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Abstract. Subtraction-free computational complexity is the version of arithmetic circuit
complexity that allows only three operations: addition, multiplication, and division.

We use cluster transformations to design efficient subtraction-free algorithms for com-
puting Schur functions and their skew, double, and supersymmetric analogues, thereby
generalizing earlier results by P. Koev.

We develop such algorithms for computing generating functions of spanning trees, both
directed and undirected. A comparison to the lower bound due to M. Jerrum and M. Snir
shows that in subtraction-free computations, “division can be exponentially powerful.”

Finally, we give a simple example where the gap between ordinary and subtraction-free
complexity is exponential.
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Introduction

This paper is motivated by the problem of dependence of algebraic complexity on the
set of allowed operations. Suppose that a rational function f can in principle be computed
using a restricted set of arithmetic operations M ⊂ {+,−, ∗, /}; how does the complexity
of f (i.e., the minimal number of steps in such a computation) depend on the choice of M?
For example, let f be a polynomial with nonnegative coefficients; then it can be com-
puted without using subtraction (we call this a subtraction-free computation). Could this
restriction dramatically alter the complexity of f? What if we also forbid using division?

One natural test is provided by the Schur functions and their various generalizations.
Combinatorial descriptions of these polynomials are quite complicated, and the (non-
negative) coefficients in their monomial expansions are known to be hard to compute.
On the other hand, well-known determinantal formulas for Schur functions yield fast (but
not subtraction-free) algorithms for computing them.

In fact, one can compute a Schur function in polynomial time without using subtraction.
An outline of such an algorithm was first proposed by P. Koev [18] in 2007. In this paper,
we describe an alternative algorithm utilizing the machinery of cluster transformations,
a family of subtraction-free rational maps that play a key role in the theory of cluster
algebras [11]. We then further develop this approach to obtain subtraction-free polynomial
algorithms for computing skew, double, and supersymmetric Schur functions.

We also look at another natural class of polynomials: the generating functions of span-
ning trees (either directed or undirected) in a connected (di)graph with weighted edges.
We use star-mesh transformations to develop subtraction-free algorithms that compute
these generating functions in polynomial time. In the directed case, this sharply contrasts
with the exponential lower bound due to M. Jerrum and M. Snir [15] who showed that if
one only allows additions and multiplications (but no subtractions or divisions), then the
arithmetic circuit complexity of the generating function for directed spanning trees in an
n-vertex complete digraph grows exponentially in n. We thus obtain an exponential gap
between subtraction-free and semiring complexity, which can be informally expressed by
saying that in the absence of subtraction, division can be “exponentially powerful” (cf.
L. Valiant’s result [36] on the power of subtraction). Recall that if subtraction is allowed,
then division gates can be eliminated at polynomial cost, as shown by V. Strassen [33].
One could say that forbidding subtraction can dramatically increase the power of division.

Jerrum and Snir [15] have shown that their exponential lower bound also holds in the
tropical semiring (R, +, min) (see, e.g., [19, Section 8.5] and references therein). Since
our algorithms extend straightforwardly into the tropical setting, we conclude that the
circuit complexity of the minimum cost arborescence problem drops from exponential to
polynomial as one passes from the tropical semiring to the tropical semifield (R, +,−, min).

At the end of the paper, we present a simple example of a rational function fn whose
ordinary circuit complexity is linear in n whereas its subtraction-free complexity, while
finite, grows at least exponentially in n.
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The paper is organized as follows. Section 1 reviews basic prerequisites in algebraic
complexity, along with some relevant historical background. In Section 2 we present our
main results. Their proofs occupy the rest of the paper. Sections 3–5 are devoted to
subtraction-free algorithms for computing Schur functions and their variations, while in
Sections 6–7 we develop such algorithms for computing generating functions for spanning
trees, either ordinary or directed. In Section 8, we demonstrate the existence of exponential
gaps between ordinary and subtraction-free complexity.

1. Computational complexity

We start by reviewing the relevant basic notions of computational complexity, more
specifically complexity of arithmetic circuits (with restrictions). See [3, 13, 31] for in-
depth-treatment and further references.

An arithmetic circuit is an oriented network each of whose nodes (called gates) performs
a single arithmetic operation: addition, subtraction, multiplication, or division. The circuit
inputs a collection of variables (or indeterminates) as well as some scalars, and outputs a
rational function in those variables. The arithmetic circuit complexity of a rational function
is the smallest size of an arithmetic circuit that computes this function.

The following disclaimers further clarify the setup considered in this paper:

- we define complexity as the number of gates in a circuit rather than its depth;
- we do not concern ourselves with parallel computations;
- we allow arbitrary positive integer scalars as inputs.

Although we focus on arithmetic circuit complexity, we also provide bit complexity esti-
mates for our algorithms. For the latter purpose, the input variables should be viewed as
numbers rather than formal variables.

As is customary in complexity theory, we consider families of computational problems
indexed by a positive integer parameter n, and only care about the rough asymptotics of
the arithmetic complexity as a function of n. The number of variables may depend on n.

Of central importance is the dichotomy between polynomial and superpolynomial (in
particular exponential) complexity classes. We use the shorthand poly(n) to denote the
dependence of complexity on n that can be bounded from above by a polynomial in n.

Perhaps the most important (if simple) example of a sequence of functions whose arith-
metic circuit complexity is poly(n) is the determinant of an n by n matrix. (The entries of a
matrix are treated as indeterminates.) The simplest—though not the fastest—polynomial
algorithm for computing the determinant is Gaussian elimination.

In this paper, we are motivated by the following fundamental question: How does the
complexity of an algebraic expression depend on the set of operations allowed?

Let us formulate the question more precisely. Let M be a subset of the set {+,−, ∗, /} of
arithmetic operations. Let Z{M} = Z{M}(x, y, . . . ) denote the class of rational functions
in the variables x, y, . . . which can be defined using only operations in M . For example, the
class Z{+, ∗, /} consists of subtraction-free expressions, i.e., those rational functions which
can be written without using subtraction (note that negative scalars are not allowed as
inputs). To illustrate, x2−xy+y2 ∈ Z{+, ∗, /}(x, y) because x2−xy+y2 = (x3+y3)/(x+y).
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While the class Z{M} can be defined for each of the 24 = 16 subsets M ⊂ {+,−, ∗, /},
there are only 9 distinct classes among these 16. This is because addition can be emulated
by subtraction: x + y = x− ((x− y)−x). Similarly, multiplication can be emulated by di-
vision. This leaves 3 essentially distinct possibilities for the additive (resp., multiplicative)
operations. The corresponding 9 computational models are shown in Table 1.

no multiplicative multiplication multiplication
operations only and division

no additive
operations

scalars monomials Laurent monomials

addition only
nonnegative linear

combinations
nonnegative
polynomials

subtraction-free
expressions

addition and
subtraction

linear
combinations

polynomials rational functions

Table 1. Rational functions computable with restricted set of operations

For each subset of arithmetic operations M ⊂ {+,−, ∗, /}, there is the corresponding
notion of (arithmetic circuit) M -complexity (of an element of Z{M}). The interesting
cases are those where both additive and multiplicative operations appear, see Table 2.

ordinary complexity

+ ∗

+ − ∗ring
complexity

+ ∗ /
subtraction-free

complexity

+ − ∗ /

@
@

¡
¡

¡
¡

@
@

semiring complexity

Table 2. Notions of M -complexity, with M ⊃ {+, ∗}.

Now, how does M -complexity depend on M , when there is a choice? Here is one way to
make this question precise:

Problem 1.1. Let f1, f2, . . . be a sequence of rational functions (depending on a potentially
changing set of variables) which can be computed using the gates in M ′ ( M ⊂ {+,−, ∗, /}.
If the M -complexity of fn is poly(n), does it follow that its M ′-complexity is also poly(n)?

The nontrivial instances of Problem 1.1, discussed in Examples 1.2–1.5 below, concern
the four notions of M -complexity that involve both additive and multiplicative operations.
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Example 1.2. M = {+,−, ∗, /}, M ′ = {+,−, ∗}. In 1973, V. Strassen [33] (cf. [31,
Theorem 2.11]) proved that in this case, the answer to Problem 1.1 is essentially yes :
division gates can be eliminated (at polynomial cost) provided the total degree of the
polynomial fn is poly(n).

As a consequence, one for example obtains a division-free polynomial algorithm for
computing a determinant. More efficient algorithms of this kind can be constructed directly
(ditto for the Pfaffian), see [27] and references therein.

Example 1.3. M = {+,−, ∗}, M ′ = {+, ∗}. (In view of Strassen’s theorem, this setting
is essentially equivalent to taking M = {+,−, ∗, /}, M ′ = {+, ∗}.) In 1980, L. Valiant [36]
has shown that in this case, the answer to Problem 1.1 is no: for a certain sequence of poly-
nomials fn with nonnegative integer coefficients, the {+, ∗}-complexity of fn is exponential
in n whereas their {+,−, ∗}-complexity (equivalently, ordinary arithmetic circuit complex-
ity) is poly(n). The polynomial fn used by Valiant is defined as a generating function for
perfect matchings in a particular planar graph (a triangular grid). By a classical result
of P. W. Kasteleyn [16], such generating functions can be computed as certain Pfaffians,
hence their ordinary complexity is polynomial.

