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Introduction

In this paper we present an algorithm which, given a black box to evaluate a t-sparse (a
quotient of two t-sparse polynomials) n-variable rational function f with integer coefficients,
can find the coefficients and exponents appearing in a t-sparse representation of f using
(t(”t) log d)o(l) black box evaluations and arithmetic operations and with arithmetic depth
(ntlog d)°M) | where d denotes the degree of {-sparse representation of f (see the Theorem
at the end of section 4 for an exact statement of this result). Although these bounds involve
the size of the exponents, this dependency only arises at the end of our algorithm. The
algorithm genuinely produces (that is produces in a way whose arithmetic complexity does
not depend on the size of the coefficients of f or on the degree of f, [19]) a polynomial whose
roots are p-powers (for some small p) of the exponents appearing in a t-sparse representation
of f. All known algorithms to find the roots of this polynomial (even knowing that they
are p-powers) have complexity that depend on the size of the roots. This dependency also
occurs in algorithms for interpolating ¢-sparse polynomials (c.f.,[1]) for the same reason.

To find the exponents appearing in some ¢-sparse representation of a t-sparse univariate
rational function f(X) we proceed as follows: We consider representations of f(X) of the
form (EleaiX“)/(ElebiXﬁi), where a;, b;, a;, B; are real numbers. Such a function is
called a real quasirational function. Furthermore, we call such a representation minimal
if it has a minimal number of nonzero terms in the numerator and denominator and is
called normalized if some term is 1. We show that there are only a finite number of
minimal normalized representations and that the exponents must be integers. We are able
to produce a system 7' of polynomial equalities and inequalities (whose coefficients depend
on the values of f(X) at 1o points) that determine all the possible values of any such «;
and ;. Using the methods of [13], we can then find all «; and ;. To find the exponents
when f(Xq,...,X,)is a multivariate polynomial, we show how to produce sufficiently many
n-tuples of integers (v1,...,v,) such that the exponents of f can be recovered from the
exponents of all the f(X™", ..., X").

Complexity issues for ¢-sparse polynomial and rational function interpolation have
been dealt with in several papers. Polynomial (black box) interpolation was studied in

[1],[2],[9],[12],[17], [19],[27], [28]. For bounded degree rational interpolation (when the



bound on the degree is part of the input) see [15],[16],[25]. Approximative unbound in-
terpolation arises also naturally in issues of computational learnability of sparse rational
functions (cf. [21]). The present authors have previously studied the problem of inter-
polation of rational functions in [10], but the algorithm presented there for finding the
exponents had considerably worse complexity. The present paper significantly improves
the results of that paper by introducing the notion of a minimal representation (allowing
us to directly compute a finite set of possible exponents instead of just bounding them)
and a new technique for reducing multivariate interpolation to univariate interpolation. As
we shall see these ideas give us a more efficient algorithm.

The rest of the paper is organized as follows: In Section 1 we give formal definitions
of a quasirational function and related concepts and prove some basic facts about these
functions. In Section 2 we introduce some useful linear operators on fields of these functions.
We use these operators to derive criteria for a function to be t-sparse. In Section 3 we
use these criteria to give an algorithm for ¢-sparse univariate interpolation. In Section 4,
we again use these operators to show how multivariate interpolation can be reduced to
univariate interpolation. Complexity analyses of the algorithms are also given in Sections

3 and 4.

1 Quasirational Functions

A finite sum
Z C[XI (1)
J;

where [ = (a,...,0,), s € €, X = X1 . X ¢; € € is called a quasipolynomial
of n variables. The set of quasipolynomials forms a ring under the obvious operations and
we denote this ring by € (Xy,...,X,). The subring of quasipolynomials (1) with o; € IR
and ¢; € IR will be referred to as the ring of real quasipolynomials and will be denoted
by IR(X1,...,X,). A ratio of two quasipolynomials (real quasipolynomials) is called a
quasirational function (real quasirational function). The set of such functions forms a

field that we denote by € ((X1,...,X,)) (IR{({X1,...,X,))). Note that @ (X1,...,X,) C

IR{({X1,...,X,)). We use the expressions “polynomial” or “rational function” in the usual



sense, that is for a quasipolynomial or quasirational function with non-negative integer
exponents in their terms.

