is Lagrangian

and that {Gk+2}0≤k≤q/2 is a universal TWG-stratification with respect to f̂q+2 .

Let us fix a point a(0) = ([a(0)
0 : · · · : a

(0)
q ], 0, 0) ∈ Sing(F ) , for the time being, then

polynomial

f (0) :=
∑

0≤i≤q

a
(0)
i XiY q−i =

∏
j

(bjX − cjY )mj . (9)

Plan. First we will calculate G(1) . It turns out (Lemma 10.7) that the dimension of
the fiber G

(1)

a(0) coincides with two plus the number of the roots of polynomial f (0) counted

with multiplicities mj ≥ 2 , where ‘two’ is on the account of {dX , dY } ⊂ G
(1)

a(0) . (Of
course any fiber of bundle G(1) contains {dX , dY } .) Following Lemma 10.7 we then
prove (Proposition 9.8) that bundle G(2) is closed (i. e. G(2) = G(1) ) and, therefore, that
the Glaeser bundle G = GF of F := f̂n of our example coincides with G(2) . (In the
process we show that dimension of the fiber of bundle G(2) at a point a(0) ∈ Sing(F ) is∑

j [mj/2] + 2 , where numbers mj are the multiplicities of the roots of polynomial f (0)

corresponding to a(0) and [mj/2] denotes the integral part of mj/2 .) Finally (following
Proposition 9.8), we verify that bundle G is Lagrangian. It turns out that generic points
of every quasistrata Gk+2 of the universal TWG-stratification corresponding to bundle G
are the points, say a(0) , such that the respective polynomial f (0) has k double roots and
q − 2 · k single roots.
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Calculation of G(1) . We first verify that for each factor bjX − cjY of multiplicity
mj ≥ 2 the fiber of the closure (G(0))a(0) contains

vj := v([cj : bj ]) =
∑

0≤i≤q

ci
jb

q−i
j dAi .

Consider a line defined (parametrically) as follows:

Ai(t) = a
(0)
i , 0 ≤ i ≤ q ; X(t) = cjt , Y (t) = bjt .

Then limt→0 df/||df || along this line equals vj . Conversely, let v =
∑

0≤i≤q hidAi + cdX +
bdY with a non-vanishing (h0, . . . , hq) 6= 0 being the limt→0 df/||df || along a curve

({Ai(t)}0≤i≤q, X(t), Y (t)) ⊂ Pq(K)×K2

with the origin at a(0) . Making a suitable K-linear homogeneous transformation C of the
2-dimensional plane and applying Corollary 3.2 we may assume w.l.o.g. that ordt(X(t)) >
ordt(Y (t)) and it suffices to show that X2|f (0) . Assume otherwise, then

ordt

{
∂f (0)

∂X
,
∂f (0)

∂Y

}
= (q − 1) ordt(Y (t)) < ordt(XiY q−i) , 0 ≤ i ≤ q ,

which contradicts to (h0 , . . . , hq) 6= 0 .
Vectors {vj}j are linearly independent (since they form a van-der-Mond matrix) implying

Lemma 10.7 For any point a(0) ∈ Sing(F ) fiber (G(1))a(0) of bundle G(1) coincides with
the linear hull of vectors dX , dY and the {vj}j for the j’s with the multiplicity mj of
the factor bjX − cjY in f (0) being ≥ 2 . Moreover, dim((G(1))a(0))− 2 is the number of
such j .

Calculation of G(2) . For every v = v([c : b]) let D(l)(v) denote the linear hull of{
∂lv

∂ci∂bl−i

}
0≤i≤l

.

Then {v} = D(0)(v) ⊂ D(1)(v) ⊂ · · · due to the Euler’s formula. W.l.o.g. we may assume
that b = 1 (for b = 0 we would exchange the roles of b and c ) and then D(l)(v) is the
linear hull of the derivatives {∂iv

∂ci }0≤i≤l , implying that dim(D(l)(v)) = l + 1 , 0 ≤ l ≤ q .
Below we calculate the limit limt→0(G(1))a(t) . To that end we consider a curve {a(t)}t ⊂

Sing(F ) with the origin at a(0) , and assume w.l.o.g. that a
(t)
q = 1 for all t . Due to

Lemma 10.7 we may assume (also w.l.o.g.) that for any t 6= 0 the multiplicity of every
factor of polynomial f (t) =

