On the power of real Turing machines
over binary inputs

Felipe Cucker*
Universitat Pompeu Fabra
Balmes 132, Barcelona 08008
SPAIN

e-mail: cucker@upf.es

Dima Grigoriev'

Depts. of Comp. Science and Mathematics
Penn State University
University Park, PA 16802
USA

e-mail: dima@cse.psu.edu

In recent years the study of the complexity of computational problems
involving real numbers has been an increasing research area. A founda-
tional paper has been [4] where a computational model —the real Turing
machine— for dealing with the above problems was developed.

One research direction that has been studied intensively during the last
two years is the computational power of real Turing machines over binary
inputs. The general problem can be roughly stated in the following way. Let
us consider a class C of real Turing machines that work under some resource
bound (for instance polynomial time, branching only on equality, etc.). If
we restrict these machines to work on binary inputs (i.e. finite words over
{0,1}) they define a class of binary languages D. The question is, what can
we say about D depending on C?

More formally, let us denote by IR* the direct sum of countably many
copies of IR and let P(IR°°) be the set of its subsets. Also, let us denote by %
the subset {0, 1} of IR and —as usual— by X* the subset of IR™ consisting

*Partially supported by DGICyT PB 920498, the ESPRIT BRA Program of the EC
under contracts no. 7141 and 8556, projects ALCOM II and NeuroCOLT.
TPartially supported by Volkswagen—Stiftung.

of those vectors whose components are in X. Given any complexity class
C C P(IR*), we define its Boolean part to be the class of binary languages

BP(C)={XNY*: X €C}

Our problem now can be stated as: given a complexity class of real sets C
characterize BP(C).

A possible origin of the problem is the recent interest in the computa-
tional power of neural networks. The first results characterized the power of
nets with rational weights working within polynomial time by showing that
they compute exactly the sets in P (cf. [26]). The same problem was then
considered for neural networks with real weights and it was shown that the
power of these nets working within polynomial time is exactly P/poly (cf.
[27],[28] and [21]).

This latter problem considers in a natural way a setting in which an
algebraic model having real constants operates over binary inputs. A next
step was then taken by P. Koiran who passed from a structured model —
the neural net— to a general one —the real Turing machine. However,
he did not deal with the real Turing machine as it was introduced in [4]
but with a restricted version of it that can do only a moderate use of mul-
tiplication, namely all rational functions intermediately computed (in the
input variables as well as in the machine’s constants) must have degree and
coeflicient size bounded by the running time. For this weak model he con-
sidered the class Pw of sets accepted in polynomial time and he proved that
BP(Pw) = P/poly (see [19]).

Subsequently, several papers exhibited new results on Boolean parts. In
[12] it was shown that BP(PARw) = PSPACE/ poly where PARyy is the class
of subsets of IR® decided in weak parallel polynomial time. Also, for additive
machines (i.e. real Turing machines that do not perform multiplications at
all), it was shown in [18] that BP(P,aa) = P/poly and that BP(NPuaq) =
NP/poly. Here P,qq and NP,qq denote the obvious classes but we recall that
the nondeterministic guesses in this model are real numbers. Moreover, if
the machines are order-free, i.e. they are required to branch only on equality
tests, we now have that BP(P5,) = P and that BP(NP,,) = NP ([18]).
These results were subsequently generalized in [10] to all the levels of the
polynomial hierarchy constructed upon NP,qq (or NP3,).

None of the mentioned results was done for the (unrestricted) real Turing
machine. In fact, for this case, it was even asked whether it existed a subset
of ¥* not belonging to the BP(PR) (cf. [13]). First steps in this direction

were done in [20] where it is shown that if we consider order-free machines
then we have the inclusion BP(P) C BPP (the class of sets decided by
randomized machines in polynomial time with bounded probability error,
see [1] ch. 6) as well as a positive answer to the question above. In fact if
PH is the polynomial hierarchy constructed upon NPR, the existence of
binary languages not belonging to BP(PHR) (and a fortiori nor to BP(PR))
was also proved in [20].

The aim of this paper is to prove that BP(PARR) = PSPACE/poly
where PARR is the class of sets computed in parallel polynomial time by
(ordinary) real Turing machines. As a consequence we obtain the existence
of binary sets that do not belong to the Boolean part of PARR (an extension
of the result in [20] since PHr C PARR) and a separation of complexity
classes in the real setting.