We say that the quasipolynomial (1) is t-sparse if at most ¢ of the ¢; are nonzero. If
a quasirational function f can be written as a quotient of a numerator that is ¢;-sparse
and a denominator that is {y-sparse then we say that f is ({1,%2)-sparse. For example,
(X™—1)/(X —1)= X"+ .- +11is (2,2)-sparse and also (m, 1)-sparse. If f is ({1,12)-
sparse but not ({1 — 1,13)- or (1,1 — 1)-sparse, we say that f is minimally (t,,1;)-sparse.
Note that the above example is both minimally (2, 2)-sparse and minimally (m, 1)-sparse.
We say that a representation f = p/q is a minimal (¢1,%2)-sparse representation if f is
minimally (¢1,%3)-sparse and p is {1-sparse and ¢ is ty-sparse.

We will need a zero test for (1,%3)-sparse rational functions. This is similar to the
well known zero test for {-sparse polynomials (c.f., [1],[9],[11]). We assume that we are
given a black box for an n-variable rational function f with integer coefficients in which
we can put points with rational coefficients. The output of the black box is either the
value of the function at this point or some special sign, e.g., “c0”, if the denominator
of the irreducible representation of the function vanishes at this point (a representation

f=g/h, g, h € €C[Xy,...,X,], is irreducible if g and & are relatively prime).

Lemma 1. Let f be a (t1,t3)-sparse rational function of n variables, let p1,...,p, be n
distinel primes and let P7 = (p-{, PP )1 <5<ty +ty—1. Then f is not identically zero
if and only if the black box outputs a number different from 0 and oo at one of the points
Pi,

Proof. Recall that if My,..., M; are distinct positive numbers then any ¢ x ¢ subdetermi-
nant of the r x ¢ matrix (Msj)lgsgt,lgjgr is non-singular (c.f., [5]). Since the black box gives
output based on an irreducible representation of f, we see that any zero of the denominator
of such a representation is zero of the denominator of a (Z1,¢3)-sparse representation of f.
Using the remark about the matrix (M?) above we see that the denominator can vanish at,
at most, t5 — 1 of these points. A similar argument applies to the numerator. Therefore,

the (1, 1q)-sparse function f is not identically zero if and only if the black box outputs a



number different from 0 and oo at one of these points P7.

We note that Lemma 1 is not true for quasirational functions. For example, let p =
2 and f(X) =1 - X%. We then have that f(2') = 0 for all 7. If one restricts
oneself to real quasirational functions, then Lemma 1 is also not true for n > 2. To see
this, let f( X1, X2) = Xiogr"S — Xéog35 and p; = 2, p; = 3. However, we do have a zero
test for univariate real quasirational functions. We will only need such a test for real

quasipolynomials which we state in the following lemma.

Lemma 2. Let p be a positive real number and let f € IR(X) be t-sparse. If f(p') = 0
fore=0,....,t—1, then f = 0.

Proof. Let f = %!_ a; X% where a; # a; for ¢ # j. Since f(p') =0for 1 =0,...,¢t — 1
then

1o 1 ) [a] [0]
p P az 0
L (p™) ()71 Lac] 10]

Since the «; are real, p** # p® if ¢ # j. Therefore the above ¢ x ¢ matrix is non-singular

andsoa; =...=a; = 0.

If fis a quasirational function, we call a representation f = g/h, g,h € € (X1,...,X,,)
normalized if g or h contains the constant term 1. For an arbitrary representation f = f]/iz,

there are a finite number of monomials M such that (§/M)/(h/M) is normalized.

Lemma 3. a) Assume p/q = p/q are normalized representations of a multivariate
quasirational function and assume that p/q is a minimal (11, t3)-sparse representation.
Then the ZZ-module generated by the exponent vectors of p and q is a submodule of the
7 -module generated by the exponent vectors of p and q.

b) There exist at most (t; + tg)o(t1+t2) minimal (t1, tz)-sparse representations. Fur-

thermore, for given exponent vectors, the coefficients in the corresponding minimal repre-



sentation are unique.

