
Homomorphic public-key cryptosystems

over groups and rings

Dima Grigoriev
IRMAR, Université de Rennes
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Abstract

We propose a new homomorphic public-key cryptosystem over arbitrary non-
identity finite group based on the difficulty of the membership problem for groups
of integer matrices. Besides, a homomorphic cryptosystem is designed for the first
time over finite commutative rings.

1 Introduction

1.1. The problem of constructing reliable cryptosystems for secret computations had been
extensively studied last years (see [3, 5, 10, 14, 26]). Generally, it consists in encryption of a
circuit over an algebraic structure H (e.g. group, ring, etc.). One of possible approaches
to it is to find a publically known algebraic structure G and a secret homomorphism
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author would like to thank the Mathematical Institute of the University of Rennes during the stay in
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f : G → H . If the inversion of f is efficiently computable and computing of f is a hard
computational problem (i.e. f is a trapdoor function), one can design a homomorphic
public-key cryptosystem in which an element h ∈ H is encrypted by an element of the form
ggh where g is a random element of ker(f) and f(gh) = h. Using such a cryptosystem one
can efficiently implement a secret computation given by any circuit over the structure H .
Some other applications of homomorphic public-key cryptosystems can be found in [3, 8,
9, 27]. We mention also that the group theory is a source of constructions (apart from
homomorphic cryptosystems) in the cryptography, see e.g. [13, 16, 20, 21, 23].

It is well known that any boolean circuit of logarithmic depth can be efficiently simu-
lated by a circuit over an arbitrary finite nonsolvable group, see [2] (another approach to
encrypting boolean circuits was undertaken in [28]). Thus one of the first natural problems
concerning secret computations is to design a homomorphic public-key cryptosystem over
a finite group. The known examples of such systems include the quadratic residue cryp-
tosystem (see [12, 11]) over the group of order 2 and the cryptosystems (see [22, 24, 25])
over some cyclic and dihedral groups. However, in these and some other cryptosystems
the involved groups are solvable and so can not be used for the above cited simulation
of boolean circuits. The first homomorphic public-key cryptosystem over an arbitrary
nonidentity finite group was designed in [14].

It should be mentioned that the secrecy of all these cryptosystems was based on the
difficulty of some problems closely related with that of integer factoring. However, “as
long as factoring remains intractable, we are in a good position, but we are overinde-
pendent on the computational complexity of one particular problem” [31]. In addition,
unlike factoring it is unknown whether there is a quantum machine which can decide the
membership to a non-abelian matrix group, the problem on which relies the security of
the cryptosystems in the present paper. In contrast to the cryptosystems based on the
factoring problem the first main result of this paper is a new homomorphic public-key
cryptosystem over arbitrary nonidentity finite group based on the difficulty of the mem-
bership problem for groups of integer matrices (for details see Section 2 and Theorem 2.1).

Theorem 1.1 For a nonidentity finite group H given by generators and relations one can

choose a group G ≤ GL2(Z) and a homomorphism f : G → H to obtain a homomorphic

public-key cryptosystem over H.

We may think of H to be a finite small group. On the other hand, the infiniteness
of G is not an obstacle for performing algorithms of encrypting and decrypting (for the
latter using the trapdoor information) since they involve just calculations with integer
2 × 2 matrices. In this connection we mention a public-key cryptosystem from [6] in
which f was the natural epimorphism from a free group G onto the group H given by
generators and relations. In this case for any element of H one can produce its preimages
(encryptions) by inserting in a word (being already a produced preimage of f) from G
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any relation defining H . In other terms, decrypting of f reduces to the word problem
in H . In our approach the epimorphism f is given on specially chosen generators of an
appropriate subgroup G of a free group F ⊂ GL2(Z), and the trapdoor consists in a
polynomial-time algorithm (see Subsection 2.4) which allows one to represent an element
of G (being an integer matrix) as a product of free generators of F . Publically in the
cryptosystem from Theorem 1.1 a certain set of generators of G is exhibited, and the
security of the cryptosystem relies on the difficulty (without knowledge of the trapdoor)
of finding a representation of an element of G as a product of these generators, while
in [6] an element of the free group G is given just by means of a product of its generators.
(In fact, we keep a secret “good” basis of F which enables us to compute matrices of
G easily; at the same time the public key is given by a “bad” basis of G for which the
representation problem is supposedly hard.)

