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of those vectors whose components are in �. Given any complexity classC � P(IR1), we de�ne its Boolean part to be the class of binary languagesBP(C) = fX \ �� : X 2 CgOur problem now can be stated as: given a complexity class of real sets Ccharacterize BP(C).A possible origin of the problem is the recent interest in the computa-tional power of neural networks. The �rst results characterized the power ofnets with rational weights working within polynomial time by showing thatthey compute exactly the sets in P (cf. [26]). The same problem was thenconsidered for neural networks with real weights and it was shown that thepower of these nets working within polynomial time is exactly P/poly (cf.[27],[28] and [21]).This latter problem considers in a natural way a setting in which analgebraic model having real constants operates over binary inputs. A nextstep was then taken by P. Koiran who passed from a structured model |the neural net| to a general one |the real Turing machine. However,he did not deal with the real Turing machine as it was introduced in [4]but with a restricted version of it that can do only a moderate use of mul-tiplication, namely all rational functions intermediately computed (in theinput variables as well as in the machine's constants) must have degree andcoe�cient size bounded by the running time. For this weak model he con-sidered the class PW of sets accepted in polynomial time and he proved thatBP(PW) = P/poly (see [19]).Subsequently, several papers exhibited new results on Boolean parts. In[12] it was shown that BP(PARW) = PSPACE/poly where PARW is the classof subsets of IR1 decided in weak parallel polynomial time. Also, for additivemachines (i.e. real Turing machines that do not perform multiplications atall), it was shown in [18] that BP(Padd) = P/poly and that BP(NPadd) =NP/poly. Here Padd and NPadd denote the obvious classes but we recall thatthe nondeterministic guesses in this model are real numbers. Moreover, ifthe machines are order-free, i.e. they are required to branch only on equalitytests, we now have that BP(P=add) = P and that BP(NP=add) = NP ([18]).These results were subsequently generalized in [10] to all the levels of thepolynomial hierarchy constructed upon NPadd (or NP=add).None of the mentioned results was done for the (unrestricted) real Turingmachine. In fact, for this case, it was even asked whether it existed a subsetof �� not belonging to the BP(PIR) (cf. [13]). First steps in this direction2



were done in [20] where it is shown that if we consider order-free machinesthen we have the inclusion BP(P=IR) � BPP (the class of sets decided byrandomized machines in polynomial time with bounded probability error,see [1] ch. 6) as well as a positive answer to the question above. In fact ifPHIR is the polynomial hierarchy constructed upon NPIR, the existence ofbinary languages not belonging to BP(PHIR) (and a fortiori nor to BP(PIR))was also proved in [20].The aim of this paper is to prove that BP(PARIR) = PSPACE/polywhere PARIR is the class of sets computed in parallel polynomial time by(ordinary) real Turing machines. As a consequence we obtain the existenceof binary sets that do not belong to the Boolean part of PARIR (an extensionof the result in [20] since PHIR � PARIR) and a separation of complexityclasses in the real setting.1 Some geometrical backgroundIn the rest of the paper IN;ZZ; 0Q; IR and C denote the sets of natural, integer,rational, real and complex numbers respectively. By IRalg we denote thereal closure of 0Q, i.e. the �eld of all real algebraic numbers. Also, forany polynomial f with integer coe�cients, we shall denote by jcoe�(f)j themaximal absolute value of its coe�cients.The aim of this section is to show how to �nd real algebraic points inthe connected components of non-empty open sets. We closelly follow [15].Thus, let g1; : : : ; gN 2 ZZ[X1; : : : ; Xk] and letV = fx 2 IRk : g1(x) > 0& : : :&gN (x) > 0gbe an open non-empty semialgebraic set. For the rest of this section weconsider d a bound on the degree of each gi and L be a bound for alljcoe�(gi)j.Lemma 1 ([15] Lemma 10) Let g = QNi=1 gi. Let also d1 be the degree ofg and L = jcoe�(g)j. Then there exists a positive integer 1 such that anyconnected component of V has a non-empty intersection with the ball B(R)where R = Ld1k13