c) Assume the same conventions as in a). Then

max{| deg(p), [ deg(q)[} < 2(t1 4 12) max{|deg(p)], | deg(q)]}-

Proof. Let [,..., I be the exponent vectors of p, J1,...,.J;, be the exponent vectors of
q and let {I;} (respectively {.J;}) be the exponent vectors of p (respectively ¢). We define a
weighted directed graph G in the following way. The vertices of G correspond to the t; 4 ¢
exponents of p/q. We join I; and J; if I;+.J;, = J; + I, for some iy, j; and assign the weight
I, — J;, to the edge (I;,.J;). We join I; and I, if I + J; = I;, + J;, for some j # j; and
assign weight J;, — J; to the edge (I;, I;,). Finally, we join J; and J;, if J; + [; = J;, + [,
for some i # i1 and assign weight I;, — I; to the edge (.J;,.J},).

We claim that G is connected. If not, let G, be the connected component which contains
the exponent vector (0,...,0). One sees that the representation p,/q, obtained from p/q
by deleting all terms with exponent vectors not belonging to this connected component
equals p/q. This contradicts the minimality of p/¢ and proves the claim.

To prove a) and c), consider a spanning tree 7 of G and let (0,...,0) be the root of 7.
Any exponent vector [; (respectively .J;) equals the sum of the weights along the unique
path connecting I; (respectively .J;) with the root and so lies in the module generated by
the I; and .J;.

To prove b), note that the spanning tree above uniquely determines the set of expo-
nent vectors that can occur in p/q. Therefore the number of exponent vectors in the

numerator and denominator is at most the product of the number of such weighted trees

and ( b ;I_ b2 ) (the latter value being the number of choices of exponents for the nu-
1

merator and denominator). The number of rooted trees with ({1 + t3) vertices is at most

(1 + 15)°1+%2) | For a fixed tree, the number of ways to assign weights of the above form
Nt _

from a fixed set {]’}i; U {J;}"2; can be bounded by (11 4 {2)°"*%2). Thus the number of

exponent vectors can also be bounded by (#; 4 t5)°(1+%2),

We now prove the last statement of b). Assume that p,/q, = p/q are two different



minimal (¢1, ¢3)-sparse representations with the same exponent vectors in the corresponding

o C . .
«C, P P_Pisa representation that
4o — Cq

q
is either ({1 — 1,%2)- or (t1,%12 — 1)-sparse, contradicting the minimality of (¢1,¢2). This

numerators and denominators. For suitable ¢ &

completes the proof of Lemma 3.

We have the following immediate consequence of Lemma 3 a).

Corollary 4. Any normalized minimal (t1,1)-sparse quasi-rational representation of a

rational function has exponents that are integers.

2 Linear Operators

In the following sections it will be useful to consider the actions of certain linear operators

on fields of quasirational functions.

Definition. a) Let p1,...p, be distinct prime numbers and let D, : € ((X3,...,X,)) —
C((X1,...,X,)) be the € -linear operator defined by D, (X?) = p? X, where the number
p¢ is defined to be e*!°8?' for some fixed branch of the logarithm. When n = 1 we will
write € ((X)) instead of € ((X7)) and D instead of Dj.

b) Let®: € (X)) — € ((X)) be the € -linear operator defined by

d
@(Xa) = XK(XQ) = aXa.

Note that D, is a homomorphism, i.e. D, (fg) = D,(f)D.(g) while ® is a derivation,
ie. D(fg) = D(f)g + [D(g). This difference will force us to deal with these operators
separately. We begin by studying D,,.

Lemma5. a) Lel fe C(Xy,...,X,) and assume that D, (f) = f. Then f € €.
b) Let f € IR((X)) and assume that D(f) = f. Then f € IR.

Proof. a) If D,(f) = f, then f(X1,....X,) = [f(p1X1,....p.Xn) =
f(piXy,...,p2X,) = --- . Lemma 1 implies that f(Xy,...,X,) = f(XqiY:,..., X,.Y},)



for new variables Yi,....Y,. If f = g/h, let ¢ = ZaIXI, h = ZbJXJ. Comparing
T J

coefficients of the corresponding monomials in X and Y we have that, after a suitable

re-ordering, Iy = .Jy, Iy = Jy,... and ajby = ayby for all I, J. Therefore f € €.

b) The proof is the same as in a) using Lemma 2 instead of Lemma 1.