We mention also that two public-key cryptosystems (being not homomorphic) based
on the group SL2(Z) were suggested in [33, 34] which were subsequently broken in [30, 4].
These cryptosystems were hiding the generators of a subgroup of SL2(Z) by means of
conjugating them with a secret matrix.

In [31, 15] two constructions of cryptosystems (being not homomorphic) were proposed
with the difficulty of breaking relied on the word problem (in finitely generated groups).
The common feature of both papers is that a public key is given by two words m0, m1

and a family R of words. Then encrypting of a bit i ∈ {0, 1} is carried out by means
of starting with mi and subsequent random inserting polynomial number of times of the
words from R. Denote by G the group given by the relations R. Then basically the
trapdoor needs a solution of the word problem in G. To this end the epimorphisms of
the form f : G → H , provided that f(m0) 6= f(m1) were suggested such that the word
problem in the group H is easy, thereby this epimorphism plays a role of a trapdoor. In
[31] the epimorphism f consists actually in adding some relations of commutativity of the
generators. In [15] as a group H is taken the Grigorchuk group with 4 generators (and
being not finitely presentable) corresponding to a certain fast computable infinite word
χ. It is shown in [15] that the word problem in this group is easy, thus χ plays a role of
a trapdoor. So, the principal difference of the cryptosystems proposed in [6, 31, 15] from
our cryptosystem is that they perform calculations with words, whereas our cryptosystem
deals with integer 2× 2 matrices.

It seems to be an interesting open question whether for a non-abelian group H there
exists a homomorphic cryptosystem with a finite group G?

1.2. The second topic of this paper is devoted to homomorphic public-key cryptosys-
tems over finite rings. This problem was first posed in [26] (see also [10]) and in [5] it was
demonstrated that a direct approach to it fails. At present there are only a few results in
this direction. In particular, we mention the cryptosystem from [7] based on a homomor-
phism from the direct sum of rings isomorphic Z. A finite version of this system [8] was
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recently broken in [1]. As the second main result of this paper we present a homomorphic
public-key cryptosystem over a finite commutative ring (for details see Section 3). Before
formulating it we recall that any finite commutative ring with identity is isomorphic to a
direct sum of local rings (see [19]).

Theorem 1.2 Let R be a finite commutative ring with identity different from a direct

sum of several copies of rings isomorphic to Z2. Then there exists a homomorphic public-

key cryptosystem over R with respect to a homomorphism f : A → R for an appropriate

finite commutative ring A.

In the cryptosystem of Theorem 1.2 the ring A is a group ring of a finite Abelian
group G and f is the epimorphism induced by a suitable secret epimorphism from G to
the multiplicative group of R. The only commutative rings for which any homomorphism
of such kind is trivial, have trivial multiplicative groups, and so are the direct sums of
copies of the ring Z2. Thus the natural open question is to find a homomorphic public-
key cryptosystem over the ring Z2. The way we construct the ring A gives a bound on
the cardinality of A being double exponential in the cardinality of R. This condition is
essential in the following sense. As we will see in Section 3 any finite ring of exponential
cardinality is a subring of the ring Mat(n,Zm) of n×n matrices over Zm with n and logm
bounded by polynomials. The latter construction of embedding a ring into a matrix ring
is not efficient a priori, in fact, its efficiency depends on the way in which the ring is given.
On the other hand, Theorem 3.2 states that the homomorphisms of the rings given as
subrings of Mat(n,Zm) can not be secret.