Let us recall now (see [5] section 9.5) that a point a 2 IRk is a criticalpoint for a function f : IRk ! IR when it satis�es@f@X1 (a) = � � � = @f@Xk (a) = 0In this case the value b = f(a) is said to be a critical value of f . In the casewhen f is a polynomial function Sard's lemma ([5] th�eor�eme 9.5.2 or [22])implies that there are only a �nite number of critical values of f .This last fact was used in [15] (and in several subsequent papers) to re-duce the dimension of non-empty semialgebraic sets to zero (avoiding thuscascading of projections) in the algorithm for deciding emptiness of semial-gebraic sets.Let us now consider the polynomialsg0 = R2 � kXi=1X2iand G = g0 NYi=1 giWe have that deg G = d2 < Nd+2 and L2 = jcoe�(G)j � Ld2O(k)(Ldk)O(N)due to lemma 1.The following result gives a bound on the small critical values of G.Lemma 2 There exists a positive integer 2 such that for every non-zerocritical value a of G we have jaj > C�1 whereC = Ld2k22Proof. Let us consider the system of equations in the variables X1; : : : ; Xk; ZG� Z = @G@X1 = � � � = @G@Xk = 0as well as its set of solutions S � IRk+1. On any connected componentof S the coordinate Z, being the critical value of G, is constant since Gis continuous and due to Sard's lemma. Now, since the degrees and thecoe�cients of the polynomials appearing in this system are bounded by d2and O(L2d2) respectively, if we apply the quanti�er elimination algorithm4



given in [16] or [23] along X1; : : : ; Xk onto Z we get a �nite set of points inIR (just the critical values) such that each non zero one has absolute valuegreater than �Ld2k22 ��12Remark 1 In the preceding proof the use of quanti�er elimination is notstrictly necessary. One can use instead the bounds for the representativepoints from the connected components of S given in the main theorem of[15].Because of the preceding lemma we have that the algebraic setW0 = fx 2 IRk : G(x) = C�1gis a non-singular, closed, hypersurface with the property that each con-nected component of V \ B(R) contains at least one (bounded) connectedcomponent of W0 (cf. [22]). Note that W0 do not intersect the boundary ofB(R).Now, lemma 5 of [15] asserts the existence of integers 0 � v2; : : : ; vn �(2d2)k such that the systemG� C�1 = � @G@X2�2 � v2(2d2)kk� = � � �= � @G@Xk�2 � vk(2d2)kk� = 0where � = Pki=1( @G@Xi )2, has a �nite number of solutions in IRk. Moreover,each of these solutions is an absolutely irreducible 0{dimensional componentof the variety in Ck given by this system of equations. Due to Bezout'sinequality the number of real solutions is bounded by (2d2)k. Besides, (cf.lemma 4 in [15]), each bounded connected component ofW0 contains a pointsatisfying the system.We can summarize the preceding results in the following theorem, thatwill be our main technical tool in the next section.Theorem 1 Let g1; : : : ; gN 2 ZZ[X1; : : : ; Xk] satisfy for every i � N thebounds deg(gi) � d and jcoe�(gi)j � L. Then, with the notations introducedabove, there are integers 0 � v2; : : : ; vk � (2d2)k such that the set W � IRkde�ned byG� C�1 = � @G@X2�2 � v2(2d2)kk� = � � �= � @G@Xk�2 � vk(2d2)kk� = 05



is �nite. Moreover, the number of its points does not exceed (2d2)k and everyconnected component ofV = fx 2 IRk : g1(x) > 0 & : : :& gN(x) > 0gcontains at least one point of W .2 Computing with binary inputsIn this section we shall deal with real Turing machines (RTM for short) asthey were introduced in [4]. The reader is referred to this paper for thede�nition and main properties of the above quoted computational model.We just recall that we denote IR1 the direct sum Li2IN IR and by PIR theclass of subsets of IR1 that can be decided by a RTM in polynomial time.The goal of this section is to prove that the Boolean part of PIR isincluded in PSPACE/poly, i.e. that any subset of �� that can be decidedin polynomial time by a real Turing machine can be decided by a (classical)Turing machine in polynomial space using a polynomial advice. In thenext section we will prove a more general result namely, a similar inclusionfor parallel real Turing machines. Because of clarity of exposition we willhowever �rst show the inclusion for the Boolean part of PIR.We begin by recalling the de�nition of non-uniform classes as given in[17], that we extend to complexity classes over the reals.De�nition 1 Let C � �� (resp. C � IR1) be a class of sets and F be anyclass of functions from IN to Sigma� (resp. from IN to IR1). The classC=F is de�ned to be the class of all subsets B � �� (resp. B � IR1) forwhich there exists a set A 2 C and a function f 2 F such that B = fx :hx; f(jxj)i 2 Ag.We will be mainly interested in the case F = poly, the class of functionsf such that for some polynomial p we have jf(n)j � p(n) for each n 2 IN.For the boolean case, one can �nd the main properties and characterizationsof classes like P/poly or PSPACE/poly (as well as of some other non uniformcomplexity classes) in chapter 5 of [1].Theorem 2 The inclusion BP(PIR) � PSPACE/poly holds.6