It is unknown whether subtraction-free complexity of Valiant’s test function fn is poly(n).
If the answer is yes, then fn exhibits a (superpolynomial) complexity gap between subtrac-
tion-free and {+, ∗}-complexity. If the answer is no, then we get a complexity gap between
ordinary and subtraction-free complexity. Thus, we have known since Valiant’s work that
one of these two gaps is present in his example—but we still do not know which one!

Other examples of polynomials fn which exhibit an exponential gap between ordinary
and {+, ∗}-complexity were given by M. Jerrum and M. Snir [15], cf. Theorem 2.7.

The notion of {+, ∗}-complexity of a polynomial with nonnegative coefficients was al-
ready considered in 1976 by C. Schnorr [28]. (He used the terminology “monotone rational
computations” which we shun.) Schnorr gave a lower bound for {+, ∗}-complexity which
only depends on the support of a polynomial, i.e., on the set of monomials that contribute
with a positive coefficient. Valiant’s argument uses a further refinement of Schnorr’s lower
bound, cf. [29].

Example 1.4. M = {+,−, ∗, /}, M ′ = {+, ∗, /}. In this case, Problem 1.1 asks whether
any subtraction-free rational expression that can be computed by an arithmetic circuit
of polynomial size can be computed by such a circuit without subtraction gates. In Sec-
tion 8, we show the answer to this question to be negative, by constructing a sequence of
polynomials fn whose ordinary arithmetic circuit complexity is O(n) while their {+, ∗, /}-
complexity is at least exponential in n. Unfortunately, this example is somewhat artificial;
it would be interesting to find an example of a natural computational problem with an
exponential gap between ordinary and subtraction-free complexity.

In the opposite direction, we demostrate that for some important classes of functions, the
gap between these two complexity measures is merely polynomial, in a somewhat counter-
intuitive way: these functions turn out to have polynomial subtraction-free complexity
even though their “naive” subtraction-free description has exponential size.
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Note that subtraction is the only arithmetic operation that does not allow for an efficient
control of round-up errors (for positive real inputs). Consequently the task of eliminating
subtraction gates is relevant to the design of numerical algorithms which are both efficient
and precise. To rephrase, this instance of Problem 1.1 can be viewed as addressing the
tradeoff between speed and accuracy. See [9] for an excellent discussion of these issues.

Example 1.5. M = {+, ∗, /}, M ′ = {+, ∗}. This is the subtraction-free version of the
problem discussed in Example 1.2. That is: can division gates be eliminated in the absence
of subtraction? We will show that the answer is no, by demonstrating that the generating
function for directed spanning trees in a complete directed graph on n vertices has poly(n)
subtraction-free complexity. This contrasts with an exponential lower bound for the {+, ∗}-
complexity of the same generating function, given by M. Jerrum and M. Snir [15].

2. Main results

Schur functions and their variations. Schur functions sλ(x1, ...xk) (here λ = (λ1 ≥
λ2 ≥ · · · ≥ 0) is an integer partition) are remarkable symmetric polynomials that play
prominent roles in representation theory, algebraic geometry, enumerative combinatorics,
mathematical physics, and other mathematical disciplines; see, e.g., [21, Chapter I] [32,
Chapter 7]. Among many equivalent ways to define Schur functions (also called Schur
polynomials), let us mention two classical determinantal formulas: the bialternant formula
and the Jacobi-Trudi formula. These formulas are recalled in Sections 3 and 5, respectively.

Schur functions and their numerous variations (skew Schur functions, supersymmetric
Schur functions, Q- and P -Schur functions, etc., see loc. cit.) provide a natural source
of computational problems whose complexity might be sensitive to the set of allowable
arithmetic operations. On the one hand, these polynomials can be computed efficiently in
an unrestricted setting, via determinantal formulas; on the other hand, their (nonnegative)
expansions, as generating functions for appropriate tableaux, are in general exponentially
long, and coefficients of individual monomials are provably hard to compute, cf. Remark 2.3.
(Admittedly, a low-complexity polynomial can have high-complexity coefficients. For ex-
ample, the coefficient of x1 · · · xn in

∏

i

∑

j(aijxj) is the permanent of the matrix (aij).)
The interest in determining the subtraction-free complexity of Schur functions goes back

at least as far as mid-1990s, when the problem attracted the attention of J. Demmel and
the first author, cf. [8, pp. 66–67]. The following result is implicit in the work of P. Koev
[18, Section 6]; more details can be found in [5, Section 4]).

Theorem 2.1 (P. Koev). Subtraction-free complexity of a Schur polynomial sλ(x1, ...xk)
is at most O(n3) where n = k + λ1.

In this paper, we give an alternative proof of Theorem 2.1 based on the technology of
cluster transformations. The algorithm presented in Section 3 computes sλ(x1, ...xk) via a
subtraction-free arithmetic circuit of size O(n3). The bit complexity is O(n3 log2 n).

All known fast subtraction-free algorithms for computing Schur functions use division.

Problem 2.2. Is the {+, ∗}-complexity of a Schur function polynomial?
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Remark 2.3. We suspect the answer to this question to be negative. In any case, Prob-
lem 2.2 is likely to be very hard. We note that Schnorr-type lower bounds are useless in
the case of Schur functions. Intuitively, computing a Schur function is difficult not be-
cause of its support but because of the complexity of its coefficients (the Kostka numbers).
The problem of computing an individual Kostka number is known to be #P-complete
(H. Narayanan [23]) whereas the support of a Schur function is very easy to determine.

Our approach leads to the following generalizations of Theorem 2.1. See Sections 4 and 5
for precise definitions as well as proofs.

Theorem 2.4. A double Schur polynomial sλ(x1, . . . , xk | y) can be computed by a sub-
traction-free arithmetic circuit of size O(n3) where n = k + λ1. The bit complexity of the
corresponding algorithm is O(n3 log2 n).

Theorem 2.4 can be used to obtain an efficient subtraction-free algorithm for super-
symmetric Schur functions, see Theorem 4.4.

Theorem 2.5. A skew Schur polynomial sλ/ν(x1, . . . , xk) can be computed by a subtraction-
free arithmetic circuit of size O(n5) where n = k + λ1. The bit complexity of the corre-
sponding algorithm is O(n5 log2 n).

Remark 2.6. The actual subtraction-free complexity (or even the {+, ∗}-complexity) of
a particular Schur polynomial can be significantly smaller than the upper bound of Theo-
rem 2.1. For example, consider the bivariate Schur polynomial s(λ1,λ2)(x1, x2) given by

s(λ1,λ2)(x1, x2) = (x1x2)
λ2hλ1−λ2(x1, x2),

where hd(x1, x2) =
∑

1≤i≤d xi
1 · xd−i

2 (the complete homogeneous symmetric polynomial).
The polynomial s(λ1,λ2)(x1, x2) can be computed in O(log(λ1)) time using addition and
multiplication only, by iterating the formulas

h2d+1(x1, x2) = (xd+1
1 + xd+1

2 ) hd(x1, x2)(2.1)

h2d+2(x1, x2) = (xd+2
1 + xd+2

2 ) hd(x1, x2) + xd+1
1 xd+1

2 .(2.2)

Spanning trees. We also develop efficient subtraction-free algorithms for another class of
polynomials: the generating functions of spanning trees in weighted graphs, either ordinary
(undirected) or directed. In the directed case, the edges of a tree should be directed towards
the designated root vertex. The weight of a tree is defined as the product of the weights
of its edges. See Sections 6–7 for precise definitions.

Determinantal formulas for these generating functions (the Matrix-Tree Theorems) go
back to G. Kirchhoff [17] (1847, undirected case) and W. Tutte [34, Theorem 6.27] (1948,
directed case). Consequently, their ordinary complexity is polynomial. Amazingly, the
{+, ∗}-complexity is exponential in the directed case:

Theorem 2.7 (M. Jerrum and M. Snir [15, 4.5]). Let ϕn denote the generating function
for directed spanning trees in a complete directed graph on n vertices. Then the {+, ∗}-
complexity of ϕn can be bounded from below by n−1(4/3)n−1.
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In Sections 6–7, we establish the following results.

Theorem 2.8. Let G be a weighted simple graph (respectively, simple directed graph) on
n vertices. Then the generating function for spanning trees in G (respectively, directed
spanning trees rooted at a given vertex) can be computed by a subtraction-free arithmetic
circuit of size O(n3).

In particular, the {+, ∗, /}-complexity of the polynomials ϕn from Theorem 2.7 is O(n3),
in sharp contrast with the Jerrum-Snir lower bound.

