
An Exponential Lower Bound for Depth 3Arithmetic CircuitsDima Grigoriev� Marek KarpinskiyAbstractWe prove the �rst exponential lower bound onthe size of any depth 3 arithmetic circuit withunbounded fanin computing an explicit func-tion (the determinant) over an arbitrary �nite�eld. This answers an open problem of [N91]and [NW95] for the case of �nite �elds. Weintepret here arithmetic circuits in the algebraof polynomials over the given �eld. The proofmethod involves a new argument on the rankof linear functions, and a group symmetry onpolynomials vanishing at certain nonsingularmatrices, and could be of independent inter-est.IntroductionIn this paper we are interested in a funda-mental problem of computing functions byunbounded fanin arithmetic circuits of depth3. Unlike the boolean circuits, general arith-metic circuits of depth 3 are surprisingly pow-erful. They can compute (via polynomial in-terpolation) in polynomial size any symmet-ric function. To date however the best lowerbound known for general arithmetic circuitsize was only slightly superlinear 
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([S73]).In this paper we prove the �rst superpolyno-mial (in fact exponential) size lower bound ondepth 3 arithmetic unbounded fanin circuitscomputing an explicit function, the determi-nant function, over an arbitrary �nite �eld.In this paper, we interpret the arithmetic cir-cuits in the polynomial algebra over the given�eld.The determinant function is especially inter-esting because of its algebraic universalityproperty ([V79]) over arbitrary �elds.We refer a general reader to [L84] and [H77]for all the needed notions used in our proof.We denote by F = Fq a �nite �eld with qelements. We shall study �elds for q � 3(for q = 2, the boolean case, the lower boundcould be derived from [R87] and [V79]).We study the representation of Det = Detn =P�(�1)sgn(�)X1;�(1) � � �Xn;�(n) in the polyno-mial algebra F [X1;1; : : : ; Xn;n] in the form ofa depth 3 arithmetic circuit, or equivalently,an expansion:Det = X1�`�NYm L`;m (1)where each L`;m = Pi;j a(`;m)i;j Xi;j + a(`;m)0 2F [X1;1; : : : ; Xn;n] is a linear function in thevariables X1;1; : : : ; Xn;n. Our purpose is toprove the following exponential lower boundon the size of a representation (1). From this,the lower bound on the size of any depth 3arithmetic unbounded fanin circuit comput-ing the determinant follows.Theorem For any q � 3 there is a constant� > 1 such that in a representation (1) thenumber of terms N = 
(�n).1



Representations of the form (1), but under therestriction that L`;m are (homogeneous) linearforms, rather than functions, were consideredin [G82] (over an arbitrary �eld), where lowerbounds onN were established. The basic ideain [G82] was to design a linear operator onpolynomials into matrices which maps a prod-uct QmL`;m into a matrix of a bounded rank.This approach was also used in [R87]. Latera di�erent method of proving lower boundson N (again under a similar to [G82] assump-tion that the degree of each product QmL`;m,i.e. the number of linear functions in the prod-uct, is bounded) was proposed in [NW95].The core of the method was to estimate thedimension of all the partial derivatives (up toa certain order).On the other hand, the circuits with abounded depth (and unbounded fanin) werestudied in connection with the boolean AC0class and an exponential lower bound on theirsizes was proved in [R87], [S87]. The methodsin both papers were working just for booleancircuits, and it would be interesting to explorewhether they could be extended to arbitrary�nite �elds (the present authors were not ableto do it). These boolean methods imply, inparticular, an exponential lower bound on thesize of any bounded depth boolean circuit fordeterminant (and consequently, of any arith-metic circuit over F2). The representation (1)can be viewed as a depth 3 arithmetic circuit.In contrast to boolean circuits we interpretarithmetic circuits (1) as an identity in thepolynomial algebra (vs. the algebra of func-tions over F , see section 1 below). Recently,Razborov [R98] was able to generalize our re-sults to the algebra of functions over F .An important problem remains open to getlower bounds for representations of the kind(1), or for the more general bounded depthcircuits, over the arbitrary �elds includingzero characteristic.The rest of the paper is devoted to the proofof the Theorem. In Section 1 we treat therepresentation (1) and its partial derivativesin the algebra of functions over F and parti-