Proof. Let M be a RTM working in polynomial time, say nq, and let�1; : : : ; �k be its real constants.For any n 2 IN the machine M has an associated algebraic computationtree TM;n having depth nq and size bounded by 2nq . To each branching nodei of this tree corresponds a rational function gi 2 0Q(�1; : : : ; �k)(X1; : : : ; Xn)such that the branching is done according to whether the actual input x 2IRn satis�es gi(x) � 0 or gi(x) < 0.The idea of the proof is to �nd �1; : : : ; �p 2 IRalg such that, for everyx 2 �n the path followed by x in the tree eTM;n obtained by replacing theconstants �j by the �j is the same as the one followed in TM;n. This ensuresthat the tree eTM;n accepts the same subset of �n than TM;n. On the otherhand, we will require some codi�cation of the �'s that allows us to performthe operations in eTM;n in PSPACE together with a short way of writing thiscodi�cation |that make possible to give it as a polynomial advice.Before obtaining a description of the �'s let us do a last modi�cation onTM;n that was �rst used in [19]. Let I be the set of branching nodes of TM;n.For every i 2 I and every x 2 �n we consider the rational functionsgi;x 2 0Q(Z1; : : : ; Zk)obtained by replacing the real constants �1; : : : ; �k by indeterminatesZ1; : : : ; Zk and the indeterminates X1; : : : ; Xn by the binary valuesx1; : : : ; xn. We obviously have for every x 2 �n that gi(x) = gi;x(�1; : : : ; �k).Let �i;x be these values. The accepted subset of �n can be characterized bythe set of signs �i;x = sign(�i;x)where sign(z) = 1 if z � 0 and 0 otherwise. Now, for some i; x the element�i;x can be zero. However, since the set of valuesf�i;x : i 2 I; x 2 �ngis �nite, there exist an " > 0 such that all the negative values in the aboveset are strictly smaller than �" and for this " the following equivalences holdgi;x(�1; : : : ; �k) � 0 i� gi;x(�1; : : : ; �k) + " > 0gi;x(�1; : : : ; �k) < 0 i� gi;x(�1; : : : ; �k) + " < 07



Thus, replacing the tests gi(X) � 0 by gi(X) + " � 0 we have that the newcomputation tree (having real constants �1; : : : ; �k; ") satis�es the followingproperty: for every x 2 �n all the test values are di�erent from zero.Assuming that the rational functions gi;x(Z1; : : : ; Zk) are polynomials(something that we can do by just replacing it by the product of its numer-ator and denominator), we can resume the above remarks in the followingway: the elements �1; : : : ; �k; " satisfy a system of polynomial inequationsof the form gi;x > 0 : i 2 I; x 2 �n (1)(we changed the sign of some gi;x in order to have all the inequalities in thesame form) and any other real numbers �1; : : : ; �k; � satisfying this systemwill produce, when used as constants in the tree TM;n, the same outcomefor every x 2 �n.We can now describe how to obtain such numbers.First we construct the g0 and the G of the preceding section for the setof polynomials fgi;x 2 ZZ[Z1; : : : ; Zk; Y ] : i 2 I; x 2 �ng. Then, applyingtheorem 1 we deduce the existence of integer vectors ~v = (v2; : : : ; vk; vk+1)such that the set W described there is �nite and non empty. Let ~v� be the�rst such vector for the lexicographical ordering in INk and let W � be itscorresponding set of solutions. We then have that any connected compo-nent of the semialgebraic set V given by the system (1) contains a point ofW �. Thus, we take �1; : : : ; �k; � be any point of W � belonging to V , andwe distinguish it among the other points of W � by its position p for thelexicographical ordering in IRk+1. Note that, from the equations de�ningW � and this p we can code (cf. [16] or [23]) each coordinate of this point(see complexity analysis below).The following non-uniform parallel algorithm decides then the same lan-guage as M when restricted to binary inputs.input(a1; : : : ; an)get the advice p corresponding to nfor all x 2 �n in parallel do (s1)for all path  in parallel dofor all i branch node in  docompute the polynomial gi;xodododcompute g0 and G (s2)8