1 Some geometrical background

In the rest of the paper IN, Z,Q, R and C denote the sets of natural, integer,
rational, real and complex numbers respectively. By IR, we denote the
real closure of @, i.e. the field of all real algebraic numbers. Also, for
any polynomial f with integer coefficients, we shall denote by |coeff(f)| the
maximal absolute value of its coefficients.

The aim of this section is to show how to find real algebraic points in

the connected components of non-empty open sets. We closelly follow [15].
Thus, let g1,...,9~8 € Z[X1, ..., X}] and let

V={re R* tg1(x) > 0& ... &gn(z) > 0}

be an open non-empty semialgebraic set. For the rest of this section we
consider d a bound on the degree of each g; and L be a bound for all

|coeff(g;)].

Lemma 1 ([15] Lemma 10) Let g = [[~, g;. Let also dy be the degree of
g and L = |coeff(g)|. Then there exists a positive integer 1 such that any
connected component of V' has a non-empty intersection with the ball B(R)
where

R=r14"
O

Let us recall now (see [5] section 9.5) that a point a € R” is a critical
point for a function f:IR* — IR when it satisfies

aof . af
ox, = oy

(a)=0

In this case the value b = f(a) is said to be a critical value of f. In the case
when f is a polynomial function Sard’s lemma ([5] théoreme 9.5.2 or [22])
implies that there are only a finite number of critical values of f.

This last fact was used in [15] (and in several subsequent papers) to re-
duce the dimension of non-empty semialgebraic sets to zero (avoiding thus
cascading of projections) in the algorithm for deciding emptiness of semial-
gebraic sets.

Let us now consider the polynomials

k

0= i :

go=R*=> X}
=1

and
N
G=go]]y
=1

O(k)

We have that deg G = dy < Nd+ 2 and Ly = |coeff(G)| < L%
due to lemma 1.

(Ldk)O(N)
The following result gives a bound on the small critical values of G.

Lemma 2 There exists a positive integer vo such that for every non-zero
critical value a of G we have |a| > C~1 where

c=1e"
)
Proof. Let us consider the system of equations in the variables Xq,..., Xz, Z
oG oG
X4 Xy,

as well as its set of solutions § C R*t'. On any connected component
of S the coordinate Z, being the critical value of &, is constant since &G
is continuous and due to Sard’s lemma. Now, since the degrees and the
coeflicients of the polynomials appearing in this system are bounded by ds
and O(Lzdy) respectively, if we apply the quantifier elimination algorithm

given in [16] or [23] along Xy,..., X} onto Z we get a finite set of points in
IR (just the critical values) such that each non zero one has absolute value

greater than
()™

a

Remark 1 In the preceding proof the use of quantifier elimination is not
strictly necessary. One can use instead the bounds for the representative
points from the connected components of S given in the main theorem of
[15].

Because of the preceding lemma we have that the algebraic set
Wo={zeRF:G(z)=C"1}

is a non-singular, closed, hypersurface with the property that each con-
nected component of V N B(R) contains at least one (bounded) connected
component of Wy (cf. [22]). Note that Wy do not intersect the boundary of

B(R).
Now, lemma 5 of [15] asserts the existence of integers 0 < vg,...,v, <
(2dy)* such that the system
aG \? Vg aG \? Vg,
G-—Cc = — A=...= — A=0
<8X2) (2dy)*k <8Xk) (2dy)*k

where A = Zle(aa—)%)z, has a finite number of solutions in IR*. Moreover,
each of these solutions is an absolutely irreducible 0O—dimensional component
of the variety in C€F given by this system of equations. Due to Bezout’s
inequality the number of real solutions is bounded by (2d3)*. Besides, (cf.
lemma 4 in [15]), each bounded connected component of Wy contains a point
satisfying the system.

We can summarize the preceding results in the following theorem, that
will be our main technical tool in the next section.