tion the terms Qm L`;m into two groups, re-garding the rank of the family of linear func-tions fL`;mgm being greater or less J than, re-spectively, a certain integer (threshold). Weshow that the products QmL`;m with a largerank vanish (and moreover with a large multi-plicity) everywhere out of a small fraction ofpoints from Fn2 (which could be informallyviewed as \erroneous" points). For the prod-ucts with a small rank we estimate from abovethe dimension of the set of all its derivatives(up to some order) restricted to the algebraof functions over F .In Section 2 we study linear combinations ofminors (of a �xed size) of a matrix vanishingat all the points (in other words, matrices) outof an \erroneous" set, because minors are justthe derivatives of Det. Since the full lineargroup GLn(F ) acts on linear combinations ofminors, we show that a small number of shiftsby means of elements from GLn(F ) allow toget rid of the \erroneous" set and to obtain alinear combination of minors vanishing at allnonsingular matrices. Finally, we prove thatit is impossible.1 A product of linear func-tions in the algebra of func-tions over a �nite �eldDenote by A the algebra of all functions f :Fn2 ! F which can be naturally identi�edwith the quotient algebraF [X1;1; : : : ; Xn;n]=(fXqi;j �Xi;jg1�i;j�n)For any set E � Fn2 of n � n matrices onecan consider (as in [S87]) a quotient algebraAE of A over the ideal of all the functionsfrom A vanishing everywhere out of E. Ob-viously, dimAE = dimF AE = qn2� j E j.Conversely, any quotient algebra of A equalsto AE for a suitable E (we do not use thisremark). Talking about some elements fromAE we mean the images of the elements fromA in the quotient algebra.2



Fix a constant 
 > 0 satisfying the inequality
 < q�q=2. Then there exists a constant �such that qq
 < q� < 
�s
 (2)Introduce also a thresholdr = [� n] (3)For the time being we �x a product Qm L`;m(of linear functions (see (1)). By its rank r` wemean the dimension of the family of the linearfunctions fL`;mgm, in other words, the rank ofthe matrix of their coe�cients (a(`;m)i;j ; a(`;m)0 )(which has n2+1 columns, hence r` � n2+1).We treat separately two cases: when the rankr` is less or greater, respectively, than thethreshold r and consider the restriction of theproduct along with its derivatives onto thespace Fn2 (in other words, the points de�nedover F ).Large rankLet r` � r. Then the number of points fromspace Fn2 (of all n � n matrices with the en-tries from F ), at which at most 
n amongthe linear functions fL`;mgm vanish, does notexceedqn2�r`((q � 1)r` +   r1̀!! (q � 1)r`�1+ : : :+   r`d
ne!! (q � 1)r`�d
ne)since one can choose a basis L1; : : : ;Lr` of r`functions among fL`;mgm and assign in an ar-bitrary way the values for L1; : : : ;Lr` (amongthese values at most 
n are zeros). A de-scribed point will play a role of an \erroneous"point at which all the derivatives of the prod-uct Qm L`;m of the order d
ne may not van-ish. The obtained bound can be estimatedfrom above byqn2�r`   r`d
ne!! (q � 1)r`�d
ne(
n+ 1) (4)since the sequence(q � 1)r`; (�r1̀ �)(q � 1)r`�1; : : : increases until