3. Subtraction-free computation of a Schur function

This section presents our proof of Theorem 2.1, i.e., an efficient subtraction-free algo-
rithm for computing a Schur function. The basic idea of our approach is rather simple,
provided the reader is already familiar with the basics of cluster algebras. (Otherwise,
(s)he can safely skip the next paragraph, as we shall keep our presentation self-contained.)

A Schur function can be given by a determinantal formula, as a minor of a certain
matrix, and consequently can be viewed as a specialization of some cluster variable in an
appropriate cluster algebra. It can therefore be obtained by a sequence of subtraction-
free rational transformations (the “cluster transformations” corresponding to exchanges of
cluster variables under cluster mutations) from a wisely chosen initial extended cluster. An
upper bound on subtraction-free complexity is then obtained by combining the number of
mutation steps with the complexity of computing the initial seed.

The most naive version of this approach starts with the classical Jacobi-Trudi formula
(reproduced in Section 5) that expresses a (more generally, skew) Schur function as a minor
of the Toeplitz matrix (hi−j(x1, ..., xk)) where hd denotes the dth complete homogeneous
symmetric polynomial, i.e., the sum of all monomials of degree d. Unfortunately, this
approach (or its version employing elementary symmetric polynomials) does not seem to
yield a solution: even though the number of mutation steps can be polynomially bounded,
we were unable to identify an initial cluster all of whose elements are easier to compute
(by a polynomial subtraction-free algorithm) than a general Schur function.

The key idea is to employ a different cluster recurrence that iteratively computes Schur
polynomials in varying number of arguments. This leads us to an algorithm that ultimately
relies—as did Koev’s original approach [18]—on another classical determinantal formula
for a Schur function, which goes back to Cauchy and Jacobi. This formula expresses sλ as
a ratio of two “alternants,” i.e., Vandermonde-like determinants. Let us recall this formula
in the form that will be convenient for our purposes; an uninitiated reader can view it as
a definition of a Schur function.
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Let n be a positive integer. Consider the n × n “rescaled Vandermonde” matrix

(3.1) X = (Xij) =









xi−1
j

∏

a<j

(xj − xa)









n

i,j=1

=

























1
1

x2 − x1

1

(x3 − x1)(x3 − x2)
· · ·

x1
x2

x2 − x1

x3

(x3 − x1)(x3 − x2)
· · ·

x2
1

x2
2

x2 − x1

x2
3

(x3 − x1)(x3 − x2)
· · ·

...
...

...
. . .

























.

For a subset I ⊂ {1, . . . , n}, say of cardinality k, let sI denote the corresponding “flag
minor” of X, i.e., the determinant of the square submatrix of X formed by the intersections
of the rows in I and the first k columns:

(3.2) sI = sI(x1, . . . , xk) = det(Xij)i∈I,j≤k.

(For example, s1,...,k = det(Xij)
k
i,j=1 = 1.) It is easy to see that sI is a symmetric polynomial

in the variables x1, . . . , xk.
Now, let λ = (λ1, . . . , λk) be a partition with at most k parts satisfying λ1 + k ≤ n.

Define the k-element subset I(λ) ⊂ {1, . . . , n} by

(3.3) I(λ) = {λk + 1, λk−1 + 2, . . . , λ1 + k}.
The Schur function/polynomial sλ(x1, . . . , xk) is then given by

(3.4) sλ(x1, . . . , xk) = sI(λ)(x1, . . . , xk) = det(Xij)i∈I(λ),j≤k.

If λ has more than k parts, then sλ(x1, . . . , xk)=0.
We note that as I ranges over all subsets of {1, . . . , n}, the flag minors of X range over

the nonzero Schur polynomials sλ(x1, . . . , xk) with λ1 + k ≤ n.

Flag minors play a key role in one of the most important examples of cluster algebras, the
coordinate ring of the base affine space. Let us briefly recall (borrowing heavily from [10],
and glancing over technical details, which can be found in loc. cit.) the basic features of
the underlying combinatorial setup, which was first introduced in [2]; cf. also [7].

A pseudoline arrangement is a collection of n curves (“pseudolines”) each of which is a
graph of a continuous function on [−1, 1]; each pair of pseudolines must have exactly one
crossing point in common; no three pseudolines may intersect at a point. See Figure 1.
The pseudolines are numbered 1 through n from the bottom up along the left border. The
resulting pseudoline arrangement is considered up to isotopy (performed within the space
of such arrangements).

To each region R of a pseudoline arrangement, except for the very top and the very
bottom, we associate the flag minor sI(R) indexed by the set I(R) of labels of the pseudolines
passing below R. These are called chamber minors.

Pseudoline arrangements are related to each other via sequences of local moves of the
form shown in Figure 2. Each local move results in replacing exactly one chamber minor
sI(R) by a new one; these two minors are denoted by e and f in Figure 2. To illustrate, the



10 SERGEY FOMIN, DIMA GRIGORIEV, AND GLEB KOSHEVOY

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

@
@

@
@

@
@

@
@

@
@

@
@@

¡
¡

¡
¡

¡
¡

¡
¡¡

¡
¡

¡
¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@@1

2

3

4

s1 s2 s3 s4

s12

s23

s34

s123 s234

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡

¡
¡¡

@
@

@
@

@
@

@
@@

¡
¡

¡
¡

¡
¡

¡
¡

¡

@
@

@
@

@
@

@
@

@
@

@
@

@
@@

@
@@¡

¡¡

1

2

3

4

s1

s13

s3 s4

s12

s23

s34

s123 s234

Figure 1. Two pseudoline arrangements, and associated chamber minors

two pseudoline arrangements in Figure 1 are related by a local move that replaces s2 by s13

(or vice versa).
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a

b c

d

f

Figure 2. A local move in a pseudoline arrangement

The key observation made in [2] is that the chamber minors a, b, c, d, e, f associated with
the regions surrounding the local move (cf. Figure 2) satisfy the identity

(3.5) ef = ac + bd.

Thus f can be written as a subtraction-free expression in a, b, c, d, e, and similarly e in
terms of a, b, c, d, f . It is not hard to see that any flag minor sI appears as a chamber
minor in some pseudoline arrangement (we elaborate on this point later in this section).
Consequently, by iterating the birational transformations associated with local moves, one
can get sI as a subtraction-free rational expression in the chamber minors of any particular
initial arrangement.

To complete the proof of Theorem 2.1, i.e., to design a subtraction-free algorithm com-
puting a Schur polynomial sI in O(n3) steps, we need to identify an initial pseudoline
arrangement (an “initial seed” in cluster algebras lingo) such that

the chamber minors for the initial seed can be computed by a subtraction-free(3.6)
arithmetic circuit of size O(n3), and

for any subset I ⊂ {1, . . . , n}, the initial pseudoline arrangement can be trans-(3.7)
formed into one containing sI among its chamber minors by O(n3) local moves.
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Remark 3.1. At this point, some discussion of bit complexity is in order. Readers not
interested in this issue may skip this Remark.

Each local move “flips” a triangle formed by some triple of pseudolines with labels
i < j < k. (To illustrate, the arrangements in Figure 1 are related by the local move
labeled by the triple (1, 2, 3).) A sequence of say N local moves (cf. (3.7)) can be encoded
by the corresponding sequence of triples

(3.8) (i1, j1, k1), . . . , (iN , jN , kN).

The bit complexity of our algorithm will be obtained by adding the following contributions:

• the bit complexity of computing the initial chamber minors;
• the bit complexity of generating the sequence of triples (3.8);
• the bit complexity of performing the corresponding local moves.

Concerning the last item, note that in order to execute each of the N local moves, we will
need to determine which arithmetic operations to perform (there will be O(1) of them),
and how to transform the data structure that encodes the pseudoline arrangement at hand,
so as to reflect the changing combinatorics of the arrangement. The data structure that we
suggest to use is a graph G on

(

n
2

)

+ 2n vertices which include the vertices vij representing

pairwise intersections of pseudolines, together with the vertices vleft
i and vright

i representing
their left and right endpoints. At each vertex v in G, we store the following information:

• for each pseudoline passing through v, the vertex (if any) that immediately pre-
cedes v on that pseudoline, and also the vertex that immediately follows v;

• the set I labelling the chamber directly underneath v; and
• the corresponding chamber minor sI .

With this in place, the local move labeled by a triple (i, j, k) is performed by identifying the
(pairwise adjacent) vertices of G lying at the intersections of the pseudolines with labels
i, j, k, changing the local combinatorics of the graph G in the vicinity of this triangle, and
performing the appropriate subtraction-free computation. For each of the N local moves,
the number of macroscopic operations involved is O(1), so the bit complexity of each move
is polynomial in the size of the numbers involved (which is going to be logarithmic in n).

We proceed with the design of an efficient subtraction-free algorithm for computing a
Schur polynomial sI , following the approach outlined in (3.6)–(3.7).

