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Abstract

We prove the first exponential lower bound on
the size of any depth 3 arithmetic circuit with
unbounded fanin computing an explicit func-
tion (the determinant) over an arbitrary finite
field. This answers an open problem of [N91]
and [NWO5] for the case of finite fields. We
intepret here arithmetic circuits in the algebra
of polynomials over the given field. The proof
method involves a new argument on the rank
of linear functions, and a group symmetry on
polynomials vanishing at certain nonsingular
matrices, and could be of independent inter-
est.

Introduction

In this paper we are interested in a funda-
mental problem of computing functions by
unbounded fanin arithmetic circuits of depth
3. Unlike the boolean circuits, general arith-
metic circuits of depth 3 are surprisingly pow-
erful. They can compute (via polynomial in-
terpolation) in polynomial size any symmet-
ric function. To date however the best lower
bound known for general arithmetic circuit
size was only slightly superlinear Q(nlogn)
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([S73]).

In this paper we prove the first superpolyno-
mial (in fact exponential) size lower bound on
depth 3 arithmetic unbounded fanin circuits
computing an explicit function, the determi-
nant function, over an arbitrary finite field.
In this paper, we interpret the arithmetic cir-
cuits in the polynomial algebra over the given
field.

The determinant function is especially inter-
esting because of its algebraic universality
property ([V79]) over arbitrary fields.

We refer a general reader to [L.84] and [H77]
for all the needed notions used in our proof.
We denote by F' = F, a finite field with ¢
elements. We shall study fields for ¢ > 3
(for ¢ = 2, the boolean case, the lower bound
could be derived from [R87] and [V79]).

We study the representation of Det = Det,, =
EU(—l)Sgn(U)XLU(l) +++ X, 5(n) in the polyno-
mial algebra F[X;4,...,X, ] in the form of
a depth 3 arithmetic circuit, or equivalently,
an expansion:

Det = > J]Ltm
1<U<N m

EX +ay™ €

(1)

where each L, = Zma
F[Xq11,...,X,,] is a linear function in the
variables Xy 1,..., X, ,. Our purpose is to
prove the following exponential lower bound
on the size of a representation (1). From this,
the lower bound on the size of any depth 3
arithmetic unbounded fanin circuit comput-
ing the determinant follows.

Theorem For any ¢ > 3 there is a constant
d > 1 such that in a representation (1) the
number of terms N = Q(6").



Representations of the form (1), but under the
restriction that Ly, are (homogeneous) linear
forms, rather than functions, were considered
in [G82] (over an arbitrary field), where lower
bounds on N were established. The basic idea
in [G82] was to design a linear operator on
polynomials into matrices which maps a prod-
uct [],, Le¢,m into a matrix of a bounded rank.
This approach was also used in [R87]. Later
a different method of proving lower bounds
on N (again under a similar to [(G82] assump-
tion that the degree of each product [],, L¢,
i.e. the number of linear functions in the prod-
uct, is bounded) was proposed in [NWO95].
The core of the method was to estimate the
dimension of all the partial derivatives (up to
a certain order).

On the other hand,
bounded depth (and unbounded fanin) were
studied in connection with the boolean AC®
class and an exponential lower bound on their
sizes was proved in [R87], [S87]. The methods
in both papers were working just for boolean
circuits, and it would be interesting to explore
whether they could be extended to arbitrary
finite fields (the present authors were not able
to do it). These boolean methods imply, in
particular, an exponential lower bound on the
size of any bounded depth boolean circuit for
determinant (and consequently, of any arith-
metic circuit over F3). The representation (1)
can be viewed as a depth 3 arithmetic circuit.
In contrast to boolean circuits we interpret
arithmetic circuits (1) as an identity in the
polynomial algebra (vs. the algebra of func-
tions over F, see section 1 below). Recently,
Razborov [R98] was able to generalize our re-
sults to the algebra of functions over F.