(� r`dr`=qe�)(q � 1)r`�dr`=qe and beyond that de-creases (taking into account (3) and the leftinequality (2)).Now we show that (4) can be estimated fromabove by qn2�n (5)for a suitable � < 1 depending on q; 
; �. De-note r = y0q
n (for an appropriate y0 > 1(see (3))) and r` = yq
n where y � y0. Us-ing Stirling's formula one concludes that (4)is less (up to a factor polynomial in n) thanqn2(yq(q�1)(yq�1)q)yq
n(yq�1q�1 )
n. It su�ces to checkthat (yq(q�1)(yq�1)q )yq(yq�1q�1 ) < �1 for any y � y0and a certain �1 < 1 depending only on q; y0.The logarithmic derivative q log y(q�1)yq�1 (overy) of the left side of the latter inequality isnegative for any y > 1, hence the left side de-creases for y � 1 (for y = 1 it equals 1), thatproves (5).Small rankNow let r` < r.Note that derivatives of all the orders (actu-ally, we are interested just in the order d
ne)of the product Qm L`;m lie in the F -linearhull of the products of the form Li11 � � �Lir`r`for all nonnegative integers ij ; 1 � j �r`. When subsequently we restrict thesederivatives onto the space Fn2 , thus treatingthem as elements from the algebra A, theywould lie in the F -linear hull of the productsLi11 � � �Lir`r` , 0 � ij � q � 1; 1 � j � r`. There-fore, the dimension of the set of these imagesin A of the derivatives is less than qr.The derivatives of the order d
ne of Det areexactly the minors MI;J of the size (n �d
ne) � (n � d
ne), where I , J are subsetsof the sets of rows and columns, respectively,j I j=j J j= n � d
ne. We take all thederivatives of the order d
ne of both sides of(1) and subsequently restrict them onto Fn2(thus, treating them as elements from the al-gebra A). Denote by E � Fn2 the union ofthe (\erroneous") sets considered above for allthe products from (1) of big ranks. Then the3



images in the quotient algebra AE of takenderivatives vanish for all big rank productsand we conclude with the following Lemma(making use also of (5))Lemma 1 For any � > 1, if Det has a rep-resentation (1) with N < �n then the set ofall minors M = fMI;JgjIj=jJ j=n�d
ne has thedimension less than �nqr in the quotient alge-bra AE for an appropriate subset E � Fn2 ofthe size j E j� qn2(��)n.Remark. The statement of the Lemma isnontrivial when � satis�es the following in-equalities �� < 1; �q� < 
�2
 (6)The second inequality means that the dimen-sion of the minors from the Lemma is less thanthe number (� nd
ne�)2 of all (n� d
ne)� (n�d
ne) minors (due to the Stirling's formulaand (3)). Furthermore, any small enough� > 1 satis�es (6) due to the right inequal-ity (2), and any such � one could use in thestatement of the Theorem (see above).Henceforth, we assume that � satis�es (6).2 Group symmetry on poly-nomials vanishing at matri-cesDenote by H (being isomorphic to F ( nd
ne)2)the F -space of all the linear combinations ofthe minors from M . Observe that nonzero el-ements of H are also nonzero in A (a strongerstatement will appear below in Lemma 3 ),thereby one can think that H � A.For any point (matrix) a 2 Fn2 denote byHa 2 H a hyperplane consisting of all f 2 Hsuch that f(a) = 0. Lemma 1 states actuallythat the codimension in Hc = codim0@\a 62EHa1A < �nqr

Because of the second inequality (6) and againthe Stirling's formula we get the inequalitydimH > c �n (7)for a suitable constant � > 1.Denote the full linear groups G = Gln(F ) �Fn2 , it is well known thatjGj = (qn � 1)(qn � q) � � �(qn � qn�1)� qn2(q � 2)=(q � 1)(remind that q � 3). For any g 2 G one canconsider an F -linear operator Tg : H ! Hde�ned for any f 2 H and any matrix a 2 Fn2by the formula (Tg(f)) (a) = f(ga) (more-over, one could de�ne Tg1 by the same for-mula for any not necessarily nonsingular ma-trix g1 2 Fn2 ). The latter formula de�nes anoperator Tg : H ! H since the minors fromMof the matrix ga are the linear combinations(with the coe�cients depending only on g) ofthe minors from M of a. Thus, Tg providesa representation of G because Tg1g2 = Tg1Tg2(more precisely, this representation is the di-rect sum of � nd
ne� copies of d
ne-th wedgepower of the natural representation of G onFn).Clearly Tg�1(Ha) = Hga. Consider now aplane P = \a2GnEHa � H;its codimension c1 = codimP � c. Also de-note E1 = E\G. So, from now on we restrictourselves to considering just matrices from G(rather than from the whole set of matricesFn2).Now assume that a subset S � G satis�es thefollowing property[g2S g (G nE1) = G (8)For any g 2 G we haveTg�1(P ) = \a2GnE1 Tg�1(Ha) = \b2g(GnE1)Hb:4