Note that Lemma 5 a) is not true for f € IR((X1,...,X,)) C € ((X1,..., X)), n > 2.

To see this let f = Xiog? 5X2_10g35, p =2, p =3. Lemma 5 b) is not true for f € € ((X))
2m/—1
log 2

since, for p=2, f=X gives a counterexample.

Lemma 6. a) Ifyi,...,ym € C(X1,...,X,) then y1,...,ym are linearly dependent
over © if and only if

yl . ym
Whp, (Y1, ., Ym) = det =0
L D7y Dy,

b) If y1,...,ym € IR((X)), then y1,...,ym are linearly dependent over IR if and only
if Wp, (y1, ..« ym) = 0.

Proof. a) If u,...,y, are linearly dependent over € then we clearly have
Whp, (y1,.-.,ym) = 0. Now assume that Wp, (y1,...,¥m) = 0. In this case there exist
fi,oo o, fm € €(X4,...,X,), not all zero, such that

fiyi 4ot futim = [iDuyi 4 o4 [ Doy = oo = DIy 4 o+ [ Dy = 0
We may assume f; = 1. Applying D, to each of these equations, we have
Diyi+ Dy faD'ya + ...+ Dy fu Dy = 0
for e = 1,...,n. This implies that

(fo = Dnfo) Dy 4 ... 4 (foo — Do fr)Diyy = 0



fore=1,...,n—1. Either f;, — D, f; =0 for : = 2,...,m, in which case we are done by
Lemma 5, or by induction there exist asg,...,a, € €, not all zero, such that asD,ys +
coot amDpynm = 0. Therefore D, (asys + ... + amym) = 0 50 agyy ... + @mym = 0. The

proof of part b) is similar and omitted.

Lemma 6 immediately implies the following criterion for a real quasirational function

to be (11,12)-sparse.

Lemma 7 a) Let f € €©(Xy,...,X,), [ is (t1,12)-sparse if and only if there exist
Ly o Ly, Ji,...,Jy, € Z" I # I;, J; # J; fori # j such that Wp, (Xh, ... X,
XAf . X f) = 0.

b) Let f € IR{(X)). [ is (t1,tz)-sparse if and only if there exist
a0y, By By, €0 IR, o # o« B # B for v # 5 such thal
Wp(X, ... X, X[, . X% f)=0.

Proof. a) f is ({1,l2)-sparse if and only if there exist Iy,..., Iy, Ji,...,J,, €
z" L # 1, Jp # Jj for v # 5 and ay,... a4, by,.... b
t

, € @, not all zero,

1 ta
such that ZaiXL + ijXIJf = 0. By Lemma 6 this happens if and only if
=1 7=1

WDH(XH’ . 7}(Itl’ XJ1f’ . ,XJt2f) — 0.
The proof of b) is similar.

We now consider the other linear operator ® on € ((X)). We will need results similar

to Lemmas 5 and 6.

Lemma 8. [ffe € (X)) and®f =0 then f € C.

Proof. First assume that f = zt:aiXa" eC(X) fo=of = zt:aiaiXa‘, then t = 1
and a; =0,s0 f € €. = =

Now let f € © ((X)). f is minimally (¢1,%3)-sparse for some ({1,¢2). Let f = g/h be
a minimal (%1, ?)-sparse normalized representation. If ®h = 0, then we have just shown

that » € €. Since f = ((9g)h — gOh)/h* = (Dg)/h, so Dg = 0. Therefore g € €



and so f € €. We will therefore now assume ©h # 0 and derive a contradiction. Since
(Dg)h — gDh = 0, we have g/h = Dg/Dh. Since ¢g/h is normalized, ®g/Dh is a (1, — 1,15)-

or a (1,1 — 1)-sparse representation of f, a contradiction.

Lemma 9. Ify,...,ym € C{X)) then y1,...,ym are linearly dependent over € if and

only if
B yl P ym T
Dy s DYm
Wo(y1,. -, Ym) = det . . . =0
i @m_lyl . @m_lym i

Proof. ILemma 8 implies that © ((X)) is a differential field with constant subfield equal
to € . The result now follows from ([18], Theorem 3.7).