Our choice of the initial arrangement is the “special” pseudoline arrangement A◦ shown
in Figure 3 (cf. also Figure 1 on the left).

The special arrangement A◦ works well for our purposes, for the following reason. The
n(n+1)

2
− 1 chamber minors sI for A◦ are indexed by the intervals

(3.9) I = {ℓ, ℓ + 1, . . . , ℓ + k − 1} ( {1, . . . , n}.
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Figure 3. The special pseudoline arrangement A◦.

Moreover such a flag minor sI is nothing but the monomial (x1 · · ·xk)
ℓ−1:

(3.10) sI = det









xi−1
j

∏

a<j

(xj − xa)









ℓ≤i≤ℓ+k−1
1≤j≤k

= (x1 · · ·xk)
ℓ−1

det(xi−1
j )k

i,j=1
∏

a<j≤k

(xj − xa)
= (x1 · · ·xk)

ℓ−1.

(This can also be easily seen using the combinatorial definition of a Schur function in
terms of Young tableaux.) The collection of monomials (x1 · · ·xk)

ℓ−1 can be computed
using O(n2) multiplications, so condition (3.6) is satisfied.

To satisfy condition (3.7), at least two alternative strategies can be used, described below
under the headings Plan A and Plan B.

Plan A: Combinatorial deformation. The pseudocode given below in (3.11) produces
a sequence of O(n3) local moves transforming the special arrangement A◦ into a particular
pseudoline arrangement AI containing sI as a chamber minor:

(3.11)
for k := n downto 3 do

if k ∈ I then for j := k − 1 downto 2 do

for i := j − 1 downto 1 do flip(i, j, k)

Figure 4 illustrates the above algorithm. Its rather straightforward justification is omitted.

Plan B: Geometric deformation. Here we present an alternative solution of a more
geometric flavor. The basic idea is rather simple. Fix a nonempty subset I ( {1, . . . , n}.
Suppose that we are able to build an arrangement AI such that

• AI consists of straight line segments Li;
• one of the chamber minors of AI is sI ;
• AI is a “sufficiently generic” arrangement with these properties.

The special arrangement A◦ can be easily realized using straight segments. We then con-
tinuously deform A◦ into AI in the following way. As the time parameter t changes from 0
to 1, each line segment Li(t) is going to change from Li(0) = L◦

i to Li(1) = Li so that each
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Figure 4. Executing Algorithm (3.11) for n = 7. Shown are the pseudoline
arrangements AI for I = {6} (on the left) and I = {4, 6} (on the right).
Algorithm (3.11) deforms A◦ (cf. Figure 3) into A{4} and then into A{4,6}.

endpoint of Li(t) moves at constant speed. It is possible to show that in the process of
such deformation, the triangle formed by each triple of lines gets “flipped” at most once.
We thus obtain a sequence of at most

(

n
3

)

local moves transforming A◦ into AI , as desired.
The rest of this section is devoted to filling in the gaps left over in the above outline.

This can be done in many different ways; the specific implementation presented below was
chosen for purely technical reasons. We assume throughout that n ≥ 3.

First, we realize A◦ by the collection of straight line segments L◦
1, . . . , L

◦
n where L◦

i

connects the points (−1, i2) and (1,−i). Calculations show that the segments L◦
i and L◦

j

intersect at a point (u◦
ij, v

◦
ij) with u◦

ij = 1− 2
i+j+1

. Consequently, for any i < j < k we have

u◦
ij < u◦

ik < u◦
jk, implying that the arrangement’s topology is as shown in Figure 3.

We next construct the arrangement AI . It consists of the line segments L1, . . . , Ln such
that Li has the endpoints (1,−i) and (−1, i − 2σiε − 2i3ε2) where

ε = n−6,

σi =

{

0 if i ∈ I;

−1 if i /∈ I.

Thus Li is a segment of the straight line given by the equation

y = −ix + (σiε + i3ε2)(x − 1).

It is easy to see that the left (respectively right) endpoints of L1, . . . , Ln are ordered bottom-
up (respectively top-down). Consequently each pair (Li, Lj) intersects at a point (x, y) with
−1 ≤ x ≤ 1. Moreover one can check that all these crossing points are distinct. Most
importantly, Li contains the point (0,−σiε− i3ε2), so the origin (0, 0) lies above Li if and
only if i ∈ I; thus the corresponding chamber minor is sI .
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Let us now examine the deformation of A◦ into AI that we described above. As t varies
from 0 to 1, the right endpoint of the ith line segment Li(t) remains fixed at (1,−i),
while the left endpoint moves at constant speed from its initial location at (−1, i2) to the
corresponding location for AI . Specifically, the left endpoint of Li(t) is (−1, bi(t)) where

(3.12) bi(t) = i2 − t(2σiε + 2i3ε2 − i + i2).

The ordering of the endpoints remains intact: b1(t) < · · · < bn(t) for 0 ≤ t ≤ 1. Thus the
intervals Li(t) form a (pseudo)line arrangement unless some three of them are concurrent.

Lemma 3.2. At any time instant 0 ≤ t ≤ 1, no four intervals Li(t), have a common point.

Proof. Let t be such that distinct segments Li(t), Lj(t), and Lk(t) have a common point.
Then we have the identity

(3.13) (bi(t) − bj(t))(i − j)−1 − (bi(t) − bk(t))(i − k)−1 = 0.

Substituting (3.12) into (3.13) and dividing by j − k, we obtain

(3.14) 1 − t + 2εt
σi(k − j) + σj(i − k) + σk(j − i)

(i − j)(i − k)(j − k)
− 2ε2t(i + j + k) = 0.

The (unique) time instant t = tijk at which Li(t), Lj(t), and Lk(t) are concurrent can be
found from the linear equation (3.14). (If the solution does not satisfy tijk ∈ [0, 1], then
such a time instant does not exist.)

Now suppose that j′ /∈ {i, j, k} is such that Li(t), Lj′(t), and Lk(t) are concurrent at the
same moment t = tijk. Then (3.14) holds with j replaced by j′. Subtracting one equation
from the other and dividing by 2εt, we obtain:

(3.15)
σi(k − j) + σj(i − k) + σk(j − i)

(i − j)(i − k)(j − k)
− σi(k − j′) + σj′(i − k) + σk(j

′ − i)

(i − j′)(i − k)(j′ − k)
= ε(j − j′).

This yields the desired contradiction. Indeed, the right-hand side of (3.15) is nonzero, and
less than n−5 in absolute value, whereas the left-hand side, if nonzero, is a rational number
with denominator at most n5. ¤

In view of Lemma 3.2, at each time instant t = tijk ∈ [0, 1] satisfying equation (3.14)
for some triple of distinct indices i, j, k ∈ {1, . . . , n}, our pseudoline arrangement under-
goes (potentially several, commuting with each other) local moves associated with the
corresponding triple intersections of line segments Li(t), Lj(t), Lk(t).

Our algorithm computes the numbers tijk via (3.14), selects those satisfying 0 ≤ tijk ≤ 1,
and orders them in a non-decreasing order. This yields a sequence of O(n3) local moves
transforming A◦ into AI . To estimate the bit complexity, we refer to Remark 3.1, and note
that the bit size of tijk is bounded by O(log n). The algorithm invokes a sorting algorithm
[1] to order O(n3) numbers tijk, so its bit complexity is bounded by O(n3 · log2 n).

Remark 3.3. Our algorithm demonstrates that the positivity of the coefficients of a Schur
polynomial (as defined by the “bialternant formula” (3.4)) can be viewed as an instance of
positivity of Laurent expansions of cluster variables, a general property that conjecturally
holds in any cluster algebra, see [11, p. 499].
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4. Double and supersymmetric Schur functions

In this section, we present efficient subtraction-free algorithms for computing double and
supersymmetric Schur polynomials. These polynomials play important role in representa-
tion theory and other areas of mathematics, see, e.g., [12, 20, 22] and references therein.
Our notational conventions are close to those in [20, 6th Variation]; the latter differ from
some other literature including [22].

Double Schur functions. Let y1, y2, . . . be a sequence of formal variables. Double Schur
functions sλ(x1, . . . , xk|y) are generalizations of ordinary Schur functions sλ(x1, . . . , xk)
which depend on additional parameters yi. The definition given below is a direct general-
ization of the definition of sλ(x1, . . . , xk) given in Section 3.

Let Z = (Zij)
n
i,j=1 be the n × n matrix defined by

(4.1) Zij =

∏

1≤b<i

(xj + yb)

∏

1≤a<j

(xj − xa)
,

cf. (3.1). Thus

Z = (Zij) =

























1
1

x2 − x1

1

(x3 − x1)(x3 − x2)
· · ·

x1 + y1
x2 + y1

x2 − x1

x3 + y1

(x3 − x1)(x3 − x2)
· · ·

(x1 + y1)(x1 + y2)
(x2 + y1)(x2 + y2)

x2 − x1

(x3 + y1)(x3 + y2)

(x3 − x1)(x3 − x2)
· · ·

...
...

