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1 IntroductionThe question of how e�ciently one can evaluate expressions suchas �P1�i<j�nq(xi � xj)2 + (yi � yj)2� =�n2�, the mean distance among n points in theplane, was raised in Shamos and Yuval [8]. A systematic study of this question was givenin Pippenger [6,7]. Let � be a family of algebraic expressions constructed from indeter-minates using radicals and arithmetic operations. De�ne the cost of a program to bethe number of root-takings used, with arithmetic operations given for free. Let F be theextension �eld generated by the members of � over the �eld of rational functions with com-plex coe�cients. It was shown [6,7] that, when the members of � are rational functions ofthe roots of rational functions, the mimimum cost is equal to the number of the torsionorders4 for the Galois group of F (an Abelian group in this case). An extension was givenin Ja'Ja' [1], who showed that the minimum cost is equal to the minimum length of anycyclic Jordan-H�older tower for the Galois group of F, provided that F is a �nite Galoisextension over the �eld of rational functions. It is known [1,7] that the former result is aspecial case of the latter.These results can be used to determine the minimum cost for computing � in manycases. For example, for the mean distance problem, the Galois group can be shown [6] tobe isomorphic to (Z2)(n2), which clearly has �n2� torsion orders.As taking a root y1=d can be simulated by taking the logarithm log y followed byan exponentiation exp((log y)=d), a natural question is whether the availability of thelograrithm and exponential operations can substantially reduce the cost of evaluatingalgebraic expressions. In particular, can one evaluate the expression P1�i�npxi usingo(n) exponentiations and logarithm-takings? (Clearly, the expression can be evaluatedwith n root-takings.) The possible use of logarithms and exponentials, as well as otherprimitives, was mentioned in [8], but was not studied in later papers [1,6,7].In this paper, we show that under the same assumption as in [1] (i.e. F being a�nite Galois extension), the availability of taking logarithms and exponentials does notreduce the cost. In particular, we prove that n or more operations are needed to evaluateP1�i�npxi, with arithmetic operations given for free. In the next section, we give aprecise statement of the main result (Theorem 1), after introducing the needed notationsand background. The result is then proved in Section 3; some additional concepts andresults from Di�erential Algebra (see [2-4]) are used in the proof.4Any �nite Abelian group G can be uniquely decomposed into a direct sum of cyclic groups Zd1 �Zd2 � � � �Zdt , such that dt > 1 and di is divisible by di+1 for 1 � i < t. The integers di are called thetorsion orders of G; t is the number of torsion orders for G.2



We remark that the complexity question under other cost measures, in which the costof taking a d-th root may depend on d, were discussed in [1,6,7]. We will not pursue ithere.2 The Main ResultWe use the standard teminology in Algebra (as in Lang [3]). In what follows, let Z+ bethe set of all positive integers.An �-program A is a sequence of instructions of the form z1  I1, z2  I2; � � � ; zm  Im, where Ii are of the form (ri(x1; x2; � � � ; xn; z1; � � � ; zi�1))1=di with ri is a rational func-tion in x1; � � � ; xn; z1; � � � ; zi�1 with complex coe�cients and di 2 Z+. We call m thecost of A. For 1 � i � m, let gi(x1; x2; � � � ; xn) be the functions de�ned inductively bygi(x1; x2; � � � ; xn) = (ri(x1; x2; � � � ; xn; g1(x1; � � � ; xn); � � � ; gi�1(x1; � � � ; xn)))1=di . We shallalways assume that the ri have been chosen so that the denominators of these func-tions do not vanish identically. Informally, gi(x1; x2; � � � ; xn) are