An important problem remains open to get
lower bounds for representations of the kind
(1), or for the more general bounded depth
circuits, over the arbitrary fields including
zero characteristic.

the circuits with a

The rest of the paper is devoted to the proof
of the Theorem. In Section 1 we treat the
representation (1) and its partial derivatives
in the algebra of functions over F' and parti-

tion the terms [[,, L¢,» into two groups, re-
garding the rank of the family of linear func-
tions {L¢m }m being greater or less J than, re-
spectively, a certain integer (threshold). We
show that the products [],, L¢,, with a large
rank vanish (and moreover with a large multi-
plicity) everywhere out of a small fraction of
points from P (which could be informally
viewed as “erroneous” points). For the prod-
ucts with a small rank we estimate from above
the dimension of the set of all its derivatives
(up to some order) restricted to the algebra
of functions over F.

In Section 2 we study linear combinations of
minors (of a fixed size) of a matrix vanishing
at all the points (in other words, matrices) out
of an “erroneous” set, because minors are just
the derivatives of Det. Since the full linear
group G'L, (F) acts on linear combinations of
minors, we show that a small number of shifts
by means of elements from G'L,,(F) allow to
get rid of the “erroneous” set and to obtain a
linear combination of minors vanishing at all
nonsingular matrices. Finally, we prove that
it is impossible.

1 A product of linear func-
tions in the algebra of func-
tions over a finite field

Denote by A the algebra of all functions f :
F™ — F which can be naturally identified
with the quotient algebra

FX1a, o Xonl /{XE = Xijhi<ij<n)

For any set £ C F™ of n x n matrices one
can consider (as in [S87]) a quotient algebra
Ap of A over the ideal of all the functions
from A vanishing everywhere out of . Ob-
viously, dim Ay = dimp Ap = ¢*" — | £ .
Conversely, any quotient algebra of A equals
to Ap for a suitable IV (we do not use this
remark). Talking about some elements from
Ap we mean the images of the elements from
A in the quotient algebra.



Fix a constant v > 0 satisfying the inequality
v < ¢~%2. Then there exists a constant j3
such that

¢ < qﬁ <A

(2)

Introduce also a threshold

r=[6n] (3)

For the time being we fix a product [],, L¢m
(of linear functions (see (1)). By its rank r, we
mean the dimension of the family of the linear
functions {L¢ , }1n, in other words, the rank of
the matrix of their coefficients ((zggm)7 aéé’m))
(which has n?+1 columns, hence r; < n2—|—1).
We treat separately two cases: when the rank
ry is less or greater, respectively, than the
threshold r and consider the restriction of the
product along with its derivatives onto the
space P (in other words, the points defined
over F).

Large rank

Let r, > r. Then the number of points from
space I (of all n X n matrices with the en-
tries from F'), at which at most yn among
the linear functions {L, }, vanish, does not
exceed

= 1)+ ((f)) (g= 1!
ot (({%)) (q — 1yre=Ply

since one can choose a basis £y,...,L,, of ry
functions among { L, }, and assign in an ar-
bitrary way the values for £y,...,£,, (among
these values at most yn are zeros). A de-
scribed point will play a role of an “erroneous”
point at which all the derivatives of the prod-
uct ], L¢m of the order [yn] may not van-
ish. The obtained bound can be estimated
from above by

were [T _ el v
’ ((W))(q P 1) ()

since the

(g = 1) () g = Dty

sequence
increases until

(([erq]))(q — 1)7e=[re/al and beyond that de-
creases (taking into account (3) and the left
inequality (2)).
Now we show that (4) can be estimated from
above by
2

q¢" " (5)
for a suitable v < 1 depending on ¢, v, 3. De-
note r = yoqyn (for an appropriate yo > 1
(see (3))) and r¢ = ygyn where y > yo. Us-
ing Stirling’s formula one concludes that (4)
is less (up to a factor polynomial in n) than

n? -1 n(Y¥ea=1\vyn
q (?é/ﬂqq__l)%)qu (255)7". Tt suffices to check

that (%)yq(z’j_—_ﬁ) < ay for any y > yo
and a certain oy < 1 depending only on ¢, yo.
The logarithmic derivative qlogyl/(g—j) (over
y) of the left side of the latter inequality is
negative for any y > 1, hence the left side de-
creases for y > 1 (for y = 1 it equals 1), that

proves (5).