∑
0≤i≤q a

(t)
i XiY q−i does not exceed 2 and these multiplicities

are independent on t 6= 0 . We may factorise

f (t) =
∏
j

∏
p

(X − (cj + ej,p(t))Y )mj,p ,

where 1 ≤ mj,p ≤ 2 and ej,p(t) are the appropriate algebraic functions of t with
ej,p(0) = 0 for all j , p . Then

∑
p mj,p = mj for each j with mj from (9). Let
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mj =
∑

p[mj,p/2] , where [mj,p/2] is the integral part of mj,p/2 . Due to Lemma 10.7 it
follows that dim((G(1))a(t)) =

∑
j mj + 2 for any t 6= 0 and that collection

{v([cj + ej,p(t) : 1])}mj,p=2 ∪ {dX, dY } (10)

is a basis of the fiber (G(1))a(t) .
We claim that

lim
t→0

(G(1))a(t) =
⊕

j

D(mj−1)(v([cj : 1]))⊕ Span{dX, dY } . (11)

To that end we observe that the right-hand side of (11) is indeed the direct sum of the
vector spaces due to the Hermite’s interpolation (which interpolates uniquely a polynomial in
terms of the values of its several consecutive derivatives at the given points, cf. Appendix).
Therefore the dimension of the right-hand side equals

∑
j mj + 2 and to complete the proof

of (11) it suffices to verify that the left-hand side of (11) contains its right-hand side.
To this end fix j , denote m := mj and let

E(i) := ({ei
j,p(t)}1≤p≤m)T ∈ Km , i ≥ 0 ,

where all p satisfy mj,p = 2 (see (10)). Let E be the van-der-Mond matrix of size m×m
with columns E(i) , 0 ≤ i ≤ m−1 . For an arbitrary choice of w = (w0 , . . . , wm−1) ∈ Km

let u := ({up}1≤p≤m) := w · E−1 . Since E−1E(i)(0) = 0 for every i ≥ m it follows for
u(i)(t) := u · E(i)(t) that u(i)(0) = 0 . Therefore∑

1≤p≤m

upv([cj + ej,p(t) : 1]) =
∑

0≤s≤m−1

ws

s!
dsv([cj : 1])

dcs
+

∑
m≤i≤q

u(i)

i!
div([cj : 1])

dci
.

Claim (11) then follows by letting t = 0 in the right-hand side of the latter (in view of the
‘arbitrary’ choice of w in Km ).

We now specify the choice of curve {a(t)}t∈K as such that mj = [mj/2] (with mj and
mj as above holds for every j , in other words mj,p = 2 for mj of p’s and, moreover,
in the case when number mj is odd that mj,p0 = 1 for a single p0 . Then due to (11) it
follows

Proposition 10.8 For any point a(0) ∈ Sing(F ) fiber

(G(1))a(0) =
⊕

j

D([mj/2]−1)(v([cj : 1]))⊕ Span{dX , dY }

of G(1) at a(0) is a vector space of dimension
∑

j [mj/2] + 2 (with mj from (9)). In

particular, bundle G := GF = G(1) .

Proof that G is Lagrangian. For every k , 0 ≤ k ≤ q/2 , let

G(0)
k+2 := {a(0) ∈ Sing(F ) : f (0) =

∏
1≤j≤k

(X − cjY )2 ·
∏

k<s≤q−k

(X − csY )} ,

i. e. f (0) has k factors of multiplicity 2 and q − 2k factors of multiplicity 1 .
Proposition 10.8 implies that G(0)

k+2 ⊂ Gk+2 (see Definition 4.4) and, moreover, that G(0)
k+2 is
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dense in Gk+2 . On the other hand, G(0)
k+2 is open and is isomorphic to the set of all orbits

of the group Sym(k)× Sym(q − 2k) acting on a set

Z := Kq−k \ (
⋃

1≤i<j≤q−k

{Zi = Zj}) ,

where Sym(k) permutes the first k coordinates Z1 , . . . , Zk and Sym(q− 2k) permutes
the last q − 2k coordinates Zk+1 , . . . , Zq−k . It follows dim(G(0)

k+2) = q − k . Moreover,

G(0)
k+2 = H(Z) , where H maps Z1 , . . . , Zk to double roots of f (0) and Zk+1 , . . . , Zq−k

to single roots. It follows that G(0)
k+2 is irreducible. Finally, since in this example Sing(F )

admits Thom stratification, quasistrata Gk+2 are irreducible and of dimension n − k − 2
item (ii) of Theorem 4.8 and hence Corollary 4.11 apply and imply the following

Theorem 10.9 Index of stabilization ρ(f̂q+2) = 2 , bundle G = Gf̂q+2
is Lagrangian and

{Gk+2}0≤k≤q/2 is a universal TWG-stratification of Sing(F ) with respect to F := f̂q+2 .