...
. . .

























.

For I ⊂ {1, . . . , n} of cardinality k, we set (cf. (3.2))

(4.2) sI(x1, . . . , xk|y) = det(Zij)i∈I,j≤k.

As before, sI(x1, . . . , xk|y) is a symmetric polynomial in x1, . . . , xk.
Now let λ = (λ1, . . . , λk) be a partition with at most k parts satisfying λ1 + k ≤ n.

The double Schur polynomial sλ(x1, . . . , xk|y) is the polynomial in the variables x1, . . . , xk

and y1, . . . , yk+λ1−1 defined by

(4.3) sλ(x1, . . . , xk|y) = sI(λ)(x1, . . . , xk|y) = det(Zij)i∈I(λ),j≤k,

where I(λ) is given by (3.3); cf. (3.4). To recover the ordinary Schur function, one needs
to specialize the y variables to 0.
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Example 4.1. Consider λ = (2, 1) with k = 2. Then I(λ) = {2, 4}, and (4.3) becomes

s(2,1)(x1, x2|y) =
(x1 + y1)(x2 + y1)

x2 − x1

det





1 1

(x1 + y2)(x1 + y3) (x2 + y2)(x2 + y3)





= (x1 + y1)(x2 + y1)(x1 + x2 + y2 + y3).(4.4)

In the special case when I = {ℓ, ℓ + 1, . . . , ℓ + k − 1} is an interval (cf. (3.9)), it is
straightforward to verify that

(4.5) sI(x1, . . . , xk|y) = det
(

Zij

)

ℓ≤i≤ℓ+k−1
1≤j≤k

=
∏

1≤j≤k

∏

1≤b<ℓ

(xj + yb),

generalizing (3.10).
The algorithm(s) presented in Section 3 can now be adapted almost verbatim to the

case of double Schur functions. Indeed, the latter are nothing but the flag minors of the
matrix Z; as such, they can be computed, in an efficient and subtraction-free way, using
the same cluster transformations as before, from the chamber minors associated with the
special pseudoline arrangement A◦. The only difference is in the formulas for those special
minors: here we use (4.5) instead of (3.10).

Supersymmetric Schur functions. Among many equivalent definitions of supersym-
metric Schur functions (or super-Schur functions for short), we choose the one most con-
venient for our purposes, due to I. Goulden–C. Greene [12] and I. G. Macdonald [20]. We
assume the reader’s familiarity with the concepts of a Young diagram and a semistandard
Young tableau (of some shape λ); see, e.g., [21, 32] for precise definitions.

We start with a version with an infinite number of variables. Let x1, x2, . . . and y1, y2, . . .
be two sequences of indeterminates. The super-Schur function sλ(x1, x2, . . . ; y1, y2, . . . ) is
a formal power series defined by

(4.6) sλ(x1, x2, . . . ; y1, y2, . . . ) =
∑

|T |=λ

∏

s∈λ

(xT (s) + yT (s)+C(s))

where

• the sum is over all semistandard tableaux T of shape λ with positive integer entries,
• the product is over all boxes s in the Young diagram of λ,
• T (s) denotes the entry of T appearing in the box s, and
• C(s) = j − i where i and j are the row and column that s is in, respectively.

We note that T (s)+C(s) is always a positive integer, so the notation yT (s)+C(s) makes sense.
While this is not at all obvious from the above definition, sλ(x1, x2, . . . ; y1, y2, . . . ) is

symmetric in the variables x1, x2, . . . ; it is also symmetric in y1, y2, . . . ; and is furthermore
supersymmetric as it satisfies the cancellation rule

sλ(x1, x2, . . . ;−x1, y2, y3, . . . ) = sλ(x2, x3, . . . ; y2, y3, . . . ).
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We will not rely on any of these facts. We refer interested readers to aforementioned sources
for proofs and further details.

In order to define the super-Schur function in finitely many variables, one simply spe-
cializes the unneeded variables to 0. That is, one sets

(4.7) sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, x2, . . . ; y1, y2, . . . )
∣

∣

xk+1=xk+2=···=ym+1=ym+2=···=0
.

Note that the restriction of the set of x variables to x1, . . . , xk cannot be achieved simply
by requiring the tableaux T in (4.6) to have entries in {1, . . . , k}. A tableau with an entry
T (s) > k may in fact contribute to the (specialized) super-Schur polynomial: even though
xT (s) vanishes under the specialization, yT (s)+C(s) does not have to. See Example 4.2 below.

Example 4.2 (cf. Example 4.1). Let λ = (2, 1), k = m = 2. The relevant tableaux T (i.e.,
the ones contributing to the specialization x3 = x4 = · · · = y3 = y4 = · · · = 0) are:

1 1
2

1 2
2

1 1
3

1 2
3

2 2
3

Then formulas (4.6) and (4.7) give

s(2,1)(x1, x2; y1, y2) = (x1 + y1)(x2 + y1)(x1 + y2) + (x1 + y1)(x2 + y1)x2

+ (x1 + y1)y2(x1 + y2) + (x1 + y1)y2x2 + (x2 + y2)y2x2

= x1x2(x1+x2)+(x1+x2)
2(y1+y2)+(x1+x2)(y1+y2)

2+y1y2(y1+y2).

Specializing further at y2 = 0, we obtain

(4.8) s(2,1)(x1, x2; y1) = (x1 + x2)(x1 + y1)(x2 + y1).

The close relationship between super-Schur functions and double Schur functions was
already exhibited in [12, 20]. For our purposes, we will need the following version of those
classical results.

We denote by ℓ(λ) the length of a partition λ, i.e., the number of its nonzero parts λi.

Proposition 4.3. Assume that m + ℓ(λ) ≤ k + 1. Then

(4.9) sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, . . . , xk|y)
∣

∣

ym+1=ym+2=···=0
.

To illustrate, let λ = (2, 1), k = 2, m = 1. Then the left-hand side of (4.9) is given
by (4.8), which matches (4.4) specialized at y2 = y3 = 0.

The condition m + ℓ(λ) ≤ k + 1 in Proposition 4.3 cannot be dropped: for example,
(4.9) is false for λ = (2, 1) and k = m = 2 (the right-hand side is not even symmetric in y1

and y2).

Proof of Proposition 4.3. First, it has been established in [20, (6.16)] that

sλ(x1, . . . , xk|y) =
∑

|T |=λ

∏

s∈λ

(xT (s) + yT (s)+C(s)),

the sum over all semistandard tableaux T with entries in {1, . . . , k}. Second, in the formula
(4.6), a tableau T with an entry T (s) > k does not contribute to the specialization (4.7)
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since T (s) + C(s) ≥ k + 1 + 1 − ℓ(λ) ≥ m + 1 and consequently xT (s) + yT (s)+C(s) = 0.
Hence both sides of (4.9) are given by the same combinatorial formulae. ¤

Theorem 4.4. The super-Schur polynomial sλ(x1, . . . , xk; y1, . . . , ym) can be computed by
a subtraction-free arithmetic circuit of size O((k + m)3), assuming that k ≥ λ1 + ℓ(λ)− 2.

Proof. Denote k∗ = m + ℓ(λ) − 1. If k ≥ k∗, then (4.9) holds, and we can compute
sλ(x1, . . . , xk; y1, . . . , ym) using the subtraction-free algorithm for a double Schur function,
in time O((k + λ1)

3).
From now on, we assume that k ≤ k∗ − 1. We can still use (4.9) with k replaced by k∗,

and then specialize the extra variables to 0:

(4.10) sλ(x1, . . . , xk; y1, . . . , ym) = sλ(x1, . . . , xk∗|y)∣
∣

ym+1=ym+2=···=0

xk+1=···=xk∗=0

.

The plan is to compute the right-hand side using the algorithm described above for the
double Schur functions, with some of the x and y variables specialized to 0:

(4.11) ym+1 = ym+2 = · · · = 0, xk+1 = · · · = xk∗ = 0.

In order for this version of the algorithm to work, we need to make sure that the initial
flag minors (4.5)—and consequently all chamber minors computed by the algorithm—
do not vanish under (4.11). Note that we do not have to worry about the vanishing
of denominators in (4.1) since the algorithm does not rely on the latter formula. (The
specialization as such is always defined since sλ(x1, . . . , xk∗|y) is a polynomial.)

The algorithm that computes sλ(x1, . . . , xk∗ |y) works with (specialized) flag minors of a
square matrix of size

n∗ = k∗ + λ1 = m + ℓ(λ) − 1 + λ1 .