It should be remarked that secret homomorphisms from Theorem 1.2 can not be used
for encrypting circuits over rings due to its size. The problem of finding cryptosystems
suitable for such encrypting as well as constructing secret homomorphisms over noncom-
mutative finite rings are still open. Theorem 3.2 shows that if there exists a homomorphic
public-key cryptosystem over a finite ring R with the cardinality of the ring A being ex-
ponential in the cardinality of R , it should avoid explicit representing of A as a subring
of some matrix ring Mat(n,Zm).

2 A homomorphic cryptosystem over a finite group

Throughout the section for a finite set X we denote by WX the set of all the words in
the alphabet X± = X ∪X−1. A word from WX with no subword xx−1, x ∈ X±, is called
irreducible. For an integer a ∈ Z we denote by l(a) the bit size of it; for S ⊂ Z we set
l(S) =

∑

a∈S l(a).
2.1. Representation problem. Let Γ be a group and X be a finite subset of Γ. We

are interested in the problem of finding an X-representation of an element g ∈ G where
G = 〈X〉 is a subgroup of Γ generated by X . By an X-representation of g we mean an
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irreducible word wg ∈ WX such that π(wg) = g where π is the epimorphism of the free
group on X onto the group G with π|X = id. Obviously, if Γ is a free group on X , then
G = Γ and each element of Γ has the unique X-representation. If wg = xa1

1 · · ·xam
m where

xi ∈ X and ai ∈ Z for all i, then the number l(wg) =
∑

i l(ai) is called the bit size of
the X-representation wg of g. We observe that the size of g as an element of the group Γ
depending essentially on the nature of Γ can substantially differ from the bit size of an
X-representation of it as well as the bit sizes of two different X-representations of g. In
what follows we look for the algorithms finding X-representations of g efficiently, i.e. in
polynomial time in size of g in Γ and in minimal bit size of its X-representation.

Representation Problem P(Γ, X). Let Γ be a group and X ⊂ Γ be a finite set.
Given g ∈ 〈X〉 presented as an element of Γ find an X-representation of g efficiently.

It should be mentioned that the representation problem consists in finding a certificate
for the membership problem when the group in question is given by generators. If Γ is a
symmetric group of degree n, then both of these problems can be solved in time nO(1) by
the sift algorithm (see e.g. [17]). However, if Γ = GLn(Zm) then both of these problem
are closely related with the discrete logarithm problem (when n = 1, m is a prime and
X consists of a generator of the multiplicative group of the ring Zm). The representation
problem is NP-hard in average in general even if Γ is a free group of a finite rank [32].

To adapt the representation problem to constructing public-key cryptosystems we have
to describe a trapdoor information providing a polynomial-time solution of this problem.
A general idea can be explained as follows. Let G < F < Γ be groups and F = 〈X ′〉,
G = 〈X〉 for some finite sets X,X ′ ⊂ Γ. Suppose that both of the problems P(Γ, X ′) and
P(F,X) can be solved efficiently. Then the problem P(Γ, X) can also be solved within the
same time whenever using the corresponding algorithms one can find an X ′-representation
and an X-representation of an element from 〈X〉 the bit sizes of which are approximately
the same. In this case one could use the set X ′ as a trapdoor for the problem P(Γ, X).
In the next subsection we realize this idea for Γ = GL2(Z) and apply it for constructing
a homomorphic public-key cryptosystem over any nonidentity group given by generators
and relations.

2.2. The main construction. Let us define a family of free subgroups of the group
GL2(Z). First we recall that given an integer n ≥ 2 the matrices

An =

(

1 n
0 1

)

, Bn =

(

1 0
n 1

)

(1)

form a basis of a free subgroup of the group GL2(Z) (see [18, p.232]). Next, from the
proof of [18, Proposition 3.1] it follows that given a nonempty set S ⊂ Z the set

X(n, S) = {A−s
n BnA

s
n : s ∈ S}
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is also a basis of a free group G(n, S) ⊂ GL2(Z). The following statement proved in
Subsection 2.4 enables us to define a homomorphic public-key cryptosystem with these
groups.

Theorem 2.1 Given an integer n ≥ 2 and a finite set S ⊂ Z one can find the X(n, s)-
representation wg of an arbitrary matrix g ∈ G(n, S) in polynomial time in l(n) + l(S) +
l(wg).