11 Appendix. Complexity of the construction of a Gauss reg-
ular extension with a prescribed tangent bundle over the
singularities.

Content. Here we estimate the complexity of the algorithm described in Sections 6, 7 and 8
of extending of a (smooth) singular locus of an algebraic variety to a Gauss regular subvariety
with a prescribed tangent bundle over the singularities of the variety. Together with Section 9
it would complete the proofs of the effectiveness of all of the constructions of this work and,
moreover, results in a double exponensial upper bound on their computational complexities.

We follow the notations of Sections 5, 6, 7, 8 with an exception that we use K rather than
C . The input for this algorithm is a family of polynomials gp , Mj+m,i+m ∈ K0[X1, . . . , Xn]
with p ≥ 0 , i , j for a subfield K0 ⊂ K . To establish complexity bounds we assume
that elements of K0 can be represented algorithmically, e. g. one may use here the field
of rational or algebraic numbers in place of K0 , cf. [12]. We also assume the following
representation of constructive set S = {g0 · g1 6= 0 , gp = 0}p≥2 and of its (smooth) singular
locus G = {g0 6= 0, gp = 0}p≥1 , which also assume to be its boundary in open in Kn set
{g0 6= 0} (as in Remark 5.8). The output of the algorithm is a Gauss regular subvariety G+

of S ∩ {g0 6= 0} (as in Proposition 5.9).
Basically the algorithm consists of 3 subroutines. The first one is choosing a Noether

normalisation π for G . The second one is an implicit parametric interpolation of polynomials
Lj from Section 6. (We refer to the latter as implicit because the interpolation data are given
over the subsets of points from G and thus the data appear implicitly.) The third subroutine is
a construction of G+ proper. To this end we may exploit a choice of algebraically independent
coefficients c1, . . . , ck at each consecutive application of Theorem 7.2 and thereafter to
construct an irreducible component containing G of the resulting intersection with S∩{g0 6=
0} (cf. vi) of Theorem 7.2 and the deduction of Proposition 5.9). Complexity bounds for
Noether normalisation and for constructing irreducible components one may find in [21], and
in [12] respectively. We observe that the third subroutine depends only on the complexity
of finding irreducible components. We therefore focus on an algorithm for a parametric
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interpolation. In fact, we design an algorithm for interpolation over the parameters varying
in Km , whereas for the purposes of Section 6 it suffices to have the parameters varying in
an open subset U ′ ⊂ Km , which would have simplified the algorithm.

To formulate the complexity bounds we assume that deg(gp) < δ , deg(Mj+m,i+m) < ∆
for all p , i , j and the total number of bits in representation of the coefficients (in K0 ) of
polynomials gp , Mj+m,i+m does not exceed R . Our main result here is the following

Proposition 11.1 One can interpolate polynomials Lj as required in Section 6 and, more-
over, under assumptions listed in the preceding paragraph deg(Lj) < ∆δO(n) is a bound
on the degrees of the resulting Lj . Complexity bound for this interpolation algorithm is
(R∆nδn2

)O(1) .

Combining with the complexity bounds for the first and the third subroutines it follows

Corollary 11.2 The complexity of the algorithm constructing G+ is bounded by

RO(1)(∆δ)nO(1)
.

Proof of Proposition 11.1. We first consider a non-parametrical interpolation.

Lemma 11.3 Let v1, . . . , vt ∈ Kn−m and w
(i)
q ∈ K , 1 ≤ q ≤ t , 0 ≤ i ≤ n−m . There

exists a polynomial A ∈ K[Xm+1, . . . , Xn] of deg(A) < 2t(n−m) such that

A(vq) = w(0)
q ,

∂A

∂Xi+m
(vq) = w(i)

q , 1 ≤ q ≤ t , 1 ≤ i ≤ n−m .