3 Univariate Interpolation

Lemma 7 in the previous section allows us to characterize (1, t3)-sparse rational functions
and is the basis of the following algorithm for finding the exponents of a sparse univariate
rational function.

Assume we are given a black box to evaluate a univariate rational function f € Q (X)
and assume we are told that it is minimally (¢1,13)-sparse (the general case when we are

only told it is (Z1,¢2)-sparse is handled below). Consider the expression

S(pal’.“’patl’ pﬁl7"'7pﬁt27 f(X)7f(pX)7"' 7f(pt1+t2_1X))

L Wp(X*, L X XA X )
T X Xen L XA X P

Note that S is a polynomial in the indicated terms with integer coefficients. Replac-

ing p,...,p, pP.. .. pP with new variables Yi,...,Y; 4:, we get a polynomial
S(Yi, .o, Yogn,, f(X), f(pX),..., f(p"*T271 X)) with at most ({1 + {9)" T2 terms in the
variables Y1,..., Y} 41, and multilinear in the black boxes f(X), f(pX),..., f(p"+271X).

10



Since we are looking for the exponents of a normalized minimal (¢, ¢3)-sparse representa-
tion of f, we may assume Y; = 1. By lemma 7b) (0,aq,..., a4, 51,...0:,) € TR(M+t2) will

be a vector of such exponents if and only if
S(l7pa27"'7pat17pﬁl7"'7pﬁt27 f(X)7f(pX)7"') :0 (2)

0F ;i #aj, i #B; for 1#] (3)
Observe that S as a rational function from IR(X) is ((1; 4 £2)?(+%2) 15872) sparse, hence
by lemma 1 condition (2) is equivalent to the condition that S is either oo or 0 for X =
poio=0,...,2(1y + ty + 1)2+2) 1 For at least (11 + £y 4+ 1)2(1+%2) of these points
(being independent from ay,-- -, 3:,), S will be zero. Using the black box for f(X), we
can determine a system T consisting of (¢; + 2 + 1)2(“‘“2) equations in the unknowns
Ya, ..., Yi, 44, of degree at most ({1 + ¢2)%, of inequalities 1 # Y, # Y, # 1,2 <i < j <y,
Yi#Y;, t1 <1<y <t 41ty and of inequalities Y3 > 1,---, Y}, 44, > 1 that is equivalent
to (2),(3) (for Yy = p®2,--+ Y41, = p?2). By Lemma 3 b), T has a finite number of
solutions in IR"*27! Note that Corollary 4 implies that these solutions are integers. We
can apply the algorithm of [13], [14] (cf. also [1]) to this system and find these solutions
with ((t1 + tg)(t1+t2) log d)o(l) arithmetic operations and depth ((¢; + t2)log d)o(l), where
d is the maximum of the exponents ay,..., 3. Note that the algorithm of [13], [14] will
yield a polynomial satisfied by these p-powers with ({; + 5)°1%%2) arithmetic operations
and (11 + 15)°M depth. As we noted in the introduction, the dependence on d of the final
complexity is introduced when we find the roots of this polynomial. One can find these
roots as in [23] or more simply by considering the powers of p that divide the coefficients.
We remark that this algorithm also implies that there are at most (¢; + tg)o(tﬁt?) solutions
(cf. lemma 3b)) and that these solutions p®2,---, p*2 are bounded by p? < exp(M(¢; +
1)Pt+t2)) where M is a bound on the bitsize of the values yielded by the black box when
we evaluate f(piti) fori = 0,..., 0+ 1o —1, j = 0,...,2(t; + {5 + 1)21+2) — 1. Hence
the exponents ay,---, 3, of the rational function f do not exceed d < M(1; + t5)0(+%2),
Notice that the algorithm can find the exponents ay,---, 3, in ((t1 + ty)(1H%2) Jog d)o(l)
arithmetic operations with the depth ((¢; + t3) log d)o(l).

11



We can find the coefficients by solving a system of linear equations gotten from

(i biXﬁi) f(X) = iaixw

by letting X = p’, 5 =0,1,...,¢; +t, — 1. Note that Lemma 3 b) implies that this system
will have a unique solution. This can be found with (#; + #5)°(") arithmetic operations with
depth ((log(t; + 12))°"), since to set up this system one has to compute powers p®i, p%
which were computed above.