Theorem 1 Let gy,...,98 € 7[X4,..., Xi] satisfy for every i < N the
bounds deg(g;) < d and |coeff(g;)| < L. Then, with the notations introduced
above, there are integers 0 < vy, ..., vp < (2do)* such that the set W C IRF
defined by

9G 2 () oG 2 Vg
G-—Cc = — A=...= — A=0
<3X2) (2dy)*k <3Xk) (2dy)*k

is finite. Moreover, the number of its points does not exceed (2dy)* and every
connected component of

V:{xEIRk:gl(x)>0&...&gN(x)>0}

contains at least one point of W.
O

2 Computing with binary inputs

In this section we shall deal with real Turing machines (RTM for short) as
they were introduced in [4]. The reader is referred to this paper for the
definition and main properties of the above quoted computational model.
We just recall that we denote IR* the direct sum .y IR and by Pg the
class of subsets of R* that can be decided by a RTM in polynomial time.

The goal of this section is to prove that the Boolean part of P is
included in PSPACE/poly, i.e. that any subset of ¥ that can be decided
in polynomial time by a real Turing machine can be decided by a (classical)
Turing machine in polynomial space using a polynomial advice. In the
next section we will prove a more general result namely, a similar inclusion
for parallel real Turing machines. Because of clarity of exposition we will
however first show the inclusion for the Boolean part of PR.

We begin by recalling the definition of non-uniform classes as given in
[17], that we extend to complexity classes over the reals.

Definition 1 Let C C ¥* (resp. C CIR*) be a class of sets and F be any
class of functions from IN to Sigma* (resp. from IN to R*). The class
C/F is defined to be the class of all subsets B C ¥* (resp. B C R*>) for
which there exists a set A € C and a function f € F such that B = {x :

(z, f(l=])) € A}.

We will be mainly interested in the case F = poly, the class of functions
f such that for some polynomial p we have |f(n)| < p(n) for each n € IN.
For the boolean case, one can find the main properties and characterizations
of classes like P /poly or PSPACE/ poly (as well as of some other non uniform
complexity classes) in chapter 5 of [1].

Theorem 2 The inclusion BP(Pr) C PSPACE /poly holds.

Proof. let M be a RTM working in polynomial time, say n?, and let
aq,...,qp be its real constants.

For any n € IN the machine M has an associated algebraic computation
tree Ty, having depth n? and size bounded by 27" To each branching node
i of this tree corresponds a rational function g; € Q(aq, ..., 0x)(X1,..., X,)
such that the branching is done according to whether the actual input z €
IR™ satisfies g;(2) > 0 or g;(z) < 0.

The idea of the proof is to find 3;,...,8, € Ra, such that, for every
x € X" the path followed by z in the tree TM,n obtained by replacing the
constants a; by the 3; is the same as the one followed in T ,,. This ensures
that the tree TM,n accepts the same subset of ¥" than T ,,. On the other
hand, we will require some codification of the 3’s that allows us to perform
the operations in TM,n in PSPACE together with a short way of writing this
codification —that make possible to give it as a polynomial advice.

Before obtaining a description of the 3’s let us do a last modification on
T, that was first used in [19]. Let I be the set of branching nodes of Ty .
For every ¢ € I and every & € X" we consider the rational functions

Yix S Q(Zlv ey Zk)

obtained by replacing the real constants aq,...,a; by indeterminates
Z1,..., 2y and the indeterminates Xy,...,X, by the binary values
T1,...,%,. Weobviously have for every 2 € X" that g;(2) = ¢; (1, ...,).
Let 7; , be these values. The accepted subset of 3" can be characterized by
the set of signs
Oip = sign(7 ;)

where sign(z) = 1 if z > 0 and 0 otherwise. Now, for some 7,2 the element
Ti» can be zero. However, since the set of values

{rizriel,ze X"}

is finite, there exist an € > 0 such that all the negative values in the above
set are strictly smaller than —e and for this e the following equivalences hold

Gizlon,...,or) >0 iff g (ag,...,a5)+e>0
Gizlon,...,op) <0 iff g (ag,...,05)+e<0

Thus, replacing the tests ¢;(X) > 0 by ¢;(X)+ e > 0 we have that the new
computation tree (having real constants aq, ..., a,¢) satisfies the following
property: for every o € ™ all the test values are different from zero.
Assuming that the rational functions g;,(Z1,...,Z;) are polynomials
(something that we can do by just replacing it by the product of its numer-
ator and denominator), we can resume the above remarks in the following
way: the elements aq,...,ag, e satisfy a system of polynomial inequations

of the form
Giz>0:i€l,xzeX” (1)

(we changed the sign of some g; , in order to have all the inequalities in the
same form) and any other real numbers f1,..., O, & satisfying this system
will produce, when used as constants in the tree T}s,, the same outcome
for every x € X",

We can now describe how to obtain such numbers.