Proof. By making an appropriate linear change of the coordinates in Km we may
assume w.l.o.g. that v

(i)
q1 6= v

(i)
q2 , 1 ≤ q1 < q2 ≤ t , 1 ≤ i ≤ n − m , where vq =

(v(1)
q , . . . , v

(n−m)
q ) , 1 ≤ q ≤ t . Consider a polynomial

Aq0 =
∏

q 6=q0,1≤i≤n−m

(Xi+m − v(i)
q )2 ·

 ∑
1≤i≤n−m

ai(Xi+m − v(i)
q0

) + a0

 , 1 ≤ q0 ≤ t

with indeterminate coefficients ai , 0 ≤ i ≤ n −m . Then Aq0(vq) = ∂Aq0
∂Xi+m

(vq) = 0 , 1 ≤
i ≤ n − m , for every q 6= q0 . Equation Aq0(vq0) = w

(0)
q0 uniquely determines a0 and,

moreover, equation ∂Aq0
∂Xi+m

(vq0) = w
(i)
q0 uniquely determines ai , 1 ≤ i ≤ n−m . Finally, we

let A :=
∑

1≤q≤t Aq .

Of course one can in the same vain interpolate the higher derivatives as well.
We now consider a parametric interpolation. In view of Bézout inequality deg(G) < δn

we introduce polynomial

A =
∑

0≤e1+···+en−m≤2(n−m)δn

AEXe1
m+1 · · ·X

en−m
n

with indeterminate coefficients a := {AE}E , E = (e1, . . . , en−m) and a quantifier-free
formula Φ(u, v, a) of the theory of algebraically closed fields which says that

if v ∈ G , π(v) = u ∈ Km then A(v) = 0 ,
∂A

∂Xi+m
(v) = Mj+m,i+m(v) , 1 ≤ i ≤ n−m
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for some j , 1 ≤ j ≤ k (we fix index j for the time being). Then the formula ∀u ∃a ∀v Φ
is valid due to Lemma 11.3.

An algorithm from [14] commonly referred to as a “shape lemma” yields a representation
of π−1(u) ∩ G . Applied to a system {gp = 0, g0 6= 0}p>0 the output of this algorithm is a
partition of Km = ∪βUβ into constructible subsets such that for each β there are a linear
combination α =

∑
1≤i≤n−m αi,βv(i) of coordinates v(i) , 1 ≤ i ≤ n − m , with integer

coefficients αi,β and rational functions φ , φi ∈ K0(X1, . . . , Xm)[Y ] , 1 ≤ i ≤ n −m , for
which the following holds:

• for any u ∈ Uβ and any v = (u, v(1) , . . . , v(n−m)) ∈ π−1(u) ∩ G equalities
v(i0) = φi0(u , α) , 1 ≤ i0 ≤ n −m , take place, i. e. α is a primitive element of the field
K0(u , v(1) , . . . , v(n−m)) over K0(u) ;

• the roots of a univariate polynomial φ(u, Y ) are exactly the values of α while ranging
over points v ∈ π−1(u) ∩ G .

Furthermore, in formula Φ we replace v(i0) , 1 ≤ i0 ≤ n−m , by φi0(u, α) and divide
the resulting polynomials A(α) and

(
∂A

∂Xi+m
(α)−Mj+m,i+m(α)

)
by polynomial φ(u, α)

(with the remainders as polynomials in α ). Then system Φ1 obtained by equating to zero
all coefficients of the remainders at the powers of α is equivalent to formula ∀v Φ , for any
u ∈ Uβ .

One may consider Φ1 as a linear system with respect to variables a and apply to
Φ1 an algorithm of parametric Gaussian elimination (see e. g. [14]). It yields a refinement
Km = ∪β′U

′
β′ of partition ∪βUβ into constructible subsets such that for each β′ and for

every multiindex E there is rational function aE ∈ K0(X1, . . . , Xm) such that for any
u ∈ U ′

β′ the array of coefficients a(u) = {aE(u)}E fulfils Φ1 . For a choice of the unique
β′ for which U ′

β′ is dense in Km the rational function

Lj =
∑

0≤e1+···+en−m≤2(n−m)δn

aEXe1
m+1 · · ·X

en−m
n

that corresponds to this β′ is as required in Section 6.
Finally we address the complexity issue. In the “shape lemma” construction applied

above deg(φ) , deg(φi) are bounded by δO(n) and by the degrees of the polynomials
representing {Uβ}β , while the number of {Uβ}’s, the total sum of sizes of the coefficients
of these polynomials and the complexity of the algorithm do not exceed RO(1)δO(n2) [14].
Therefore the degrees of the polynomials occuring in Φ1 are bounded by ∆δO(n) , while
the number of the polynomials, the total sum of sizes of their coefficients and the complexity
of constructing Φ1 do not exceed (R∆nδn2

)O(1) . At the stage of applying the parametric
Gaussian elimination to Φ1 the bounds are similar. Proposition is proved.
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