Turning to the general case where we are only told that f is ({1,%2)-sparse, we proceed
as follows: We consider all pairs (¢],¢,) with 1 < <t;, 1 <, <3 and use the above
algorithm for these pairs. The first time that the above algorithm yields a non-empty
set of solutions, we are guaranteed that, for this ({,t}), f has a minimal (#},})-sparse

representation and that the algorithm has yielded the exponents and the coefficients.

4 Multivariate Interpolations

Let f(X1,...,X,) € Q(Xi,---,X,) be a minimally (¢1,{;)-sparse rational function given
by a black box. We shall show in this section how the problem of finding the exponent
vectors of f can be reduced to the univariate case. In particular, we shall show that the
set of vectors v = (v1,...,v,) € € such that fu(X) = f(X", ..., X"") is not minimally
(t1,t2)-sparse is a small set V. We will then show that if we find the exponents of fp for

sufficiently many v € V', then we can recover the exponents appearing in f.

Lemma 10. Let f(Xq,...,X,) be a minimally (t1,12)-sparse rational function and let
Vi, Uy € © be linearly independent over 7ZZ. Then f( X, ..., X") is minimally (t1,13)-

sparse.

Proof. Let p(X)/G(X) be a minimally (;,7,)-sparse representation of f(X™1, ..., X")
with #; < t;, #; < t5. By Lemma 3 a), we may assume that p,¢ € € [X™,..., X™].
Since the map sending X" to X, induces an isomorphism of € (X*',..., X"*) onto
€ (X,...,X,), we get a (I1,1)-sparse representation of f(Xi,...,X,). Therefore, i; =

tl, {2 - tg.



Lemmall. Let f be a minimally (11,t2)-sparse rational function with integer coefficients.
The set V of vectorsv € ©" such that fy is not minimally (11,t2)-sparse lies in the union of

al most (1y + t5)°+2)") hyperplanes determined by linear forms with inleger coefficients.

Proof. We will first show that V is defined by a set of polynomial equalities and in-
equalities with coefficients in @ (i.e. V is a @ -constructible set). Let Vi,..., V], be vari-
ables. We shall write down conditions on V;,...,V, so that f(X"1,.... XV)is (t; — 1,1y)-
sparse, let these conditions determine a set 20(!) (similar conditions can be derived for
F(XVi, ..., X"Y) to be (41,1, — 1)-sparse, let these conditions determine a set 20(3)). Thus
2 = 2w Uw®?. Lemma 9 implies that f(X"1,..., XV")is (¢; — 1,13)-sparse if and only if
there exist ay,..., o4 -1, B1,... B, € € such that a; # «;, B; # B; for ¢ # 5 and

So (01 yanr, By By F(XY XY, e (XY X))

W (X1, .., Xon= XA (XY, XY, X f(XY, .. X))
Xoa . Xeu-1. XA .. X0
=0 (4)

When we clear the denominator of (4) we will get a linear function in expressions of the
form X*V with coefficients C,, where a = (ay,--+,a,) € Z", that are polynomials in
Q1yeey 1y Bryeooy By, Vi, ..., Vi, with integer coefficients. Observe that there are at
most (11 + 12)°1+%2) distinct powers X¥%" that can appear

For any pair ¥a,V;, ¥Xb;V; of distinct exponents, let L, = X(a; —b;)V;. Lemma 9 states
that for any choice (v1,...,v,) € € " such that L,;(v1,...,v,) # 0, fis (t1—1, t2)-sparse
if and only if there exist aq,...,a4-1, B1,...,0:, € € such that all the C, considered
above vanish. Let ® be the formula, from the language of algebraically closed fields, with
bound variables a4, ..., a1, B1,..., 3, and free variables Vi,..., V, that expresses this
latter statement. This formula contains at most ({1 +15)*1#2) polynomials, each of degree
at most (¢; + ¢2)*

Applying the results of [6] (see also [4]), we can eliminate quantifiers and get a quanti-
fier free formula W in variables Vi,...,V, equivalent to ®. Furthermore, the polynomials

occurring in ¥ have degrees at most (41 +t2)0((t1+t2)”) and there are at most (¢, —I—tg)o((tl"'t?)”)