First we construct the gg and the G of the preceding section for the set
of polynomials {g;, € Z[Z,...,Z;,Y] : ¢ € I, € ¥"}. Then, applying
theorem 1 we deduce the existence of integer vectors ¥ = (vg, ..., vk, Vgs1)
such that the set W described there is finite and non empty. Let v* be the
first such vector for the lexicographical ordering in IN® and let W* be its
corresponding set of solutions. We then have that any connected compo-
nent of the semialgebraic set V' given by the system (1) contains a point of
W=. Thus, we take f1,..., %, & be any point of W™ belonging to V', and
we distinguish it among the other points of W* by its position p for the
lexicographical ordering in IR*¥!. Note that, from the equations defining
W* and this p we can code (cf. [16] or [23]) each coordinate of this point
(see complexity analysis below).

The following non-uniform parallel algorithm decides then the same lan-
guage as M when restricted to binary inputs.

input(ay,...,a,)
get the advice p corresponding to n
for all 2 € ¥" in parallel do (s1)
for all path v in parallel do
for all ¢ branch node in v do
compute the polynomial g; ,
od
od
od
compute go and G (s2)

compute C (s3)

compute v* (s4)
code the coordinates of the p't point § of (85)
the set W= given by ¥,C and G

simulate the computation of M over aq,...,a, (s6)

replacing the ay,...ax,e by the point § coded in (s5)

Let us estimate the complexity of the algorithm above. As we have
seen, the number of nodes of the tree Ty, is bounded by 27 Therefore,
the number of polynomials ¢;, is bounded by the same quantity. Each
of these polynomials is computed by a straight-line program of length n?
and thus, we get again a bound of 2** for their degrees and of 922" for the
absolute value of their coefficients. The degree dy of GG is then bounded by
2n? gn? = 20(1)n? and the absolute value of its coefficients Ly by

(22nq)2nq _ 222nq
(and thus, by 27" in bit length). We can then —according to theorem 1—

bound by
(de)k+1 = 20(1)n*

the integers vq, ..., vk, vr41 and by
(de)k+1 = 20(W)n*

the number of points in W*. A first consequence of these two last upper
bounds is the fact that the advice above has polynomial size.

Concerning the running time, it is clear that step (s1) can be done in
polynomial time using an exponential number of processors because, given
an ¢ € X" and a path v the —at most— n? polynomials that appear in that
path have exponential degree in a constant number (k + 1 in fact) of vari-
ables and therefore, an exponential number of monomials. Any arithmetical
operation between two such polynomials can be done within these resources
and we have a polynomial number of such operations.

The product G is computed with a binary tree of products having poly-
nomial depth. Since each product can be done in parallel polynomial time
the same applies for the whole tree and then for step (s2). A similar remark
holds for the constant C' and thus for step (s3).

The determination of v* can be done in parallel polynomial time since
we check for all possible vectors V whether the dimension of the resulting

W is zero, and then we select the first ¥ that gives a positive answer. Note
that the determination of the dimension of each W can be done in PSPACE
just combining the main idea of [14] section 6 with the parallel algorithms
given in [16] or [23].

For step (s5) one can apply the algorithms given in [16] or [24]. However,
we remark here that a cylindrical algebraic decomposition together with the
coding a la Thom (see [7] for the algorithms, and [25], [11] for complexity
analysis) suffices because the double exponential behaviour of this algorithm
is only in the number of variables —which is constant in our case— being NC
in the rest of the parameters. This results on a procedure for (s5) working
in parallel polynomial time.

Finally, note that each arithmetical operation of M is translated in step
(s6) into an operation of elements in 7Z[Z1, ..., Zx] and it is done then also
in parallel polynomial time. On the other hand, at each test of the form
9(Z1,...,7Zk) > 0 we use the same algorithm of step (s5) for determining
the sign of g(Z1,...,Z;)+ Y on the point coded in (s5).