Let H = 〈X ;R〉 be a nontrivial group given by the set X of at least two 1 generators
and the set R of relations. Choose randomly n ≥ 2, sets S ⊂ Z, R ⊂ WR such that
|S| = |R| = |X |, and bijections h 7→ xh, h 7→ rh from X to X(n, S) and to R respectively.
Set

X = X(n, S,R) = {xhrh : h ∈ X}, G = 〈X〉.

Since F = 〈X(n, S)〉 is a free group on X(n, S), there exists a uniquely determined
epimomorphism ϕ : F → H coinciding with f−1

X on WX(n,S) where fX : WX → WX(n.S) is
a bijection taking h1 · · ·hk to xh1

· · ·xhk
. After identifying WR with the subset of WX we

have F = ϕ−1(H) ⊃ 〈fX (X ∪R)〉 ⊃ 〈X〉 = G. Thus G < F < GL2(Z) and the mapping

f : G → H, g 7→ ϕ(g) (2)

is a homomorphism such that f(xhrh) = ϕ(xh)ϕ(rh) = h · 1 = h for all h ∈ X . Now
we can define a homomorphic public-key cryptosystem S(H, n, S) over the group H with
respect to the homomorphism (2) as follows:

Public Key: the subset X = X(n, S,R) of GL2(Z) where R is a random subset of WR,
and a bijection X → X, h 7→ xhrh.

Secret Key: the pair (n, S).

Encryption: given a plaintext h ∈ H encrypt as follows:

Step 1. If h = h1 · · ·hk with hi ∈ X for all i, set Mh = (xh1
rh1

) · · · (xhk
rhk

).

Step 2. Find an X -representation wr = h′
1 · · ·h

′
m of a random r ∈ WR. Set

Mr = xh′

1
· · ·xh′

m
.

Step 3. Output the matrix MrMh ∈ GL2(Z) as the ciphertext of h.

Decryption: given a cyphertext g ∈ G decrypt as follows.

1This is rather technical restriction because even H is a cycle group one can choose as X nonminimal
set of generators.
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Step 1. Find the X(n, S)-representation wg = g1 · · · gk of the element g (Theo-
rem 2.1).

Step 2. Output f−1
X (g1) · · ·f

−1
X (gk) as the plaintext of g.

The correctness of the encryption and decryption algorithms immediately follows from
the definitions. Moreover, by Theorem 2.1 the decryption of the cryptosystem S(H, n, S)
can be done within time (l(n) + l(S) + l(wg)))

O(1).

2.3. Remarks on security of the cryptosystem S(H, n, S). First, we observe
that the decryption problem, i.e. the problem of computing f(g) for an element g ∈ G,
is polynomial-time reducible to the representation problem P(GL2(Z), X). Thus the
difficulty of the direct way to break S(H, n, S) is based on that of the special case of this
representation problem with the promise X ⊂ G(n, S):

Problem 2.2 Given a matrix belonging to a group G ≤ G(n, S) find a short X-

representation of it under the assumption that such a representation does exist.

One can make this problem even harder using for instance the Nielsen transformations
[18] to replace X(n, S) by other set of generators not necessarily being a basis of the group
G(n, S) (these transformations consist in succesive replacing elements of generating set
for their inverses or products). A less direct way to break the cryptosystem S(H, n, S)
could consist in finding the number n and the set X , in other words, the secret key. This
seems to be difficult.

Finally, it should be remarked that the cryptosystem S(H, n, S) can be transformed
to the homomorphic public-key cryptosystem in the sense of [14]. To do this it suffices to
find a set A and a trapdoor function P : A → G such that im(P ) = ker(f), i.e. to get the
exact sequence

A
P

−→G
f

−→H −→{1}.

However, this can be done by choosing A to be the set WK where K = {hh′(hh′)−1 :
h, h′ ∈ H}, and P = fX (we make use the fact that in this setting the group H has to be
small). We do not dwell on details since we do not stick here with the definition of [14].