13



of these. This formula determines a constructible set 205 C © ™. As it was shown above the
symmetric difference (Qﬁ(l) \ o) U (2 \ Qﬁ(l)) lies in a union of all (¢, + tQ)O(t1+t2) hyper-
planes of the kind L, for considered above integer vectors a, b. jFrom Lemma 10, we know

that for each point (v1,...,v,) € 20 there exists a relation Z ~;v; = 0 for suitable integers
i=1

Y15 .. .,Ys Dot all zero. jFrom Lemma 12 of the appendix we know that each irreducible

component of Wy (and also of 20) lies in a hyperplane. Therefore 20 lies in the union of at

most (1; + 12)°(h+2)%) hyperplanes determined by linear forms with integer coefficients.

We now proceed to describe an algorithm to find p-powers of the exponents of a mini-
mally (%1, ¢2)-sparse normalized rational function f.

For any ¢ > 0 using the construction from ([11] or [12], Lemma), one can explicitly
produce, for suitable ¢; > 0, ¢g > 0, N = ({1 + t5)"1+2)" vectors v = (l/{i), o),
1 <7 < N where the integers 1 < y](-i) < (t1 + t2)c2(t1+t2)” such that for any family of
(11 + ty)+%2)" hyperplanes (containing the origin) at least n of these vectors lie in none
of these hyperplanes and any n of these vectors are linearly independent. We take ¢ > 0
such that the number of hyperplanes in lemma 11 is at most (4 4 #5)°1*+2)" (so for the
algorithm we have only to estimate explicitely constant ¢ once and forever) and apply to
this ¢ the construction mentioned above. For each of the vectors v produced in this
way, use the algorithm from Section 3 to find tgi) < 4, t(;) < iy such that the rational
function f ) € Q (X) has a minimal (tgi), t(;))—sparse representation. By Lemma 11 and
the construction of the v, there exist at least n vectors among the v (without loss of
generality we let them be v ... v(") such that f,) is minimally (¢;,¢;)-sparse for all
1 <@ < n. Using the algorithm from section 3 we find p-powers of the exponents of all
normalized (%1, {;)-sparse representations of fy,: for each 1 < ¢ < n (recall that there are at
most (¢ + t2)°17%2) of these). For each f,,), 1 < i < n, pick out one set of such p-powers

(i (9 (1) (2) . . .
of the exponents pa(l), Loptp " ....,p"2 . For each i, 1 <i < n, we also pick out two
permutations 7) € S, and o) € S,,, where S, is the permutation group on m elements.

For every 71, 1 < 77 <, the algorithm solves the p-power form of a linear system
n 2 ( Oz(i/).
pzk:1 Ul(c)YkUl) =p (1) (5)
1<1<n
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and for every jp, 1 < 75 < {3 a system

1) )
Ek 1Y ZUQ = pﬁff“)(m) (6)

Using [22] the algorithm produces the inverse matrix (,ugf)/,u) where ,ugf), w € Z to
(%)

n x n matrix ("), which is invertible because of the construction of the vectors v{9.

Z /:L(‘) ()

1) (i) . . . .
Then p“YU = p'sisn Y1 and the algorithm computes the right side of this equal-

ity. The algorithm also computes p“ZEcm. Similar computations can be made for dif-
ferent primes p. The vectors Y1) = (Yl(l), Yy y®) — (Yl(tl), o, Y®)) and
AREES (Zl(l), e Z00y Z") = (Zl(t2), -, Z{2)) are considered as candidates for be-
ing exponents vectors in the numerator and denominator of a (41, ¢2)-sparse representation

. (1) (52) .
of f. The algorithm represents them by p“YkJ1 , p“ZkJ2 . The algorithm tests, whether

Yy ) 4 Yy, zU) 4 ZU for j £,

The then algorithm tests whether these candidates fit. For this aim consider a linear

system
() A )1 70
E ¢2P1 MY f= Z Yipy 1 lf(Pl ,---,pil), 1<1< Q(tl + t2)2 (7)
lglgtl ISZStQ

in the unknown coefficients ¢;, ¥; of the (t1,1;)-sparse representation of f currently being
tested. (In (7) we skip the equations for which f(pfl, .o, p") = o0). Lemma 1 implies
that (7) is solvable if and only if exponent vectors YU, z0) fit (we apply here lemma 1
probably not to rational functions, since the exponents Yk(i), Z,gi) could be rational, but it
is still valid by making a replacement of the variables X; — YZ’M, 1 <i<n) If(7)is
solvable then Yk(i), Z,gi) are integers because of lemma 3a), moreover it has a unique solution
by lemma 3b). This completes the description of the algorithm for f being minimally
(t1,t2)-sparse. To treat the case when we are only told that f is (t1,1s)-sparse, we proceed
as in Section 3.