The above considerations show that the described algorithm runs in par-
allel polynomial time. Since this is equivalent to polynomial space ([6], [2]
ch.4) we have shown that the set decided by the algorithm above belongs to
PSPACE/poly. O

3 Binary inputs for parallel real Turing machines

Our next goal is to extend our previous result to the class PARR of sets
decided in parallel polynomial time. We recall from [9] the definition of
a computational model for parallelism in the real Turing machine setting
together with the complexity class it defines when restricted to polynomial
time.

Definition 2 An algebraic circuit C over R is a directed acyclic graph where
each node has indegree 0,1 or 2. Nodes with indegree 0 are either labeled as
inputs or with elements of R (we shall call the last ones constant nodes).
Nodes with indegree 2 are labeled with “+7,“=7,“”, or “/”. Finally, nodes
with indegree 1 are of a unique kind and are called sign nodes. There is one
node with outdegree 0 called output node. In the sequel the nodes of a circuit
will be called gates.

To each gate we inductively associate a function of the input variables in
the usual way. In particular, we shall refer to the function associated to the

10

output gate as the function computed by the circuit. Note that sign gates
return 1 if their input is greater or equal to 0, and 0 otherwise.

Definition 3 For an algebraic circuit C, we define its size to be the number
of gates in C and its depth to be the length of the longest path from some
input or constant gate to the output gate.

Definition 4 Given an algebraic circuit C, the canonical encoding of C is
a sequence of 4-tuples of the form (g, op, g1, g,) € R* where g represents the
gate label, op is the operation performed by the gate, g; is the gate which
provides the left input to g and g, its right input. By convention g; and g,
are 0 if gate g is an input gate, and g, is 0 if gate g is a sign gate (whose
input is then given by g;) or a constant one (the associated constant being
then stored in g;). Also, we shall suppose that the first n gates are the input
ones and the last one the output gate.

Definition 5 Let {C,} e be a family of algebraic circuits. We shall say
that the family is P—uniform if there exists a real Turing machine M that
generates the encoding of the ith gate of C,, with input (i,n) in time poly-

nomial in n.

Definition 6 We shall say that a set S can be decided in parallel poly-
nomial time (S € PARR for short) when there is a P-uniform family of
circuits {C,} having depth polynomial in n and such that C,, computes the
characteristic function of S restricted to inputs of size n.

Remark 2 It is possible to define ([9]) parallel polynomial time in a differ-
ent way, namely, by putting an exponential number of RT'M to work together
in polynomial time. One can prove however, that this model defines the same
class PARR we just introduced.

Before going into the next theorem we will recall a result concerning the
number of satisfiable sign conditions of a polynomial system.

Lemma 3 (Lemma 1 of [14]) Let fi,...,fs € R[Xy,..., Xi] be a finite
family of polynomials and D = ZS: degree(f;). Then the number of satisfiable

=1
systems of the form

fl(Xla---vXk)Ul &... & fS(Xl,...,Xk)O'S
where o; belongs to {>0,> 0} fori=1,...,s is bounded by DO,
O

11

Theorem 3 The equality BP(PARR) = PSPACE/poly holds.

Proof. Let S be a set in PARR and {C,,} be the family of circuits deciding
S. Let also M be the RTM that generates these circuits and ay,...,ax be
its real constants.

Given any n € IN we consider for any sign gate ¢ of C, and any binary
string € X" the rational function g; ;o € Q(oq,...,ar)(Xy,...,X,,) that
the gate receives as input. Note that the coefficients of g; , , depend on z
and « since they depend on the output of previous sign gates. Since the
number of possible answers to previous sign gates is doubly exponential we
obtain a doubly exponential number of rational functions and therefore we
can not apply directly the construction of theorem 2. However, we can use
lemma 3 to reduce this number.

Let us fix « € ¥ and plug « in the input gates of C,,. This will make us
to consider rational functions in Q(Z1,..., 7). Let also n? be a bound on
the depth of C,,. At depth 1, there are at most 2"° sign gates whose input
functions have degree bounded by 1. By lemma 3, the number of possible
outputs of these sign gates is bounded by

(2710 () — 20k

For each set of outputs w at depth 1, we consider the sign gates at depth 2.
There are at most 2"'~1 of them and their associated functions have degree
bounded by 2. Thus, again by lemma 3, we bound by

(2710 () — 20k

the number of possible outputs for w. Multiplying both expresions we deduce
that the total number of possible outputs at depths 1 and 2 is bounded by

920 (k)ne

Inductively, we prove that the number of possible outputs over all the sign

gates is bounded by
QO(k)nqnq _ QO(k)n2q

a number which is singly exponential in n.