In the case of an initial flag minor, we have the formula

(4.12) s[ℓ,ℓ+s−1](x1, . . . , xs|y) =
∏

1≤j≤s

∏

1≤b<ℓ−1

(xj + yb)

(cf. (4.5)); here ℓ + s − 1 ≤ n∗, the size of the matrix. We see that such an initial minor
vanishes (identically) under the specialization (4.11) if and only if the factor xs + yℓ−1

vanishes, or equivalently s ≥ k + 1 and ℓ − 1 ≥ m + 1. This however cannot happen since
it would imply that

m + k + 2 ≤ ℓ + s − 1 ≤ n∗ = m + ℓ(λ) − 1 + λ1

which contradicts the condition k ≥ λ1 + ℓ(λ) − 2 in the theorem. ¤

We expect the condition k ≥ λ1 + ℓ(λ) − 2 in Theorem 4.4 to be unnecessary. Note
that one could artificially increase the number of x variables to satisfy this condition, then
specialize the extra variables to 0. Such a specialization however is not included among
the operations allowed in arithmetic circuits.
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5. Skew Schur functions

In this section, we use the Jacobi-Trudi identity to reduce the problem of subtraction-
free computation of a skew Schur function to the analogous problem for the ordinary Schur
functions. This enables us to deduce Theorem 2.5 from Theorem 2.1.

In accordance with usual conventions [21, 32], we denote by hm(x1, . . . , xk) the complete
homogeneous symmetric polynomial of degree m. For m < 0, one has hm = 0 by definition.

Let λ = (λ1, . . . , λk) and ν = (ν1, . . . , νk) be partitions with at most k parts. The skew
Schur function sλ/ν(x1, . . . , xk) can be defined by the Jacobi-Trudi formula

(5.1) sλ/ν(x1, . . . , xk) = det(hλi−νj−i+j(x1, . . . , xk)).

The polynomial sλ/ν(x1, . . . , xk) is nonzero if and only if νi ≤ λi for all i; the latter condition
is abbreviated by ν ⊂ λ.

Formula (5.1) can be rephrased as saying that sλ/ν is the k × k minor of the infinite
Toeplitz matrix (hi−j) that has row set I(λ) (see (3.3)) and column set I(ν).

Let n > k. We fix the partition ν, and let λ vary over all partitions satisfying I(λ) ⊂
{1, . . . , n}, or equivalently k + λ1 ≤ n. Let us denote by Hν the n × k matrix

Hν = (hi−j(x1, . . . , xk))1≤i≤n
j∈I(ν)

.

The maximal (i.e., k×k) minors of Hν are the (possibly vanishing) skew Schur polynomials
sλ/ν(x1, . . . , xk). More generally, a p × p flag minor of Hν is a skew Schur polynomial of
the form sλ/ν(p) where λ is a partition with at most p parts satisfying p + λ1 ≤ n, and
ν(p) = (νk−p+1, . . . , νk) denotes the partition formed by p smallest (possibly zero) parts
of ν. Such a flag minor does not vanish if and only if ν(p) ⊂ λ.

Our algorithm computes a skew Schur polynomial sλ/ν(x1, . . . , xk) (equivalently, a max-
imal minor of H(ν)) using the same approach as before: we first compute the initial flag
minors corresponding to intervals (3.9), then proceed via recursive cluster transformations.

The problem of calculating the interval flag minors of Hν (in an efficient and subtraction-
free way) turns out to be equivalent to the (already solved) problem of computing ordinary
Schur polynomials. This is because I(λ) is an interval if and only if λ has rectangular
shape, i.e., all its nonzero parts are equal to each other. For such a partition, the nonzero
skew Schur polynomial sλ/ν is well known to coincide with an ordinary Schur polynomial
sθ where θ is the partition formed by the differences λi − νi.

We then proceed, as before, with a recursive computation utilizing cluster transforma-
tions. However, substantial adjustments have to be made due to the fact that many flag
minors of Hν vanish. (Also, Hν is not a square matrix, but this issue is less important.)
Our recipe is as follows. Suppose that we need to perform a step of our algorithm that
involves, in the notation of Figure 2, expressing f in terms of a, b, c, d, e. (It is easy to see
that we never have to move in the opposite direction, i.e., from a, b, c, d, f to e, while mov-
ing away from the special arrangement A◦ using the algorithms described above.) If e 6= 0
(and we shall know beforehand whether this is the case or not), then set f = (ac + bd)/e
as before. If, on the other hand, e = 0, then set f = 0.
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In order to justify this algorithm, we need to show that the skew Schur polynomials at
hand have the property e = 0 ⇒ f = 0, in the above notation. (Also, it is not hard to
check in the process of computing a flag minor of size k, we never need to compute a flag
minor of larger size which would not fit into Hν .) This property is a rather straightforward
consequence of the criterion for vanishing/nonvanishing of skew Schur functions. Let p <
q < r denote the labels of the lines shown in Figure 2, and let J denote the set of lines
passing below the shown fragment. Then e = sJ∪{q} and f = sJ∪{p.r}. Since p < q,
the vanishing of e implies the vanishing of sJ∪{p}, which in turn implies the vanishing of
f = sJ∪{p.r}. We omit the details.

The complexity of the algorithm is dominated by the initialization stage, which involves
computing O(n2) ordinary Schur polynomials; each of them takes O(n3) operations to
compute. The bit complexity is accordingly O(n5 log2 n).

6. Generating functions for spanning trees

In this section, we present a polynomial subtraction-free algorithm for computing the
generating function for spanning trees in a graph with weighted edges (a network). While
this algorithm is going to be improved upon in Section 7, we decided to include it because
of its simplicity, and in order to highlight the connection to the theory of electric networks
(equivalently, discrete potential theory). An impatient reader can go straight to Section 7.

Let G be an undirected connected graph with vertex set V and edge set E. We associate
a variable xe to each edge e ∈ E, and consider the generating function fG (a polynomial
in the variables xe) defined by

fG =
∑

T

xT

where the summation is over all spanning trees T for G, and xT denotes the product of
the variables xe over all edges e in T . An example is given in Figure 5.
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fG = x12x14x23 + x12x14x34 + x12x23x24 + x12x23x34

+ x12x24x34 + x14x23x24 + x14x23x34 + x14x24x34

Figure 5. A weighted graph G and the spanning tree generating function fG

Remark 6.1. Without loss of generality, we may restrict ourselves to the case when the
graph G is simple, that is, G has neither loops (i.e., edges with coinciding endpoints) nor
multiple edges. Loops cannot contribute to a spanning tree, so we can throw them away
without altering fG. Furthermore, if say vertices v and w are connected by several edges
e1, . . . , eℓ, then we can replace them by a single edge of weight xe1 + · · · + xeℓ

without
changing the generating function fG.



SUBTRACTION-FREE COMPLEXITY, CLUSTER TRANSFORMATIONS, AND SPANNING TREES 21

Recall that the number of spanning trees in a complete graph on n vertices is equal
to nn−2, so the monomial expansion of fG may have a superexponential number of terms.
On the other hand, there is a well-known determinantal formula for fG, due to G. Kirch-
hoff [17] (see, e.g., [4, Theorem II.12]), known as the (weighted) Matrix Tree Theorem. This
formula provides a way to compute fG in polynomial time—but the calculation involves
subtraction. Is there a way to efficiently compute fG using only addition, multiplication,
and division? Just like in the case of Schur functions, the answer turns out to be yes.

Theorem 6.2. In a weighted simple graph G on n vertices, the spanning tree generating
function fG can be computed by a subtraction-free arithmetic circuit of size O(n4).

This result is improved to O(n3) in Section 7.
The rest of this section is devoted to the proof of Theorem 6.2, i.e., the description

of an algorithm that computes fG using O(n4) additions, multiplications, and divisions.
The algorithm utilizes well known techniques from the theory of electric networks (more
precisely, circuits made of ideal resistors). In order to apply these techniques to the problem
at hand, we interpret each edge weight xe as the electrical conductance of e, i.e., the inverse
of the resistance of e. We note that the rule, discussed in Remark 6.1, for combining parallel
edges into a single edge is compatible with this interpretation.

Definition 6.3 (Gluing two vertices). Let v and v′ be distinct vertices in a weighted simple
graph G as above. We denote by G(v, v′) the weighted simple graph obtained from G by

(i) gluing together the vertices v and v′ into a single vertex which we call vv′ , then

(ii) removing the loop at vv′ (if any), and then
(iii) for each vertex u connected in G to both v and v′, say by edges e and e′, replacing

e and e′ by a single edge of conductance xe + xe′ between u and vv′ .

In view of Remark 6.1, steps (ii) and (iii) do not change the spanning tree generating
function of the graph at hand. An example is shown in Figure 6.
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4

3

x34x14 + x24

x23

fG(1,2) = (x14 + x24) x23 + (x14 + x24) x34 + x23x34

Figure 6. The graph G(1, 2) for the graph G in Figure 5.

Lemma 6.4 (Kirchhoff’s effective conductance formula [17]; see, e.g., [37, Section 2]).
Let G be a weighted connected simple graph whose edge weights are interpreted as electrical
conductances. The effective conductance between vertices v and v′ of G is given by

effcondG(v, v′) =
fG

fG(v,v′)

.
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To illustrate, the effective conductance between vertices 1 and 2 in the graph shown in
Figure 5 is equal to fG

fG(1,2)
, where fG and fG(1,2) are given in Figures 5 and 6, respectively.