the values assumed bythe variables zi for input (x1; x2; � � � ; xn). Let EA denote the set of all functions of theform r(x1; x2; � � � ; xn; g1(x1; � � � ; xn); � � � ; gm(x1; � � � ; xn)) where r is a rational function withcomplex coe�cients whose denominator does not vanish identically when the substitutionis made. We note that each element of EA de�nes a function algebraic over the �eldF0 = C(x1; � � � ; xn) of rational functions in n variables with coe�cients in the complexnumbers C.A solvable algebraic expression is any element of EA for any �-program A. Let � =(f1; f2; � � � ; fs) be a �nite set of solvable algebraic expressions. We say that � is computedby A, if each fi 2 EA. Let N�(�) be the minimum cost of any �-program computing �.Clearly, N�(�) is �nite. For any such �, we can form the �eld F0(�) which is the algebraicextension of F0 formed by adjoining the functions corredponding to the elements f1; � � � ; fsof �.Following [1], � is said to be normal, if F0(�) is a �nite Galois extension of F0. Inother words, � is normal if � generates the splitting �eld of some polynomial over F0.For any solvable group G, a cyclic Jordan-H�older tower is a normal tower of groupsG = G0 . G1 . � � � . Gm�1 . Gm = 1;where Gi�1=Gi is cyclic for each 1 � i � m. Let �(G) be the length m of the shortestcyclic Jordan-H�older tower for G.The next result is from Ja'Ja' [1] which we state as a lemma:3



Lemma 1 [1] If � is normal, then N�(�) = �(G), where G is the Galois group for F0(�)over F0.A �-program B is a sequence of instructions of the form z1  I1, z2  I2; � � � ; zm  Im,where Ii are of the form a1=dii , exp(ai), or log(ai), where ai = ri(x1; x2; � � � ; xn; z1; � � � ; zi�1)with ri is a rational function in x1; � � � ; xn; z1; � � � ; zi�1 with complex coe�cients and di 2Z+. We shall again always assume that the ri have been chosen so that the denominatorsof these functions do not vanish identically. Let �(B) be the number of instructions whicheither take roots or exponentials. Let gi(x1; x2; � � � ; xn) be the functions associated withvariables zi, de�ned exactly as in the case for �-programs. Let EB denote the set ofall functions of the form r(x1; x2; � � � ; xn; g1(x1; � � � ; xn); � � � ; gm(x1; � � � ; xn)) where r is arational function with complex coe�cients whose denomincators do not vanish identicallywhen the substituion is made.Let � = (f1; f2; � � � ; fs) be a �nite set of solvable algebraic expressions. We say that� is computed by B, if each element fi of � equals a function in EB. Let N�(�) be theminimum �(B) of any �-program B computing �.Our main result is the following theorem:Theorem 1 If � is normal, then N�(�) = �(G), where G is the Galois group for F0(�)over F0.Corollary 1 If � is normal, then N�(�) = N�(�).Corollary 2 Let � = f f g, where f =P1�i�npxi. Then N�(�) = n.Remark It is an interesting open question whether N�(�) is equal to N�(�) when � is notrequired to be normal.3 Proof of Theorem 1Before proving the theorem, we introduce some terms in Di�erential Algebra (see [2],[3], [4]). A di�erential �eld is a �eld k together with a set � = f�ig of mappings �i :k!k, called derivations, such that each�i satis�es the conditions �i(a+ b) = �i(a) + �i(b),�i(ab) = �i(a)b+ a�i(b), and �i(�j(a)) = �j(�i(a)) for all �i; �j 2 �; a; b 2 k. For example,F0 can be considered a di�erential �eld when we use the derivations � = f�1; � � � ; �ngwhere �i(f) = @f=@xi. In this paper we are concerned only with di�erential �elds thatcome from �elds of di�erentiable functions a and that are extensions of this di�erential�eld. These extensions will be gotten by adjoining elements that can be interpreted asfunctions on some suitable region in complex n-space Cn. We will use K0 to denote the4