Let us then consider for any z € X" the set of all rational functions
Gizw(Z1,. .., Z;) obtained by varying ¢ over all sign gates of C,, and w over
all possible outputs of the set of sign gates. If we now consider this set for

12

any x € X" we will have that the set decided by the circuit C,, is determined
by the signs that the functions in this set take when evaluated at aq, ..., ag.

As in theorem 2, we can assume the functions g; .. to be polynomials
and we can also assume that they do not vanish on aq,...,a) by adding a
new real number &.

Since the number of polynomials g; ., is singly exponential in » we can
apply the same method of theorem 2. Note however that the corresponding
step (s1) will now be required to select for any z € ¥" and any depth
[the possible sign conditions for the test gates at depth [. This is done
sequentially in [in order to avoid dealing with a doubly exponential number
of sign conditions. Once these possible sign consitions are known, the rest
of the algorithm works like the one in theorem 2 simulating the circuit C,
instead of the tree. This shows that the binary elements of 5 are a language
in PSPACE/ poly.

On the other hand, the inclusion of PSPACE/poly in BP(PARR) is triv-
ial. O

An immediate corollary of the theorem above is the following separation
left open in [12]. Recall that EXPy is the class of subsets of IR* accepted
by RTM in weak exponential time, i.e. in exponential time but such that for
all intermediately computed rational function ¢ deg(g) and the bit length of
|coeff(g)| are exponentialy bounded (see [19] or [12] for a formal definition
of the weak model).

Corollary 1 The inclusion PARR C EXPw is strict.

Proof. The Boolean part of EXPyy is the class of all subsets of ¥*. Therefore,
it strictly contains PSPACE/poly. O

Remark 3 The corollary above improves the separation PARR # EXPR
shown in [8]. In this latter case, the fact that a real Turing machine working
in exponential time can produce polynomials of doubly exponential degree
(while a circuit of polynomial depth can not) togheter with an irreducibility
argument sufficed to show the separation. The arguments used now are
much more delicate and, somehow surprisingly, pass throught the boolean
part of these classes.

One can still improve a bit theorem 3 by allowing the real machine to
take advice.

13

Theorem 4 The equality BP(PARR/poly) = PSPACE/poly holds.

Proof. The polynomial advice in PARR/poly introduces a polynomial num-
ber of real constants, let’s say n”, for each input size n. One can now simply
check that replacing the constant value % in the proof of theorem 3 by n”
does not afect the exponential character of the bounds there and thus, the
same arguments apply. The only limitation is that in steps (s5) and (s6) one
can not use cylindrical algebraic decomposition (because of the exponential
dependence it has in the number of variables for its parallel running time)
and it is restricted to use the “faster” algorithms given in [16] and [23]. O

Remark 4 Theorems 3 and 4 are rather surprising since they show that
multiplication or non-uniformity (under the form of a polynomial advice
function) do not help in the presence of parallelism to decide binary sets.
Note that results weaker than theorem 3 namely, that the Boolean part of
PAR,da (where no multiplications are allowed) or of PARw (where few of
them are allowed) coincide both with PSPACE/poly were proved in [10] and
[12].

On the other hand a main question that remains open is whether
BP(PRr) = PSPACE/poly. We know that this Boolean part contains P /poly
but its exact power is still to be determined. Note that for the integer RAM’s
it is known that the computational power of this model in polynomial time
is exactly PSPACE for several sets of primitive operations. However, in
all these cases, there is a primitive operation that can not be efficiently
simulated by a real Turing machine. Thus, for instance, it is shown in [3]
that integer RAM’s with operations (4, —, %, +) have the power of PSPACE.
However, the simulation of the integer division by a real Turing machine over
integers of exponential length take exponential time and therefore the argu-
ments of [3] can not be used to show the inclusion PSPACE/poly C BP(PR).

Ackowledgement Thanks are due to Pascal Koiran for pointing to us the
possibility of allowing advice in the real complexity classes that lead from
theorem 3 to theoerem 4.