2.4. Proof of Theorem 2.1. The proof of the theorem is based on lemmas 2.3
and 2.4. In the first of them the free group F on X is considered as the subset of the set
WX : any element of F is an irreducible word of WX and the identity of F is the empty
word 1X ∈ WX . The length of the X -representation of an element g ∈ F is denoted
by |g|. For an arbitrary word w ∈ WX we denote by w the element of F corresponding
to w. Below we will use an observation from the proof of [18, Proposition 3.1] that if
X = {A,B} and S ⊂ Z is a nonempty finite set, then the elements A−sBAs, s ∈ S, form
a basis of a free subgroup of the group F .

7



Lemma 2.3 Let F be a free group of rank 2 on X = {A,B} and G be a subgroup of

F generated by the set X = {A−sBAs : s ∈ S} where S ⊂ Z is a nonempty finite set.

Then given an element g ∈ F one can test whether g ∈ G or not in time (l(g) + l(S))O(1)

where l(g) is the bit size of the X -representation of g; moreover, if g ∈ G, then the

X-representation wg can be found within the same time and l(g) ≤ 3l(wg)l(S).

Proof. To prove the lemma let us consider the following algorithm which for a given
element g ∈ F by recursion on the length |g| of its X -representation produces a certain
pair (ig, wg) ∈ {0, 1} × WX such that g ∈ G if and only if ig = 1 and wg is the X-
representation of g.

Step 1. If g = 1X , then output (1, 1X). Otherwise, let u = AaBbAc · · · for suitable
a, b, c, . . . ∈ Z.

Step 2. If either −a 6∈ S or (−a, b) ∈ S × {0}, then output (0, 1X). Otherwise set
u = Aa+c . . ..

Step 3. Recursively find (ih, wh) where h = u. If ih = 0, then output (ih, wh).

Step 4. Output (1, wg) where wg = vwh with v = AaBbA−a.

We observe that each recursive call at Step 3 is applied to the element h ∈ F with
|h| < |g|, so the number of recursive calls is at most |g| and each step can be implemented
in time O(l(g) + l(S)). Thus the running time of the algorithm is (l(g) + l(S))O(1). Next,
due to the obvious inequality l(c) ≤ l(a+ c) + l(a) we have

l(g) = l(AaBbAc · · ·) ≤ 2l(a) + l(b) + l(Aa+c . . .) = 2l(a) + l(b) + l(h). (3)

Since wg = vwh and v = (AaBA−a)b we get that l(wg) = l(b)+ l(wh). On the other hand,
l(h) ≤ 3l(wh)l(S) by the recursive hypothesis. Thus from (3) it follows that

l(g) ≤ 2l(a) + l(b) + 3l(wh)l(S) = 2l(a) + l(b) + 3(l(wg)− l(b))l(S) ≤ 3l(wg)l(S)

(we use that l(b) 6= 0 and max{l(a), l(b)} ≤ l(S)). This proves the required inequality
l(g) ≤ 3l(wg)l(S).

To verify the correctness of the algorithm we need to show first that g ∈ G if and
only if ig = 1, and second that if ig = 1, then wg is the X-representation of g. Using
induction on |g| suppose that g ∈ G\{1X}. We observe that the first term of an arbitrary
irreducible word w ∈ WX such that w = w′ for some w′ ∈ WX , is of the form Aa where
−a ∈ S. So the output of Step 2 is correct. Moreover, from the definition of v at Step 4
it follows that v ∈ X and so g ∈ G iff h ∈ G. Besides, if the algorithm terminates at
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Step 3 or 4, then ig = ih and by the induction hypothesis wh is the X-representation of h
iff ih = 1. Thus the output at Step 3 is correct and wg ∈ WX . Since obviously

g = vu = vu = vwh = vwh = wg,

we conclude that wg at Step 4 is the X-representation of g and the output of this step is
correct.