Small rank

Now let rp < r.

Note that derivatives of all the orders (actu-
ally, we are interested just in the order [yn])
of the product [[,, L¢y, lie in the F-linear

hull of the products of the form ,CZf ---ﬁ:,;"
for all nonnegative integers i;,1 < j <
r¢.  When subsequently we restrict these
derivatives onto the space F”27 thus treating
them as elements from the algebra A, they
would lie in the F-linear hull of the products
,le ---ﬁ:,;", 0<i;<qg-—1,1<7<r There-
fore, the dimension of the set of these images
in A of the derivatives is less than ¢".

The derivatives of the order [yn] of Det are
exactly the minors My ; of the size (n —
[yn]) x (n — [yn]), where I, J are subsets
of the sets of rows and columns, respectively,
| 1 |=] J |= n — [yn]. We take all the
derivatives of the order [yn] of both sides of
(1) and subsequently restrict them onto F™°
(thus, treating them as elements from the al-
gebra A). Denote by £ C F™ the union of
the (“erroneous”) sets considered above for all
the products from (1) of big ranks. Then the



images in the quotient algebra Ag of taken
derivatives vanish for all big rank products
and we conclude with the following Lemma
(making use also of (5))

Lemma 1 For any é > 1, if Det has a rep-
resentation (1) with N < " then the set of
all minors M = {Mr, s} |1|=|J|=n—[+n] has the
dimension less than §7¢” in the quotient alge-
bra Ag for an appropriate subset E C F™ of
the size | E |< ¢ (6a)™.

Remark. The statement of the Lemma is
nontrivial when ¢ satisfies the following in-
equalities

S < 1; 8¢ < 4y~ (6)
The second inequality means that the dimen-
sion of the minors from the Lemma is less than
the number ((Hnn]))2 of all (n — [yn]) x (n —
[yn]) minors (due to the Stirling’s formula
and (3)). Furthermore, any small enough
d > 1 satisfies (6) due to the right inequal-
ity (2), and any such ¢ one could use in the
statement of the Theorem (see above).

Henceforth, we assume that § satisfies (6).

2 Group symmetry on poly-
nomials vanishing at matri-
ces

n 2

Denote by #H (being isomorphic to Flrm) )
the F-space of all the linear combinations of
the minors from M. Observe that nonzero el-
ements of 7 are also nonzero in A (a stronger
statement will appear below in Lemma 3 ),
thereby one can think that H C A.

For any point (matrix) a € F™ denote by
H, € H a hyperplane consisting of all f € H
such that f(a) = 0. Lemma 1 states actually
that the codimension in H

¢ = codim (ﬂ Ha) < o"q"

agFE

Because of the second inequality (6) and again
the Stirling’s formula we get the inequality

(7)

dim#H > en”

for a suitable constant i > 1.
Denote the full linear groups G = GI,,(F) C
F”27 it is well known that

Gl = (" - 1)("—q)-(¢" — ¢" )
> 4" (g-2)/(q—1)

(remind that ¢ > 3). For any g € G one can
consider an [F-linear operator T, : H — H
defined for any f € H and any matrix a € s
by the formula (7,(f))(¢) = f(ga) (more-
over, one could define T, by the same for-
mula for any not necessarily nonsingular ma-
trix g1 € F”2). The latter formula defines an
operator T, : H — # since the minors from M
of the matrix ga are the linear combinations
(with the coefficients depending only on ¢) of
the minors from M of a. Thus, T, provides
a representation of GG because T} 4, = Ty, Ty,
(more precisely, this representation is the di-
rect sum of (hnn]) copies of [yn]-th wedge
power of the natural representation of G on
Clearly T,-1(H,) = Hy,.
plane

Consider now a
P= () HiCH,
a€G\E

its codimension ¢; = codim P < ¢. Also de-
note Iy = FNG. So, from now on we restrict
ourselves to considering just matrices from G
(rather than from the whole set of matrices
P,

Now assume that a subset .S C G satisfies the
following property

UQ(G\El) =G
geS

(8)

For any g € GG we have

(| T,-1(H,) =

aEG\E1

T,-1(P) =

g

(N He.

beg(G\F1)



Therefore, we get from (8) that

(N Hy = () T,~(P)

bel ges

(9)

Next we need the following combinatorial
lemma (see e.g. [L75]).