di�erential �eld obtained from the �eld F0 equipped with these standard derivations �.Note that if K is a di�erential �eld containing K0 and if a 2 K, then the �eld obtainedby adjoining exp(a) to K gives a di�erential �eld. The element exp(a) will satisfy thedi�erential equations �i(exp(a)) = �i(a) � exp(a) for i = 1; � � �; n. Similarly, the adjoiningof log(a) gives a di�erential �eld and the element log(a) satis�es �i(log(a)) = �i(a)=afori = 1; � � �; n. We also note that if � = (f1; � � � ; fs) is a set of solvable algebraic expressions(or, more generally, any set of algebraic functions), the derivations � can be extendeduniquely to derivations on F0(�) ([4], Lemma 1, p.90).The classical Galois theory for �eld theory can be extended to a di�erential Galoistheory for di�erential �elds (See [3] and [4] for de�nitions and discussions of these concepts;[2] contains an excellent exposition of the theory in the case of only one derivation andthe essential results extend, mutatis mutandi to the case of several derivations). Thisgalois theory can be used to study the structure of the solutions of a system of partiallinear di�erential equations, provided that the equations generate a di�erential ideal of�nite linear dimension or, equivalently (see [4], Chapter IV.5), the solution space is a �nitedimensional vector space (i.e., the system is holonomic). This is the case for the equationsde�ning exponentials and logarithms (see [3] and [4]). To avoid possible confusions, we willreserve the term Galois group for the classical Galois group, and use the term di�erentialGalois group when di�erential �elds are being discussed. It should be noted, though, thatif k1 is an algebraic extension of k0, a di�erential �eld of characteristic zero, then since allderivations on k0 can be extended uniquely to derivations on k1, we can identify the Galoisgroup of k1 over k0 with the di�erential galois group of k1 over k0 (with respect to thesederivations). To see this note that any di�erential automorphism is by de�nition a usualautomorphism. Conversely, for any automorphism � of k1 over k0 and any derivation �of k1 that leaves k0 invariant, we have that ��1 � � � � is a derivation of k1 agreeing with� on k0. Uniqueness implies that they must be equal on all of k1 and so � must be adi�erential automorphism. This remark allows us to apply results concerning di�erentialgalois theory to the galois theory of algebraic extensions of di�erential �elds.To prove Theorem 1, we �rst show that if F0(�) is contained in a certain tower ofdi�erential �elds, then there is a tower of algebraic extension �elds of no greater lengthcontaining F0(�). This result (Lemma 2 below) is at the heart of the proof for Theorem1. Let K0 � K1 � K2 � : : : � Km be a tower of di�erential �elds, where each Kiis obtained from Ki�1 by adjoining an element ui; ui is either exp(ai) or log(ai) withai 2 Ki�1. Let I be the set of 1 � i � m such that ui is exp(ai). We recall from dif-ferential Galois theory that in this case each Ki is a Picard-Vessiot extension of Ki�1.Furthermore, it is known (see [3, Section 4], or [4, Chapter VI.6]; [2, Lemmas 3.9 and5



3.10] contains simillar results for the case of one derivation) that, if i 2 I , the di�erentialGalois group of Ki over Ki�1 is an algebraic subgroup of C�, the multiplicative groupof non-zero complex numbers, and if i =2 I , then the di�erential Galois group of Ki overKi�1 is an algebraic subgroup of C+, the additive group of complex numbers. Finally, wenote that the proper algebraic subgroups of C� are precisely the �nite cyclic groups andthe only proper algebraic subgroup of C+ is the trivial group. This can be seen by notingthat a proper Zariski closed subset of either of these two groups must be �nite and thatin the �rst case, we will have a �nite multiplicative