compute C (s3)compute ~v� (s4)code the coordinates of the pth point � of (s5)the set W � given by ~v; C and Gsimulate the computation of M over a1; : : : ; an (s6)replacing the �1; : : :�k ; " by the point � coded in (s5)Let us estimate the complexity of the algorithm above. As we haveseen, the number of nodes of the tree TM;n is bounded by 2nq . Therefore,the number of polynomials gi;x is bounded by the same quantity. Eachof these polynomials is computed by a straight-line program of length nqand thus, we get again a bound of 2nq for their degrees and of 22nq for theabsolute value of their coe�cients. The degree d2 of G is then bounded by2nq :2nq = 2O(1)nq and the absolute value of its coe�cients L2 by(22nq )2nq = 222nq(and thus, by 2n2q in bit length). We can then |according to theorem 1|bound by (2d2)k+1 = 2O(1)nqthe integers v2; : : : ; vk; vk+1 and by(2d2)k+1 = 2O(1)nqthe number of points in W �. A �rst consequence of these two last upperbounds is the fact that the advice above has polynomial size.Concerning the running time, it is clear that step (s1) can be done inpolynomial time using an exponential number of processors because, givenan x 2 �n and a path  the |at most| nq polynomials that appear in thatpath have exponential degree in a constant number (k + 1 in fact) of vari-ables and therefore, an exponential number of monomials. Any arithmeticaloperation between two such polynomials can be done within these resourcesand we have a polynomial number of such operations.The product G is computed with a binary tree of products having poly-nomial depth. Since each product can be done in parallel polynomial timethe same applies for the whole tree and then for step (s2). A similar remarkholds for the constant C and thus for step (s3).The determination of ~v� can be done in parallel polynomial time sincewe check for all possible vectors ~V whether the dimension of the resulting9



W is zero, and then we select the �rst ~v that gives a positive answer. Notethat the determination of the dimension of each W can be done in PSPACEjust combining the main idea of [14] section 6 with the parallel algorithmsgiven in [16] or [23].For step (s5) one can apply the algorithms given in [16] or [24]. However,we remark here that a cylindrical algebraic decomposition together with thecoding �a la Thom (see [7] for the algorithms, and [25], [11] for complexityanalysis) su�ces because the double exponential behaviour of this algorithmis only in the number of variables |which is constant in our case| being NCin the rest of the parameters. This results on a procedure for (s5) workingin parallel polynomial time.Finally, note that each arithmetical operation of M is translated in step(s6) into an operation of elements in ZZ[Z1; : : : ; Zk] and it is done then alsoin parallel polynomial time. On the other hand, at each test of the formg(Z1; : : : ; Zk) � 0 we use the same algorithm of step (s5) for determiningthe sign of g(Z1; : : : ; Zk) + Y on the point coded in (s5).The above considerations show that the described algorithm runs in par-allel polynomial time. Since this is equivalent to polynomial space ([6], [2]ch.4) we have shown that the set decided by the algorithm above belongs toPSPACE/poly. 23 Binary inputs for parallel real Turing machinesOur next goal is to extend our previous result to the class PARIR of setsdecided in parallel polynomial time. We recall from [9] the de�nition ofa computational model for parallelism in the real Turing machine settingtogether with the complexity class it de�nes when restricted to polynomialtime.De�nition 2 An algebraic circuit C over IR is a directed acyclic graph whereeach node has indegree 0,1 or 2. Nodes with indegree 0 are either labeled asinputs or with elements of IR (we shall call the last ones constant nodes).Nodes with indegree 2 are labeled with \+",\�",\�", or \/". Finally, nodeswith indegree 1 are of a unique kind and are called sign nodes. There is onenode with outdegree 0 called output node. In the sequel the nodes of a circuitwill be called gates.To each gate we inductively associate a function of the input variables inthe usual way. In particular, we shall refer to the function associated to the10