This matches the formula

effcondG(1, 2) = x12 +
1

1
x14

+ 1
x24 + 1

1
x23

+ 1
x34

that can be obtained using the series-parallel property of this particular graph G.

Definition 6.5. Let G be a weighted connected simple graph on the vertex set {1, . . . , n}.
Define the graphs G1, . . . , Gn recursively by G1 = G and

Gi+1 = Gi( 1 · · · i , i + 1)

where 1 · · · i denotes the vertex obtained by gluing together the original vertices 1, . . . , i.
In other words, Gi is obtained from G by collapsing the vertices 1, . . . , i into a single
vertex, removing the loops, and combining multiple edges into single ones while adding
their respective weights, cf. Remark 6.1.

For example, if G is the graph in Figure 5, then G1 = G; G2 is the graph shown in
Figure 6; G3 is a two-vertex graph with a single edge of weight x14 + x24 + x34; and G4

(and more generally Gn) is a single-vertex graph with no edges (so fGn
= 1).

The following formula is immediate from Lemma 6.4, via telescoping.

Corollary 6.6. Let G be a weighted connected simple graph on the vertex set {1, . . . , n}.
Then

fG =
n−1
∏

i=1

effcondGi
(i, i + 1).

Corollary 6.6 reduces the computation of the generating function fG to the problem
of computing effective conductances. The latter can be done, both efficiently and in a
subtraction-free way, using the machinery of star-mesh transformations developed by elec-
trical engineers, see, e.g., [6, Corollary 4.21]. The technique goes back at least 100 years,
cf. the historical discussion in [26].

Lemma 6.7 (Star-mesh transformation). Let v be a vertex in a weighted simple graph G
(viewed as an electric network with the corresponding conductances). Let e1, . . . , ek be the
full list of edges incident to v; assume that they connect v to distinct vertices v1, . . . , vk,
respectively. Transform G into a new weighted graph G′ defined as follows:

• remove vertex v and the edges e1, . . . , ek incident to it;
• for all 1 ≤ i < j ≤ k, introduce a new edge eij connecting vi and vj, and assign

(6.1) xeij

def
= xei

xej

k
∑

ℓ=1

1

xeℓ

as its weight (=conductance);
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• in the resulting graph, combine parallel edges into single ones, as in Remark 6.1.

Then the weighted graphs G and G′ have the same effective conductances. More precisely,
for any pair of vertices a, b different from v, we have

effcondG(a, b) = effcondG′(a, b).

Lemma 6.7 provides an efficiently way to compute an effective conductance between two
given vertices a and b in a graph G, by iterating the star-mesh transformations (6.1) for
all vertices v /∈ {a, b}, one by one. Since these transformations are subtraction-free, and
require O(n2) arithmetic operations each, we arrive at the following result.

Corollary 6.8. An effective conductance between two given vertices in an n-vertex weighted
simple graph G can be computed by a subtraction-free arithmetic circuit of size O(n3).

Combining Corollaries 6.6 and 6.8, we obtain a proof of Theorem 6.2. The algorithm
computes the effective conductances effcondGi

(i, i + 1) for i = 1, . . . , n− 1 using star-mesh
transformations, then multiplies them to get the generating function fG.

7. Directed spanning trees

In this section, we treat the directed version of the problem considered in Section 6,
designing a polynomial subtraction-free algorithm that computes the generating function
for directed spanning trees in a directed graph with weighted edges.

Similarly to the unoriented case, our approach makes use of the appropriate version of
star-mesh transformations. As before, they are local modifications of the network which
transform the weights by means of certain subtraction-free formulas. There is also a dif-
ference: unlike in Section 6, we apply these transformations directly to the computation of
the generating functions of interest—rather than to “effective conductances” from which
those generating functions can be recovered via telescoping. Adapting the latter technique
to the directed case would require a thorough review of W. Tutte’s theory of “unsymmet-
rical electricity” [34, Sections VI.4–VI.5] [35, Section 4]. This elementary but somewhat
obscure theory goes back to the 1940s, see references in loc. cit., and is closely related to
Tutte’s directed version of the Matrix-Tree Theorem [34, Theorem 6.27].

Remark 7.1. The approach used in this section can be applied in the undirected case
as well, bypassing the use of electric networks (cf. Section 6). Also, one can reduce the

undirected case to the directed one by replacing each edge a
e
— b in an ordinary weighted

graph by two oriented edges a → b and b → a each having the weight xe of the original edge.

In this section, G is a directed graph with vertex set V and edge set E, and with a
fixed vertex r ∈ V called the root. A directed spanning tree T in G (sometimes called an
in-tree, an arborescence, or a branching) is a subgraph of G that spans all vertices in V
and includes a subset of edges such that for any v ∈ V , there is a unique path in T that
begins at v and ends at r. Equivalently, T is a spanning tree of G in which all edges are
oriented towards r.

We assume that G has at least one such tree, or equivalently that there is a path from
any vertex v ∈ V to the root r.
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We associate a variable xe to each (directed) edge e ∈ E, and define the generating
function ϕG by

ϕG =
∑

T

xT

where the summation is over all directed spanning trees T for G (rooted at r). As before,
xT denotes the product of the variables xe over all edges e in T . Figure 7 shows the
generating function ϕG for the complete directed graph on three vertices.
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ϕG = xarxbr + xarxba + xbrxab

Figure 7. The generating function ϕG for the directed spanning trees in G.

Without loss of generality, we may assume that G is a simple directed graph, i.e., it has
no loops and no multiple edges, for the same reasons as in Remark 6.1. We certainly do
allow pairs of edges connecting the same pair of vertices but oriented in opposite ways.

Theorem 7.2. In a weighted simple directed graph G on n vertices, the generating function
for directed spanning trees rooted at a given vertex r can be computed by a subtraction-free
arithmetic circuit of size O(n3).

In view of Remark 7.1, the analogue of Theorem 7.2 for undirected graphs follows,
improving upon Theorem 6.2 and implying Theorem 2.8.

The algorithm that establishes Theorem 7.2 relies on the following lemma.

Lemma 7.3 (Star-mesh transformation in a directed network). Let v 6= r be a vertex
in a weighted directed graph G as above. Let v1, . . . , vk be the full list of vertices directly
connected to v by an edge (either incoming, or outgoing, or both). For i = 1, . . . , k, let xi

(resp., yi) denote the weight of the edge vi → v (resp., v → vi); in the absence of such edge,
set xi =0 (resp., yi =0). Transform G into a new weighted directed graph G′′ as follows:

• remove vertex v and all the edges incident to it;
• for each pair i, j ∈ {1, . . . , k}, i 6= j, xiyj 6= 0, introduce a new edge eij directed

from vi to vj, and set its weight to be

(7.1) xeij

def
= xi yj (y1 + · · · + yk)

−1;

• in the resulting graph G′, combine multiple edges (if any), adding their respective
weights, to obtain G′′. (Thus ϕG′′ = ϕG′ .)

Then

(7.2) ϕG = (y1 + · · · + yk) ϕG′′ .
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We note that y1 + · · · + yk 6= 0 since otherwise there is no path from v to r. (If that
happens, we have ϕG = 0.)

It is easy to see that Lemma 7.3 implies Theorem 7.2. The algorithm computes the
generating function ϕG by iterating the star-mesh transformations described in the lemma.

Example 7.4. Consider the weighted graph in Figure 7. Choose v = b. The recipe in
Lemma 7.3 asks us to remove the vertex b and the four edges incident to it, introducing
instead two edges connecting r and a. According to the formula (7.1), the new edge in
G′ pointing from a to r has weight xab xbr(xba + xbr)

−1. Adding this to the weight xar of
the old edge a → r, we obtain the combined weight of the edge going from a to r in the
two-vertex graph G′′. Thus

ϕG′′ = xar +
xab xbr

xba + xbr

=
xar xba + xar xbr + xab xbr

xba + xbr

.

Then (7.2) gives

ϕG = (xba + xbr) ϕG′′ = xar xba + xar xbr + xab xbr ,

matching the result of a direct calculation in Figure 7.

It remains to prove Lemma 7.3. The proof uses a classical result (see, e.g., [32, Theo-
rem 5.3.4], with k =1) sometimes called “the Cayley-Prüfer theorem;” it is indeed imme-
diate from Prüfer’s celebrated proof of Cayley’s formula for the number of spanning trees.
We state this result in a version best suited for our purposes.

Lemma 7.5. Let H be a complete directed graph on the vertex set W , with root r ∈ W . For
v∈W , let zv be a formal variable. Assign to every edge a → b in H the weight zb (

∑

v zv)
−1.

Then substituting these weights into ϕH gives zr (
∑

v zv)
−1.