Now we proceed to the complexity bounds. Let us assume we are given the black box for

a (t1,12)-sparse rational function. The algorithm produces (¢, + tg)o((tﬁt?)”) integer vectors

v) and, for each of these, applies the algorithm from Section 3 to the univariate rational
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function f,;. This part of the algorithm requires ((tl + 1) (1Ft2)n Jog d)o(l) arithmetic
operations with depth ((¢;+12)nlog d)°™). The algorithm then selects, for each i, 1 <7 < n,
some (1, 15)-sparse representation of fy,) and also two permutations 7, ¢, This is again
within the same bounds. The algorithm then solves (#; +15)°((F1%%2)%) p_power forms of linear
systems of type (5), (6). To invert n x n matrix (1/,(;))
with depth log °n. Since ,ugj), p< (1 + tQ)O((t1+t2)”2) computation of p*, p“Yk(m, p“ZE«m

, n°M) arithmetic operations are used
can be done within the same complexity bounds. The same applies to solving system (7).
If we are only told that f is (t1,%2)-sparse, the additional search required by the algorithm
does not change the complexity.

We are also able to give some bounds on the degree d of a sparse representation. Assume
that A is a bound for all the exponents ay), ﬁj(z) found for the univariate rational functions
fuw (such a bound can be found using the techniques of Section 3). We can then bound d
by looking at p-power forms of the linear systems (5) and (6); in fact d < A(t4 +t2)0((t1+t2)”2).

Thus, we can formulate the main result of the paper:

Theorem. 1) One can construct some (t1,t2)-sparse repre-
(%) (i (%) i
sentation Y a; X} X{fl)/ > binl ---Xffgl) of (t1,12)-sparse rational function f
1<i<t 1<i<ts

0
in ((tl + tg)(tﬁt?)” log d) ™ arithmetic operations with the depth ((t1 + t2)nlog d)O(l).
2) the exponents jl(i), kl(i) do not exceed d < M(11 + tg)o(t1+t2)”2) where M is the bound

on bilsizes of all the outputs of applications of a black box during the computation.

Appendix. For the convenience of the reader, we give a short proof of the result about
complex varieties that was needed in the proof of Lemma 11. This result is true for varieties
over any algebraically closed field of characteristic 0, but the proof is more complex and

depends on the Hilbert Irreducibility Theorem instead of elementary topological notions.

Lemma 12. Let 90 be an irreducible constructible set in €™ (i.e. a constructible set
whose Zariski closure is irreducible). Assume that for each v = (v1,...,v,) € 20 there exist
VyeooyYn € Z, nol all zero, such that 37 vivi = 0. Then there exist 31,...,%, € Z, not
all zero, such that 3.7, Yivi =0 for all (v1,...,v,) € 20.
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Proof. If 20 has dimension 0, then it is a point and we are done. Therefore assume
dim 20 > 0. By definition, 20 is open in its Zariski closure 20. Therefore there exists
a point v € 20 that is non-singular in 20. We select a sufficiently small € such that
W, = WN{x | |[|[x —v| < e} will be closed in the usual topology and contain an open
subset of 20. For each (v1,...,7,) € Z", not all ~; zero, let H,, .. = {(v1,...,v,) €
W| > ", vivi = 0}. Since 20, is closed, the Baire Category Theorem ([24], p. 139) implies
%, contains an open subset of 20, (and so, of 20). Therefore

An QE) = @ (Cf

that for some (31, ...,%,), Hz,
dim(Hs,,.. 5, N2) = dim 2. Since 2 is irreducible, we must have (H;
[26], p. 54) so W C Hs, . 5,

.....

.....
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