In the next lemma we deal with the subgroup of GL2(Z) generated by the set Xn =
{An, Bn} (see (1)). Since this group is a free group on Xn, any element M of it has the
uniquely determined Xn-representation coinciding with the irreducible word belonging to
WXn

.

Lemma 2.4 Let G = 〈Xn〉 for some n ≥ 2. Then given matrix M ∈ GL2(Z) belonging

to G, the Xn-representation of M can be found in time (l(n) + l)O(1) where l is the bit

size this representation.

Proof. The algorithm below is similar to the one in [29] which yields a representation of a
matrix with respect to a different (more standard in the theory of modular groups) family
of generator, also in [29] one can find the basic facts on the group SL2(Z) used in the
proof below. We will employ the classical action of the group GL2(Z) on the projective
line (the Riemannian sphere) C∗ = C∪{∞} by means of linear fractional transformations

z 7→ Mz = (M11z +M12)/(M21z +M22)

where M = (Mij) is a matrix of GL2(Z) (the kernel of this action is of order 2 and equal
the subgroup of all diagonal matrices of GL2(Z); the quotient group with respect to this
subgroup is the projective group PGL2(Z)). We make use of the following key observation:
if n ≥ 2, then any power Ak of the matrix A = An with nonzero k ∈ Z maps the unit
open disk D ⊂ C centered at 0 strictly inside Dc = C∗ −D, and reciprocately any power
Bk of the matrix B = Bn maps Dc strictly inside D. 2 A straightforward computation
shows that given z ∈ D ∪Dc there could exist at most one integer k = k(z) such that

(z ∈ Dc ∧ Akz ∈ D) ∨ (z ∈ D ∧ Bkz ∈ Dc).

Below we set C(z) = Ak if z ∈ Dc, and C(z) = Bk if z ∈ D, provided that k does exist. In
the following algorithm we suppose that I is the identity matrix, and z ∈ D and z′ ∈ Dc

are arbitrary fixed complex numbers of small sizes, say z = 1/2 and z′ = 2.

Step 1. Set (L, L′) := (M,M) and (u, u′) := (1Xn
, 1Xn

).

2This observation entails that G is the free group on {A,B} (see [18, Proposition 12.2]).
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Step 2. If L = I, then output u; if L′ = I, then output u′.

Step 3. Set (u, u′) := (C−1u, (C ′)−1u′) (in WXn
×WXn

), and (L, L′) := (CL,C ′L′)
(in GL2(Z)×GL2(Z)), where C = C(Lz), C ′ = C(L′z′). Go to Step 2.

Let us prove that the above algorithm finds the Xn-representation

M = Aa1Bb1 · · ·AamBbm (4)

of a matrix M ∈ G where m is a nonnegative integer and ai, bi ∈ Z, i ∈ m, such that
ai 6= 0 for i 6= 1, bi 6= 0 for i 6= m. If M = I (m = 0), then the statement is obvious (see
Step 1). Let us show that if bm = 0 (resp. bm 6= 0), then after m iterations of the loop at
Steps 2 and 3 the matrix L (resp. L′) becomes the identity matrix and the word u (resp.
u′) is the Xn-representation of M . Indeed, let bm = 0 (the case bm 6= 0 is considered
similarly). Then it is easy to see that Mz ∈ D iff a1 = 0. So after the first iteration
according to Step 3 we have

k(Mz) =

{

−a1, if Mz ∈ Dc,
−b1, if Mz ∈ D,

whence u = Aa1 if Mz ∈ Dc and u = Bb1 if Mz ∈ D. Since the number of factors in
the Xn-representation of the matrix L after Step 3 equals m− 1, the required statement
follows by induction on this number.

Let us estimate the running time of the algorithm. We observe that from the previous
paragraph it follows that the algorithm terminates after m iterations. So to complete the
proof it suffices to note that the sizes of all the intermediate matrices L and L′ do not
exceed O(ml(n) + l).

