A LOWER BOUND FOR THE COMPUTATIONAL COMPLEXITY
OF A SET OF DISJUNCTIVES IN A MONOTONE BASIS

D. Yu. Grigor'ev UDC 518.5:519.1

A set of disjunctions of some variables is constructed and a nonlinear lower bound is proved for
the circuit complexity of this set in systems of functional elements (s.f.e.)* in a fixed monotone
basis. The proposed method for proving the lower bound of circuit complexity in the s.f. e, dif-
fers from previously known methods (in a monotone basis).

1. A monotone Boolean function is the composition of conjunctions and disjunctions. In [1-4] the authors
examine the problem of finding a lower bound for the computational complexity of a set of monotone Boolean
functions in systems of functional elements (s.f.e.} in a fixed monotone basis, i.e., a basis of monotone func-
tions. Nechiporuk [1] was the first to construct a set of disjunctions with a nonlinear lower bound for their
computational complexity in s.f, e. in a monotone basis. The disjunctions consiructed by Nechiporuk had the
property that no two had more than one common variable. The set of disjunctions in [2] has the same property.

In the present paper we construct a set of disjunctions for which we prove a nonlinear strict (to withina
multiplicative constant) lower bound for the computational complexity in an s. f,e. in a fixed monotone basis.
The method of proving the lower bound may therefore also be of interest. This method was used to obtain the
lower bound for the computational complexity of a set of linear forms (see [5, Sec. 1]).

Nechiporuk (see [1]) proved that in computing a set of disjunctions in an s, f.e. in a monotone basis we
can, without increasing the complexity, restrict ourselves to a basis consisting of one two-place disjunctive,
We represent each s. f. e. in the usual way (see [5]) in the form of a directed graph with the number of vertices
equal to the number of elements of the s, f.e., counting the variables which occur in it. Each vertex of the
graph therefore corresponds to a Boolean function. We shall say that the functions corresponding to the ver-
tices of a graph are computed by a given s, f. e. The complexity of an s.f. e, is the number of vertices in its
corresponding graph. Therefore, we shall consider systems of functional elements in a basis of one two-place
disjunction, which compute sets of disjunctions.

2. We proceed to the construction of the required set of disjunctions. Let M be a natural number, Ibe
any nonempty subset of the set {1, ..., M}, We denote by Ay the disjunction of all variables x;(0 = i < 2M),
such that if 1 = i;. . .in is the expansion of i in the binary scale, then the sum i1 ¥i is even. Thus, we con-

struct the set {I\I} grlc{h,..,M}s consisting of 2M - 1 disjunctions of 2M variables, We shall calculate the com-

putational complexity of this set in s. f. e. in the basis { V}.

The number of variables that occur in any disjunction 9 is the weight of 9}, and we denote it by 1Dt . We

note that for every I » @,[<{1,...,M} , |Agl = 2M~! holds.
First we obtain an upper bound for the computational compliexity of {Al}éﬂcw,m,m inans.f.e, in the
basis { V|, We denote by Klg (e = 0, 1) the following subset of the set {0, 1, ...,2M—1} Kf' ={iri=1i...iy

is the binary expansion of i and Zjel&jiﬁ(mﬂdi)}.
3
We put:_/\I =V{eK§: x4, where € = 0, 1. Obviously, A‘I’ = A for every g# Ic{t..,i. We construct in the basis

{V} the s.f.e. of complexity =M -2M*! which computes the set of disjunctions {AT}, 1e{t,o ., M}, €=0,1. We
produce the construction by induction on M. For M = 1 the construction is obvious. Let the required s.f.e. S
be already constructed for M = K.

*Translator's note: For "functional elements" read "Boolean circuits."

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematicheskogo Instituta im.
V. A, Steklova AN SSSR, Vol. 68, pp. 19-24, 1977. Original article submitted January 29, 1976.

0090-4104/81/1501-0011$07,50 © 1981 Plenum Publishing Corporation 11



We take two samples of S (denoted by S;and 8,), and we replace every index i of the variable occurring in
Sy by 2i. Correspondingly, in S, we replace i by 2i + 1. We denote the systems thus formed by Sj and S, re-
spectively. We denote the output of the s.f,e. S] by {Ae 20}, and the output of S, by {AE Y, left,. K}, e=o,4

We now combine S{ and S, and obtain an s. [, e. with 1nput variables xg, x4, . . ., Xokt+1_q" We construct the output
for the resulting s.f.e., {A}}, Ie{t,.., kei}, t=0,4 (see clarification below)
x, X, xoket_g o3 Ty