Lemma 2([L75]) Let (V,R) be a directed
(regular) graph with |V| = m vertices and
with the in-degree and the out-degree of each
vertex both equal to d. Then there exists a
subset U C V of a size O(% log(d + 1)) such
that for any vertex v € V there is a vertex
w € U forming an edge (u,v) € R.

Construct a directed regular graph with the
set of vertices G and an edge (g2, ¢1) if and
only if gz_lgl ¢ Ei. Applying to this graph
Lemma 2 supplies us with a set S C G such
that for any g; € G there is g € S satisfying
9 tg1 € Ey, or equivalently ¢; € (G \ Fy).
Thus, S fulfills (8).

According to Lemma 2 and taking into ac-
count Lemma 1 and the first inequality (6)

G|
= q? (o)

|S|so( nn%ogq) < o).
Finally, we show that (,cq Hy # 0. In-
deed, codimT,-1(P) = codim P = ¢; < ¢
for any g € G. Hence codim (g Ty-1(P) <
O(]S] e1) < O(n? ¢) which is less than
dim H because of (7).  Therefore, 0 #
Nyes Ty=1(P) = Nyee Hy (see (9)). Take an
arbitrary 0 # f € (\,ecq Hp, this means that
f vanishes at all nonsingular matrices. So, to
complete the proof of the Theorem (see the
introduction), we need the following lemma.

Lemma 3 No multilinear polynomial 0 # f €
F[Xq1,...,X,,] vanishes at all nonsingular
matrices (note that ¢ > 3).

Proof of Lemma 3 goes by induction on n.
The base of induction for n = 1 is evident.
For the inductive step suppose the contrary.
Some variable occurs in f, permuting the rows
and the columns we can assume w.l.o.g. that

Xy, oceurs in f. Then f = X, , fi + fo,
where f; #Z 0, fy are multilinear polynomials
being independent from X, ,,. On the other
hand, Det = X, , M, ,, + h, where M, , is
(n—1) X (n — 1) minor and h is independent
from X, .

For the time being, specify the variables
Xy = ac;fg € Fforall 1 <k, <m—11insuch

a way that Mnn({xfg}) # 0 (so far, there are
many possibilities for specifying). Also we get
a multilinear polynomial

0
f{ei) =
0 0
Xan i ({20 + H({e)) =
Xn,n?l —I_ ?07
where 717 ?07
€ F[Xn,lv ) Xn,n—lv Xl,nv ) Xn—l,n]- For
any set of the values of the variables
Xn,k = xfgl)g € F7 Xk,n =
O eF 1<k<n—1  (10)

there are exactly (¢ — 1) > 2 values of X, ,
such that Det does not vanish. Therefore, the
multilinear polynomials f,, f, vanish identi-
cally: indeed, otherwise for some values (10)
a nonvanishing identically linear polynomial

Xow T ({20, 210+

Tol{z®), 2O € FIX,.,]

would have ¢ — 1 > 2 roots.

On the other hand, there is an appropri-
ate set of values (10) for which the substi-
tution of these values f; = fl({ac?(f?,)€7 96537)1}@ €
F[X11,...,X5—1,n—1] provides a nonvanish-
ing identically polynomial. As we have seen
above, fi vanishes at any nonsingular (n—1)x
(n — 1) matrix {36202}131“4371_1; that contra-
dicts to the inductive hypothesis and proves
Lemma 3. a

3 Open Problems

An intriguing open problem remains to ex-
tend our exponential lower bound for depth 3



arithmetic circuits to arbitrary fields includ-
ing characteristic zero.
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