output gate as the function computed by the circuit. Note that sign gatesreturn 1 if their input is greater or equal to 0, and 0 otherwise.De�nition 3 For an algebraic circuit C, we de�ne its size to be the numberof gates in C and its depth to be the length of the longest path from someinput or constant gate to the output gate.De�nition 4 Given an algebraic circuit C, the canonical encoding of C isa sequence of 4-tuples of the form (g; op; gl; gr) 2 IR4 where g represents thegate label, op is the operation performed by the gate, gl is the gate whichprovides the left input to g and gr its right input. By convention gl and grare 0 if gate g is an input gate, and gr is 0 if gate g is a sign gate (whoseinput is then given by gl) or a constant one (the associated constant beingthen stored in gl). Also, we shall suppose that the �rst n gates are the inputones and the last one the output gate.De�nition 5 Let fCngn2IN be a family of algebraic circuits. We shall saythat the family is P{uniform if there exists a real Turing machine M thatgenerates the encoding of the ith gate of Cn with input (i; n) in time poly-nomial in n.De�nition 6 We shall say that a set S can be decided in parallel poly-nomial time (S 2 PARIR for short) when there is a P{uniform family ofcircuits fCng having depth polynomial in n and such that Cn computes thecharacteristic function of S restricted to inputs of size n.Remark 2 It is possible to de�ne ([9]) parallel polynomial time in a di�er-ent way, namely, by putting an exponential number of RTM to work togetherin polynomial time. One can prove however, that this model de�nes the sameclass PARIR we just introduced.Before going into the next theorem we will recall a result concerning thenumber of satis�able sign conditions of a polynomial system.Lemma 3 (Lemma 1 of [14]) Let f1; : : : ; fs 2 IR[X1; : : : ; Xk] be a �nitefamily of polynomials and D = sPi=1 degree(fi). Then the number of satis�ablesystems of the formf1(X1; : : : ; Xk)�1 & : : :& fs(X1; : : : ; Xk)�swhere �i belongs to f� 0; > 0g for i = 1; : : : ; s is bounded by DO(k).11



Theorem 3 The equality BP(PARIR) = PSPACE/poly holds.Proof. Let S be a set in PARIR and fCng be the family of circuits decidingS. Let also M be the RTM that generates these circuits and �1; : : : ; �k beits real constants.Given any n 2 IN we consider for any sign gate i of Cn and any binarystring x 2 �n the rational function gi;x;� 2 0Q(�1; : : : ; �k)(X1; : : : ; Xn) thatthe gate receives as input. Note that the coe�cients of gi;x;� depend on xand � since they depend on the output of previous sign gates. Since thenumber of possible answers to previous sign gates is doubly exponential weobtain a doubly exponential number of rational functions and therefore wecan not apply directly the construction of theorem 2. However, we can uselemma 3 to reduce this number.Let us �x x 2 �n and plug x in the input gates of Cn. This will make usto consider rational functions in 0Q(Z1; : : : ; Zk). Let also nq be a bound onthe depth of Cn. At depth 1, there are at most 2nq sign gates whose inputfunctions have degree bounded by 1. By lemma 3, the number of possibleoutputs of these sign gates is bounded by(2nq )O(k) = 2O(k)nqFor each set of outputs ! at depth 1, we consider the sign gates at depth 2.There are at most 2nq�1 of them and their associated functions have degreebounded by 2. Thus, again by lemma 3, we bound by(2nq )O(k) = 2O(k)nqthe number of possible outputs for !. Multiplying both expresions we deducethat the total number of possible outputs at depths 1 and 2 is bounded by22O(k)nqInductively, we prove that the number of possible outputs over all the signgates is bounded by 2O(k)nqnq = 2O(k)n2qa number which is singly exponential in n.Let us then consider for any x 2 �n the set of all rational functionsgi;x;!(Z1; : : : ; Zk) obtained by varying i over all sign gates of Cn and ! overall possible outputs of the set of sign gates. If we now consider this set for12



