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A subexponential-time algorithm is designed which 
finds the number of connected components of a semi- 
algebraic set given by a quantifier-free formula of the 
first-order theory of real closed fields (for a rather wide 
class of real close fields, cf. [GV 881, [Gr SS]). Moreover, 
the algorithm allows for any two points from the semi- 
algebraic set to test, whether they belong to the same 
connected component. 

Decidability of the mentioned problems follows from 
the quantifier elimination method in the first-order the- 
ory of real closed fields, described for the first time by 
A. Tarski ([Ta 511). H owever, complexity bound of this 
method is nonelemen tary, in particular, one cannot es- 
timate it by any finite iteration of the exponential func- 
tion. G. Collins ([Co 751) has proposed a construction 
of cylindrical algebraic decomposition, which allows to 
solve these problems in exponential time. 

For an arbitrary ordered field F we denote by $’ > F 
its uniquely defined real closure. In the sequel we con- 
sider input polynomials over the ordered ring Z, = 
Z[Sl, , . . , S,] c Q, = Q(S1,. . . , S,,,), where 61,. . . , 6, 
are algebraically independent elements over Q and the 
ordering in the field Q, is defined as follows. The 
element 61 is infinitesimal with respect to Q (i. e. 
0 < 61 < o for any rational number 0 < a E Q) and for 
each 1 5 i < m the element &+i > 0 is infinitesimal 
with respect to the field Qi (cf. [GV 881, [Gr 881). 

Thus, let an input quantifier-free formula Z for the 
first-order theory of real closed fields be given, contain- 
ing atomic subformulae of the form fa 2 0, 1 5 i 5 k 
where fi E Z,[Xl,. . .,X,1. 
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Any rational function g E Q,(Yi , . . . , Y,) can be 
represented as g = gi/gz where the polynomials 

ill,92 E an[fi, * . . , Ys] are reciprocately prime. Denote 
by l(g) the maximum of bit-lengths of the (integer) 
coefficients of the polynomials gl, g2 (in the variables 

Yl,.‘.,Y,,b,.. . ,6,). In the sequel we assume that the 
following bounds are valid: 

d%z*,...,,n (fi) c 4 dega ,,..., a,(h) < da, l(fi> 5 M, 

lli<k (1) 

where d, do, A4 are some integers. Then the bit- 
length of the formula Z can be estimated by the value 
L = kMd”dr (cf. [CG 831, [Gr 861). 

Note that in the case m = 0, i. e. for the polynomials 
with integer coefficients, the algorithms from [Co 751 
allow to produce the connected components (in par- 
ticular to solve the problems considered in the present 

paper) within polynomial in rM(/~d)~~“” time. 

We use the notation hl _< P(ha, . , . , ht) for the func- 
tions hl > 0,. . . , ht > 0 if for the suitable integers c, y 
the inequality hl < c(hz . . . . . hi)7 is fulfilled. 

Recall that a semialgebraic set (in Fn where F is a 
real closed field) is a set {II} c F” of all points satisfy- 
ing a certain quantifier-free formula II of the first-order 
theory of the field F with the atomic subformulae of the 
form (g > 0) where the polynomials g E F[XI, . , X,]. 

A semialgebraic set (2) c (63,)n is (uniquely) de- 
composable in a union of a finite number of connected 
components {E} = Ul..i,,{Si}, each of them in its 
turn being a semialgebra’ic-s.et determined by appropri- 
ate quantifier-free formula Zi of the first-order theory 
of the field &, ( see e. g. [Co 751 for the field F = fR, 
for an arbitrary real closed field one can involve Tarski 
([Ta 511). Note that t 5 (kd)O(“) (see e. g. [GV 881, 
[Gr 881). 

We use the following way of representing the points 
u = (VI,..., u,) E (&,)n (cf. [GV 881). Firstly, for 
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the field Qm(ui,. . , u,) a primitive element q is pro- 
duced such that Qrn(ul,. . . , un) = Q,[n], herewith 
a minimal polynomial ~(2) E Qm[Z] for 77 is indi- 
cated, furthermore n = Cl<i<n~d~; for some inte- 
gers 0 5 al,. , oy, 5 degz@r Also the expressions 

ui = Co<i.,degZ(vp) ,@)gj are yielded, where ,(j) E Q,. 
Secondly, for specifying the root n of the polynomial 
cp a sequence of the signs of the derivatives of all or- 

ders (P’(V), ,P(‘)(v), . . . , YJ (des(‘+‘))(v) of the polynomial 
‘p in the point 7 is given. Thorn’s Lemma (see e. g. 
[FGM 881) entails that the latter condition uniquely 
determines the root n of ‘p. 

We say that a point u satisfies (0, DO, M)-bound if 
the following inequalities hold: 

Xcp), O!j’) 5 M t 
Then the bit-length of the representation of the 

point u does not exceed P(M, D, Do”, n) (cf. [GV 881, 
[Gr 881). The main purpose of the paper is to prove the 
following theorem (see also [VG 911). 

Theorem. 

1. There is an algorithm, which for any formulaof the 
form E, satisfying the bounds (I), finds the number 
of connected components (in particular, tests the 
connectedness) of a semialgebraic set {Z} C (&.,)n 

in time P(M, (de(lcd)“‘“)“+m) _< L”(‘og’“L) (i. e. 
the time-bound is subexponential in L). 

2 Moreover, for any two points u(l), UC’) E 
{Z}, satisfying (d, do, M)-bound, the algorithm 
can test, whether u(l), u(2) belong to the 
same connected component of (2) in time 

P(M, fi, (dodo((lcd)“d)“‘“)n+“) (i. e. subexpo- 
nentially in L and in bit-lengths of the points 
u(l), q. 

This theorem was obtained jointly with N. N. Vorob- 
jov (jr.). As the authors have learned recently, a similar 
result was obtained by J. Heintz, M.-F. Roy, P. Solerno 
and besides, in [Ca SS] one can find a fruitful idea for 
treating the case when {Z} det,ermines a nonsingular 
bounded hypersurface. 
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