Example 7.6. The case when H has three vertices is shown in Figure 7. Substituting
xij = zj (za + zb + zr)

−1, we get

ϕH = xarxbr + xarxba + xbrxab = (z2
r + zrza + zrzb)(za + zb + zr)

−2 = zr(za + zb + zr)
−1.

Proof of Lemma 7.3. The proof uses standard techniques of elementary enumerative com-
binatorics. As equation (7.2) is equivalent to

(7.3) ϕG = (y1 + · · · + yk) ϕG′ ,

we will be proving the latter identity.
The edge set E of G naturally splits into two disjoint subsets. The 2k edges vi → v and

v → vi form Starv (the star of v). The remaining edges form the set Outv = E \ Starv.
Similarly, the edge set E ′ of G′ is a disjoint union of Meshv ={eij} (the mesh of v) and Outv .

We shall write ϕG (resp., ϕG′) as a sum of terms of the form AB where A is a polynomial
expression in the weights of the edges in Starv (resp., Meshv) while B only involves the
weights of edges in Outv. Each factor B will be a generating function for a certain class of
directed forests in Outv. (Think of those forests as leftover chunks of a directed tree after its
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edges in Starv (resp., Meshv) have been removed.) More specifically, the factors B in our
formulas will be of the following kind. Let P={Pa} be an (unordered) partition of the set

K = {v1, . . . , vk} ∪ {r}
into nonempty subsets Pa (called blocks) where in each block Pa, one vertex a has been
designated as the root of the block. If r ∈ Pa (i.e., if the block contains the root of G), then
we require that a = r; moreover Pr must contain at least one of the elements v1, . . . , vk.
We denote by B(P) the generating function for the directed forests F which span the
vertex set V \ {v} and have the property that the vertices in K are distributed among the
connected components of F as prescribed by P . More precisely, each connected component
C of F is a directed tree whose vertex set includes some block Pa of P (and no other vertices
in K), with a serving as the root of C. (In particular, C contains at least one of the vertices
v1, . . . , vk.) The weight of F is the product of the weights of its edges.

To complete the proof, we are going to write formulas of the form

ϕG =
∑

P A(P)B(P)(7.4)

ϕG′ =
∑

P A′(P)B(P)(7.5)

(sums over rooted set partitions P as above) and demonstrate that for any P , we have

(7.6) A(P) = (y1 + · · · + yk) A′(P).

Let P = {Pa} be a partition of K as above. For each block Pa, denote Ya =
∑

vi∈Pa
yi,

the sum of the weights of the edges v → vi entering the block Pa. The edges of each directed
tree in G contributing to ϕG split into those contained in Starv and those belonging to Outv .
The latter edges form a directed spanning forest in V \ {v} whose connected components,
with their roots identified, correspond to a partition P as above. Direct inspection shows
that combining the terms in ϕG corresponding to each P yields the formula (7.4) with

A(P) = Yr

∏

a 6=r

xa .

An analogous—if less straightforward—calculation for the graph G′, with Starv replaced
by Meshv, results in the formula (7.5) with

A′(P) =
∑

T

∏

Pa→Pb

xa Yb (y1 + · · · + yk)
−1 ,

where the sum is over all directed trees T on the vertex set {Pa} (i.e., the vertices of T are
the blocks of P), and the product is over all directed edges Pa → Pb in T . We note that
∑

Pa
Ya = y1 + · · · + yk. Thus Lemma 7.5 applies, and we get

A′(P) = Yr (y1 + · · · + yk)
−1

∏

a 6=r

xa ,

implying (7.6). ¤
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8. Subtraction-free complexity vs. ordinary complexity

In this section, we exhibit a sequence of rational functions (fn) whose ordinary arithmetic
circuit complexity is linear in n (or even O(1) if one allows arbitrary constants as inputs)
while their subtraction-free complexity grows exponentially in n.

Lemma 8.1. Let F be a rational function (in one or several variables) representable as a
ratio of polynomials with nonnegative coefficients. Assume that in any such representation
F = P/Q, the (total) degree of P is greater than 2m. Then the subtraction-free complexity
of F is greater than m.

Proof. Let Dk denote the class of rational functions f which can be written in the form
f = p/q where both p and q have nonnegative coefficients and have degrees at most k. It is
easy to see that if f1, f2 ∈ Dk, then each of the functions f1 +f2, f1f2, and f1/f2 lie in D2k.
It follows that if F has subtraction-free complexity l, then F ∈ D2l(x). On the other hand,
the conditions in the lemma imply that F /∈ D2m . Hence l > m. ¤

Lemma 8.2. For a positive integer N , the quadratic univariate polynomial

FN(x) = (x − 1)2 +
1

N2

can be written as a subtraction-free expression. Furthermore, if FN(x)Q(x) = P (x) where
P (x) is a polynomial with nonnegative coefficients, then deg(P ) > N .

Proof. By a classical theorem of Pólya [24], the fact that FN(x) > 0 for any x ≥ 0 (actually,
any x ∈ R) implies that we can write FN(x) = p(x)/(1+x)r for r a sufficiently large integer,
and p(x) a polynomial with nonnegative coefficients. (It can be shown that r > 9N2

suffices, cf. [25, p. 222].)
Let us prove the second statement. Assume that on the contrary, deg(P ) ≤ N , and

denote P (x) =
∑N

k=0 pkx
k. Let u = 1 +

√
−1/N and v = 1 −

√
−1/N be the roots of FN .

Then

uk + vk = 2

(

1 +
1

N2

)k/2

cos

(

k · tan−1

(

1

N

))

.

If 0 ≤ k ≤ N , then 0 ≤ k tan−1
(

1
N

)

≤ k
N

≤ 1 < π
2
, implying that uk+vk > 0. Consequently

0 = FN(u)Q(u) + FN(v)Q(v) = P (u) + P (v) =
N

∑

k=0

pk(u
k + vk) > 0,

a contradiction. ¤

Proposition 8.3. The subtraction-free complexity of the univariate polynomial

Gn(x) = F22n (x) = (x − 1)2 + 2−2n+1

,

while finite, is greater than 2n. The ordinary arithmetic circuit complexity of Gn(x) is O(1)
if arbitrary constants are allowed as inputs. If 1 is the only input constant allowed, the
ordinary complexity of Gn(x) is O(n).
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Proof. By Lemma 8.2, the subtraction-free complexity of Gn is finite, and for any represen-
tation Gn = P/Q where P and Q are polynomials with nonnegative coefficients, we have
deg(P ) > 22n

. Now Lemma 8.1 implies that subtraction-free complexity of Gn is greater
than 2n. Finally, the last statement of the proposition follows from the fact that 22n

can
be computed by iterated squaring. ¤

The reader might feel uncomfortable about the fact that the polynomial Gn(x) in Propo-
sition 8.3 has a coefficient whose binary notation has exponential length. To alleviate those
concerns, we present a closely related example that does not have this drawback. In doing
so, we use a modification of the well-known Lazard-Mora-Philippon trick, cf., e.g., [14].

Proposition 8.4. Define the homogeneous polynomials Hn(t, x1, . . . , xn) by

Hn(t, x1, . . . , xn) =(x1 − t)4 + (x1 − 2x2)
4

+ (x2
2 − tx3)

2 + (x2
3 − tx4)

2 + · · · + (x2
n−1 − txn)2 + 4(x1 − t)2x2

n + 2x4
n .

Then the subtraction-free complexity of Hn, while finite, is greater than 2n−2. By contrast,
the ordinary arithmetic circuit complexity of Hn is linear in n.

Proof. Since Hn(t, x1, . . . , xn) is positive for any nonnegative (in fact, any real) vector
(t, x1, . . . , xn) 6= (0, 0, . . . , 0), Pólya’s theorem [24] tells us that we can write

Hn(t, x1, . . . , xn) = p(t, x1, . . . , xn)/(t + x1 + · · · + xn)r,

for some polynomial p with nonnegative coefficients, and some positive integer r. So the
subtraction-free complexity of Hn is finite.

Assume that Hn = P/Q where P and Q are polynomials with nonnegative coefficients.

Substituting t = 1, x2 = 2−1, x3 = 2−2, . . . , xn = 2−2n−2
, we get:

P (1, x1, 2
−1, 2−2, . . . , 2−2n−2

)

Q(1, x1, 2−1, 2−2, . . . , 2−2n−2)
= Hn(1, x1, 2

−1, 2−2, . . . , 2−2n−2

)

= (x1 − 1)4 + (x1 − 1)4 + 4(x1 − 1) · 2−2n−1

+ 2 · 2−2n

= 2(F22n−2 (x1))
2.

Since P (1, x1, 2
−1, 2−2, . . . , 2−2n−2

) is a polynomial with nonnegative coefficients, we can

apply Lemma 8.2 to conclude that deg(P ) ≥ degx1
(P ) > 22n−2

. Now Lemma 8.1 implies
that the subtraction-free complexity of Hn is greater than 2n−2. ¤

Acknowledgements. We thank Leslie Valiant for bringing the paper [15] to our attention.
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