&1
W
3
(A}
(where AL is the disjunction of all the variables, and A%D is the empty disjunction). Let [c {4,...,k*1}., We con-
sider two cases:

1) ketg 1. Then Aj = A¥vA% and A=A} VAY;
2) k+tel. Weput ['=[v{k+1}. Then

[} 0,0 Wi i ' s
AI:AI’ VAl. and P\I= P\‘I? VAOI: .
Thus, we have constructed an s.f. e, (see Fig. 1) on the basis { V} with complexity no greater than 2 -

2k+! k. 2.2k 1 = (k + 1)2K+2, which computes the set {.P\I}gb;t[c{(,_”,k{-{}, t=0,4. Thisprovestheinductive state-
ment for M =k + 1.

3) We proceed to establish the lower bound.

THEOREM. The computational complexity of the set U\,}g«,ﬂc“ ) ins.f.e. ina monotone basis is not
less than M — 1)@M-1—~1/2), Asa preliminary, we prove some subsidiary lemmas,

A directed graph G is ordered if it has the following properties:
1) It contains no directed cycles (see [6]);

2) no more than two arcs enter each vertex of the graph G.

The letter G will denote ordered graphs.

Vertices that are entered by no arc are input; vertices from which no arc leaves are output. We shall
say that the vertex B is situated above the vertex C in the graph G, if there exists a directed chain in the graph
G from B to C (see [6]). For every vertex A of the graph G we put Sg1(A) equal to the number of input vertices
of the graph G which are situated above A in the subgraph G' of the graph G. The following lemma is well-
known in coding theory.

LEMMA 1, Let G' be a subtree of an ordered graph G, having one outgoing vertex R. Then

L, oo b hro o Robog, g .

Lemma 1 can be proved by induction on the number of vertices of G', using the convexity of the function xlog,x
on the positive semiaxis.

LEMMA 2, Let G be an ordered graph with a single output vertex R. Then

ZAeG P h pe (R loga B (R

Proof. Let G = Gy, Gy, . . ., Gy, be some chain of ordered graphs, such that
—_
(1) Gj is obtained from Gj—; by the deletion of some arci=1,..., m;

(2) Gm bhas a unique output vertex R and is a tree,
It is not difficult to construct such a chain from G. For every vertex A of the graph G, the inequality

PG(A)”ﬁGfA))’“-)’me(A)

is satisfied. In addition, by virtue of property 2), for Gy, the equality BG(R) = /SGm(R) is satisfied. Taking
account of this, and applying Lemma 1 for the graph Gy, we get
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Lemma 2 is proved.

Variation, By using the Lemma 2 just proved, we can avoid the restriction (+¥) in the condition of Theo-
rem 1 in [5].

4. We now consider the s, f. e. in the basis { V} which computes the set of disjunctions {Adgeic {4, MY,
and its corresponding ordered graph G. We denote by v(A) the vertex of the graph G which corresponds to the
disjunction A, We denote by G; the subgraph of the graph G which is generated by the vertices of the graph G
which are situated above v(Ap). For each disjunction A which is an element of the s.f. e, we denote by d(A) the
number of graphs Gy in which the vertex v(A) occurs.

LEMMA 3,
M M-4
E ’U(A)eGlAl'd(A)»(ﬁ -4)‘2 '(M‘ﬂ. (1)

Proof, The left part of (1) equals
2 ¢#IC{4,~,M}ZV(A)€GIQN

We apply Lemma 2 to each Gy and obtain

r

M-
V(A)GGIIADAAX\!‘Ko’(dzlAIhZ (M-q

whence we deduce (I). Lemma 3 is proved.

Note. Let A=V, ¢ ¢ be computed in some vertex of the graph G. Then vertex v(A} can occur in the
graph Gy only in the case where fc K;’ﬁ

This follows from the monotonicity of the disjunction,

We introduce one more definition, We say that the subsets I, . . ., Ig of the set {1, ..., M}are A~
independent, if for every nonempty subset L of the set {1,..., K}, the inequality A Iy # @ is satisfied,
where A denotes the symmetric difference of the sets,

LEMMA 4, Let the subsets {1, ..., I} of the set {1, ..., M} be A-independent and let the disjunction
a (element of the s.f.,e.) be such that v(a) occurs in all the graphs GIi (1=<i=X). Then ol < 2M-K,

Proof, Ifi=Vic1xi , then by virtue of the note given above, 1<y ... K;l is satisfied. By definition of K%j
this means that for every element i of I which has the binary expansion i =1i;. . .ipy the sum
Zjel[, i is even for all ,whereNpék.