subgroup of a �eld and in the secondcase we will have a �nite subgroup of a torsion free group.Lemma 2 If F0(�) � Km then �(G) �j I j.Proof Let Fi = F0(�)\Ki for 1 � i � m. Then Fm = F0(�). Note thatF0 = F0(�)\K0.Let Hi be the di�erential Galois group ofKi overKi�1. We claim that the following state-ment is true for 1 � i � m :Fact 1 Fi is a Galois extension of Fi�1.To prove this fact, let Ei be the sub�eld of elements of Ki algebraic over Ki�1. Eiis a di�erential �eld and is left invariant by all elements of Hi. Therefore the di�erentialGalois group of Ki over Ei is a normal subgroup of Hi and so Ei is a Galois extensionof Ki�1. Note that Fi = Ei \ F0(�). Let p(x) be a polynomial with coe�cients in Fi�1.If p(x) = 0 has a root in Fi, it must split in both Ei and F0(�) (since F0(�) is a fortiorinormal over Fi�1). Therefore p(x) = 0 splits in Fi and so Fi is a Galois extension ofFi�1.Now let Ji be the Galois group of Fi over Fi�1. We claim that the following statementis true:Fact 2 For 1 � i � m; Ji is the trivial group if i =2 I , and a cyclic group if i 2 I .To prove this fact, consider the �eld Ki�1 � Fi. This is a sub�eld of Ki. Since Hi isan abelian group, all of its subgroups are normal, so Ki�1 � Fi is a normal extension ofKi�1 whose di�erential Galois group Li is the quotient of Hi by a closed subgroup of Hi.Furthermore, since Ki�1 �Fi is a �nite extension of Ki�1 , Li is �nite and thus coincides6



with the Galois group of this extension. If i =2 I , then Hi is either C+ or the trivialgroup. The only �nite quotient of either of these groups by a closed subgroup is trivial.If i 2 I , then Hi is either C� or a �nite cyclic group. The only possible �nite quotientsof these groups by closed subgroups are cyclic. To �nish the proof of Fact 2, we note thatKi�1 \ Fi = Fi�1 and so the Galois group Ji of Fi over Fi�1 is isomorphic to Li (see [5,Corollary, p. 400] or [4, Chapter VII, Theorem 1.12]; [2, Lemma 5.10] is a related resultbut deals only with the case of one derivation.)We can now �nish the proof of Lemma 2. Let Gi denote the group of automorphismsof F0(�) leaving Fi �xed. By Facts 1 and 2, one concludes from the Galois theory thatthe series G = G0; G1; G2; : : : ; Gm = 1 forms a cyclic Jordan-H�older tower, with Gi�1=Gibeing isomorphic to Ji. Deleting all i =2 I , we have a tower of length j I j. Hence�(G) �j I j : 2We now turn to the proof of Theorem 1. Observe that N�(�) � N�(�), which is nogreater than �(G) by Lemma 1. Thus, we only need to prove that N�(�) � �(G).Let B be any �-program for computing �. Without loss of generality, we may assumethat no root-taking operations are used in B, as we can replace any instruction z  r1=dby two instructions y  (log r)=d, z  exp(y) without changing the value of �(B). Letthe instructions be z1  I1, z2  I2; � � � ; zm  Im. Let gi(x1; x2; � � � ; xn) be the functionsassociated with variables zi.For 1 � i � m, let Ki be the di�erential �eld obatained by adjoining gi to Ki�1.By de�nition, the functions of EB correspond to elements of Km and F0(�) � Km. ByLemma 2, this implies �(G) � �(B). This proves �(G) � N�(�), and completes the proofof Theorem 1. Corollary 1 follows immediately from the theorem and Lemma 1.To prove Corollary 2, we note that � is normal and the Galois group G of F0(�) overF0 is isomorphic to Z2n. >From the result in [1, 7] (see [7, p. 399, Lemma 3.2]), �(G) isequal to the number of torsion orders of G which is cleary n. Corollary 2 follows from thetheorem immediately.References[1] J. Ja' Ja', \Computation of algebraic functions with root extractions," Pro-ceedings of 22nd IEEE Symposium on Foundations of Computer Science, 1981,95-100.[2] I. Kaplansky, An Introduction to Di�erential Algebra, Hermann, Paris, 1957.7
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