References

[1] J.L. Balcazar, J. Diaz, and J. Gabarré. Structural Complezity I. EATCS
Monographs on Theoretical Computer Science, 11. Springer-Verlag,
1988.

14

[2]

J.L. Balcazar, J. Diaz, and J. Gabarré. Structural Complexity II.
EATCS Monographs on Theoretical Computer Science, 22. Springer-
Verlag, 1990.

A. Bertoni, G. Mauri, and N. Sabadini. Simulations among classes
of random access machines and equivalence among numbers succintly
represented. Annals of Disc. Math., 25:65-90, 1985.

L. Blum, M. Shub, and S. Smale. On a theory of computation and
complexity over the real numbers: NP-completeness, recursive func-
tions and universal machines. Bulletin of the American Mathematical
Society, 21(1):1-46, July 1989.

J. Bochnak, M. Coste, and M.-F. Roy. Géométrie algébrique réelle.
Springer-Verlag, 1987.

A. Borodin. On relating time and space to size and depth. STAM J. on
Computing, 6:733-744, 1977.

M. Coste and M.-F. Roy. Thom’s lemma, the coding of real algebraic
numbers and the topology of semi-algebraic sets. Journal of Symbolic
Computation, 5:121-129, 1988.

F. Cucker. P # NCR. Journal of Complexity, 8:230-238, 1992.

F. Cucker. On the complexity of quantifier elimination: the structural
approach. The Computer Journal, 36(5):400-408, 1993.

F. Cucker and P. Koiran. Computing over the reals with addition and
order: higher complexity classes. Technical Report 94-8, DIMACS,
1994.

F. Cucker, H. Lanneau, B. Mishra, P. Pedersen, and Roy. M.-F. NC
algorithms for real algebraic numbers. AAFCC, 3:79-98, 1992.

F. Cucker, M. Shub, and S. Smale. Complexity separations in Koiran’s
weak model. Theor. Comp. Sc. To appear.

J.B. Goode. Accessible telephone directories. Journal of Symb. Logic,
59(1):92-105, 1994.

D.Yu. Grigoriev. Complexity of deciding Tarski algebra. .J. Symb.
Comput., 5:65-108, 1988.

15

[15]

[16]

[17]

[18]

[19]

[20]

[21]

D.Yu. Grigoriev and N.N. Vorobjov. Solving systems of polynomial
inequalities in subexponential time. J. Symb. Comput., 5:37-64, 1988.

J. Heintz, M.-F. Roy, and P. Solerno. Sur la complexité du principe
de Tarski-Seidenberg. Bulletin de la Société Mathématique de France,
118:101-126, 1990.

R. Karp and R. Lipton. Turing machines that take advice. L’Ensei-
gnement Mathématique, 28:191-209, 1982.

P. Koiran. Computing over the reals with addition and order. Theor.
Comp. Sc. To appear.

P. Koiran. A weak version of the Blum, Shub & Smale model. In Proc.
341" FOCS Symp., pages 486-495, 1993.

P. Koiran. A weak version of the Blum, Shub & Smale model. Technical
Report 94-10, DIMACS, 1994.

W. Maass. Bounds for the computational power and learning complex-
ity of analog neural nets. In Proc. 25" STOC, pages 335-344, 1993.

J. Milnor. Topology from the differentiable viewpoint. University Press
of Virginia, 1965.

J. Renegar. On the computational complexity and geometry of the first-
order theory of the reals. Part III. Journal of Symbolic Computation,
13(3):329-352, March 1992.

J. Renegar. On the computational complexity and geometry of the
first-order theory of the reals. Part I. Journal of Symbolic Computation,
13(3):255-299, March 1992.

M.-F. Roy and A. Szpirglas. Complexity of computation on real alge-
braic numbers. Journal of Symbolic Computation, 7:39-51, 1990.

H. T. Siegelmann and E. D. Sontag. On the computational power of
neural nets. In Proc. Fifth ACM Workshop on Computational Learning
Theory, July 1992.

H. T. Siegelmann and E. D. Sontag. Analog computation via neural
networks. In Proc. 2™¢ Israeli Symposium on Theory of Computing and
Systems, 1993.

16

[28] H. T. Siegelmann and E. D. Sontag. Neural networks with real weights:
Analog computational complexity. Theoretical Computer Science, 1993.
to appear.

17