Thus, the digits of the binary expansion of every element of the set I are the solution of the following
system k of linear equations, over a field of two elements:

g Wito4 (L(,MW,,ﬁQ

aK,4 W« +~--+ak,b1 WM: 0

where "'&j“@jdi'

By virtue of the A-independence of {I;, . . ., IK} the rank of system 2) equals k. Therefore, by means
of elementary transformations (in a field of two elements), (2) can be reduced to the form:

WP|+E|’QWP1+,..+%‘,kWPk+4.. =0
Wyt v  Wpr .. =0

WPk+ e =0

The variables WPk' s Wpyp can be chosen arbitrarily, after which Wp,, .. ., ka are uniquely

defined, Consequently, the number of solutions of system (3), and therefore also of (2), equals ZM"K, there-
fore the number of elements of the set I does not exceed 2M~K, Lemma 4 is proved.
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LEMMA 5, For any k= 1 and any t, if t > Zk"l, then from any t mutually distinct subsets of the set

{1,..., M} we can choose k which are A-independent.
Proof. Suppose the contrary is true and {A;, . .., A;} is a maximal system of A-independent sets among
the given t and let I <t. We consider 2! sets of the form
Aia...ahi, "
where i, j are mutually distinct. Since t > 2k-1= zl, then among the original t sets there is one which cannot
be represented in the form (4). We add this to {A, ..., A;} and again obtain a A-independent system, which
contradicts the choice of {A, ..., A;}). Lemma 5 is proved.

We will now prove the main theorem. We shall show that for every disjunction A which is computable in
some vertex of the graph G, the statement |Al-d(A) = 2M is satisfied. Let v(A) occur in the graphs Gy, (1 =
p = d(A)). Let k be a natural number such that 2k-1 < dA) =< 2K, Then by virtue of Lemma 5 we can chc[))ose
from {Ip}15psd(A) k subsets which are A-independent. Then, by Lemma 4, |Al < 2M-K| Therefore 1A1.dA) =

2M, We now use Lemma 3 and find that =z - 2" YL heG (AL dAys (2M-0) 2™ (M-1) , where z is the number of

elements of the s, f. e. which is being examined. Whence z = @M-1— Y,)(M — 1), The theorem is proved,

LITERATURE CITED

pd

1. E. 1. Nechiporuk, "On a Boolean matrix," Probl. Kibern., 21, 237-240 (1969).

E. A. Lamagna and J. E. Savage, "Computational complexity of some monotone functions,"in: IEEE 15th

énn. Symp. Switch and Automata Theory, New Orleans, 1974, New York, (1974), pp. 140-144,

3. E. I. Nechiporuk, "On the realization of a disjunction and conjunction in some monotone bases," Probl,
Kibern., 23, 291-293 (1970).

4. V. R. Pratt, "The power of negative thinking on multiplication of Boolean matrices," SIAM J. Comput.,
4, No. 3, 326-330 (1975).

no

5. D. Yu. Grigor'ev, "The use of the concepts of separability and independence to obtain lower bounds for
the complexity of circuits," Zap, Nauchn. Sem. Leningr. Otd. Mat, Inst. Akad. Nauk SSSR, 60, 38-48
(1976).

6. A. A, Zykov, Theory of Finite Graphs [in Russian], Vol, I, Nauka (1969).

PROBLEM OF PATH CONNECTIONS IN GRAPHS

D. Yu. Grigor'ev ' UDC 518.5.519.1

A generalization is considered of a problem that arises in the design of electronic equipment
— the tracing of printed circuits. The generalization is proved to be NP-complete in the sense
used by Cook and Karp,

We examine here a generalization of a problem in radioelectronics — the design of printed circuits (see
[1]) — and we prove the NP-completeness of this generalization (see [2, 3]). The problem of designing printed
circuits is as follows: in a printed circuit, which usually consists of one or more planar latfices combined in
a specific way, a set of contacts (nodes) is selected and a list is drawn up of the necessary junctions of the
selected contacts. It must be determined whether these connections can be made in the whole of the circuit
without "shortings." A heuristic "algorithm" for the "solution" of this problem is proposed in [1].

There have been numerous unsuccessful attempts to find an algorithm for the design of printed circuits
that would give results comparable to the present heuristic methods, and it has long been concluded that this
problem is intrinsically complicated. The recent work of Cook [2} and Carp [3] makes it possible to prove the
equivalence of the generalized problem of design with some other "hard" computer problems, e.g., the prob-
lem of integer linear programming, the rucksack problem, and verifying the satisfiability of propositional
formulas (see [3]).
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