Therefore, we get from (8) that\b2GHb = \g2S Tg�1(P ) (9)Next we need the following combinatoriallemma (see e.g. [L75]).Lemma 2([L75]) Let (V;R) be a directed(regular) graph with jV j = m vertices andwith the in-degree and the out-degree of eachvertex both equal to d. Then there exists asubset U � V of a size O(md log(d+ 1)) suchthat for any vertex v 2 V there is a vertexu 2 U forming an edge (u; v) 2 R.Construct a directed regular graph with theset of vertices G and an edge (g2; g1) if andonly if g�12 g1 62 E1. Applying to this graphLemma 2 supplies us with a set S � G suchthat for any g1 2 G there is g 2 S satisfyingg�1g1 62 E1, or equivalently g1 2 g(G n E1).Thus, S ful�lls (8).According to Lemma 2 and taking into ac-count Lemma 1 and the �rst inequality (6)jSj � O jGjjGj � qn2(� �)nn2 log q! � O(n2):Finally, we show that Tb2GHb 6= 0. In-deed, codim Tg�1(P ) = codim P = c1 � cfor any g 2 G. Hence codimTg2S Tg�1(P ) �O(jSj c1) � O(n2 c) which is less thandimH because of (7). Therefore, 0 6=Tg2S Tg�1(P ) = Tb2GHb (see (9)). Take anarbitrary 0 6= f 2 Tb2GHb, this means thatf vanishes at all nonsingular matrices. So, tocomplete the proof of the Theorem (see theintroduction), we need the following lemma.Lemma 3 No multilinear polynomial 0 6= f 2F [X1;1; : : : ; Xn;n] vanishes at all nonsingularmatrices (note that q � 3).Proof of Lemma 3 goes by induction on n.The base of induction for n = 1 is evident.For the inductive step suppose the contrary.Some variable occurs in f , permuting the rowsand the columns we can assume w.l.o.g. that

Xn;n occurs in f . Then f = Xn;n f1 + f0,where f1 6� 0, f0 are multilinear polynomialsbeing independent from Xn;n. On the otherhand, Det = Xn;n Mn;n + h, where Mn;n is(n� 1)� (n� 1) minor and h is independentfrom Xn;n.For the time being, specify the variablesXk;` = x(0)k;` 2 F for all 1 � k; ` � n�1 in sucha way that Mnn(fx(0)k;`g) 6= 0 (so far, there aremany possibilities for specifying). Also we geta multilinear polynomialf(fx(0)k;`g) =Xn;nf1(fx(0)k;`g) + f0(fx(0)k;`g) =Xn;nf1 + f0;where f1, f0,2 F [Xn;1; : : : ; Xn;n�1; X1;n; : : : ; Xn�1;n]. Forany set of the values of the variablesXn;k = x(0)n;k 2 F; Xk;n =x(0)k;n 2 F; 1 � k � n� 1 (10)there are exactly (q � 1) � 2 values of Xn;nsuch that Det does not vanish. Therefore, themultilinear polynomials f1, f 0 vanish identi-cally: indeed, otherwise for some values (10)a nonvanishing identically linear polynomialXn;n f 1(fx(0)n;k; x(0)k;ngk)+f0(fx(0)n;k; x(0)k;ngk) 2 F [Xn;n]would have q � 1 � 2 roots.On the other hand, there is an appropri-ate set of values (10) for which the substi-tution of these values ~f1 = f1(fx(0)n;k; x(0)k;ngk) 2F [X1;1; : : : ; Xn�1;n�1] provides a nonvanish-ing identically polynomial. As we have seenabove, ~f1 vanishes at any nonsingular (n�1)�(n � 1) matrix fx(0)k;`g1�k;`�n�1; that contra-dicts to the inductive hypothesis and provesLemma 3. 23 Open ProblemsAn intriguing open problem remains to ex-tend our exponential lower bound for depth 35
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