any x 2 �n we will have that the set decided by the circuit Cn is determinedby the signs that the functions in this set take when evaluated at �1; : : : ; �k.As in theorem 2, we can assume the functions gi;x;! to be polynomialsand we can also assume that they do not vanish on �1; : : : ; �k by adding anew real number ".Since the number of polynomials gi;x;! is singly exponential in n we canapply the same method of theorem 2. Note however that the correspondingstep (s1) will now be required to select for any x 2 �n and any depthl the possible sign conditions for the test gates at depth l. This is donesequentially in l in order to avoid dealing with a doubly exponential numberof sign conditions. Once these possible sign consitions are known, the restof the algorithm works like the one in theorem 2 simulating the circuit Cninstead of the tree. This shows that the binary elements of S are a languagein PSPACE/poly.On the other hand, the inclusion of PSPACE/poly in BP(PARIR) is triv-ial. 2An immediate corollary of the theorem above is the following separationleft open in [12]. Recall that EXPW is the class of subsets of IR1 acceptedby RTM in weak exponential time, i.e. in exponential time but such that forall intermediately computed rational function g deg(g) and the bit length ofjcoe�(g)j are exponentialy bounded (see [19] or [12] for a formal de�nitionof the weak model).Corollary 1 The inclusion PARIR � EXPW is strict.Proof. The Boolean part of EXPW is the class of all subsets of ��. Therefore,it strictly contains PSPACE/poly. 2Remark 3 The corollary above improves the separation PARIR 6= EXPIRshown in [8]. In this latter case, the fact that a real Turing machine workingin exponential time can produce polynomials of doubly exponential degree(while a circuit of polynomial depth can not) togheter with an irreducibilityargument su�ced to show the separation. The arguments used now aremuch more delicate and, somehow surprisingly, pass throught the booleanpart of these classes.One can still improve a bit theorem 3 by allowing the real machine totake advice. 13



Theorem 4 The equality BP(PARIR=poly) = PSPACE/poly holds.Proof. The polynomial advice in PARIR/poly introduces a polynomial num-ber of real constants, let's say nh, for each input size n. One can now simplycheck that replacing the constant value k in the proof of theorem 3 by nhdoes not afect the exponential character of the bounds there and thus, thesame arguments apply. The only limitation is that in steps (s5) and (s6) onecan not use cylindrical algebraic decomposition (because of the exponentialdependence it has in the number of variables for its parallel running time)and it is restricted to use the \faster" algorithms given in [16] and [23]. 2Remark 4 Theorems 3 and 4 are rather surprising since they show thatmultiplication or non-uniformity (under the form of a polynomial advicefunction) do not help in the presence of parallelism to decide binary sets.Note that results weaker than theorem 3 namely, that the Boolean part ofPARadd (where no multiplications are allowed) or of PARW (where few ofthem are allowed) coincide both with PSPACE/poly were proved in [10] and[12].On the other hand a main question that remains open is whetherBP(PIR) = PSPACE/poly. We know that this Boolean part contains P/polybut its exact power is still to be determined. Note that for the integer RAM'sit is known that the computational power of this model in polynomial timeis exactly PSPACE for several sets of primitive operations. However, inall these cases, there is a primitive operation that can not be e�cientlysimulated by a real Turing machine. Thus, for instance, it is shown in [3]that integer RAM's with operations (+;�; �;�) have the power of PSPACE.However, the simulation of the integer division by a real Turing machine overintegers of exponential length take exponential time and therefore the argu-ments of [3] can not be used to show the inclusion PSPACE/poly � BP(PIR).Ackowledgement Thanks are due to Pascal Koiran for pointing to us thepossibility of allowing advice in the real complexity classes that lead fromtheorem 3 to theoerem 4.References[1] J.L. Balc�azar, J. D��az, and J. Gabarr�o. Structural Complexity I. EATCSMonographs on Theoretical Computer Science, 11. Springer-Verlag,1988. 14
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