Let us complete the proof of Theorem 2.1. For an element g ∈ G(n, S) by means of
Lemma 2.4 one can find first its Xn-representation within time (l(n)+l)O(1) where l = l(g)
is the bit-size of this representation. Subsequently applying Lemma 2.3 one can find an
X(n, S)-representation wg of g within time (l + l(S))O(1) ≤ (l(wg) + l(S))O(1).

3 Homomorphic cryptosystems over finite rings

Let R be a finite commutative ring with identity and G be a group. Then it is easy to
see that any homomorphism ϕ : G → R× where R× is the multiplicative group of R, can
be extended to the homomorphism ϕ′ : R[G] → R[R×] of the group rings taking

∑

g rgg
to

∑

g rgϕ(g). On the other hand, the natural injection R× → R can be extended to the
ring homomorphism ϕ′′ : R[R×] → R. We will say that the homomorphism f = ϕ′ ◦ ϕ′′,

f : R[G] → R,
∑

g

rgg 7→
∑

g

rgϕ(g) (5)
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is induced by the homomorphism ϕ. From the computational point of view the homomor-
phisms ϕ and f are closely related; more exactly the problem of finding ϕ(g) for g ∈ G
is polynomial time equivalent to the problem of finding f(g) for g ∈ G (here we suppose
the elements of the group ring R[G] are given by R-linear combinations of elements of G).
This immediately implies the following statement.

Lemma 3.1 Let R be a finite commutative ring with identity such that there exists a

homomorphic public-key cryptosystem over the group R× with respect to an epimorphism

ϕ : G → R× for some group G. Then one can design a homomorphic public-key cryp-

tosystem over the ring R. Moreover, the problems of breaking these two systems are

polynomial-time equivalent.

Proof of Theorem 1.2. We recall that the ring R being a commutative one is
isomorphic to a direct sum of local rings (see [19]). If among these local rings there is
at least one not isomorphic to Z2 then the multiplicative group of this ring is nontrivial
and hence |R×| 6= 1. Thus by Lemma 3.1 it suffices to find a homomorphic public-key
cryptosystem over the group R×. To do this we observe that due to the commutativity of
the ring R, we have R× = H1 × · · · ×Hk where Hi is a cyclic group, i ∈ [k]. So from [14,
Section 2] it follows that for each i there exists a homomorphic public-key cryptosystem
Si over the group Hi with respect to an appropriate epimorphism ϕi : Gi → Hi with
Gi being a finite Abelian group. Set G = G1 × · · · × Gk and ϕ to be the epimorphism
G → H induced by the epimorphisms ϕ1, . . . , ϕk. Now, using cryptosystems Si, i ∈ [k],
one can form a homomorphic public-key cryptosystem over the group R× with respect to
the epimorphism ϕ : G → R×. Theorem is proved.

Let R and A are finite rings as in Theorem 1.2. Then from the proof of this theorem
it follows that the size of A is double exponential in the size of the ring R. Indeed, A is
the group ring of the group G over R, whence |A| = |G||R|, |G| = |G1| · · · |Gk| and |Gi|
is exponential in |Hi| (see construction in [14, Section 2]). We will see below that under
the natural assumption on the presentation of A it is difficult to reduce the size of A
preserving the secrecy of the homomorphism f : A → R (this extends the observation
from [5]).

Let A be a finite ring of characteristic m (i.e. the minimal integer which vanishes in
A) and P(m) be the set of the highest prime powers dividing m. Then it is easy to see
that

A =
⊕

q∈P(m)

Aq (6)

where Aq = q′A with q′ = m/q, is an ideal of A considered as a finite ring of character-
istic q with the identity q′1. For each q the ring Aq is a linear space of the dimension
nq = logp |Aq| over the finite field Fp of the prime order p dividing q. This implies that A
can be considered as a subring of the matrix ring Matn(Zm) where n =

∑

q nq. To find a

11



basis of a linear space could be not easy a priori if a procedure of testing linear dependency
is not known, that is why the efficiency of embedding of A into a matrix ring depends on
the way how A is given. Now suppose that the size of A is at most exponential in |R|.
Then the dimension nq is polynomial in |R| and hence n, logm are less than |R|O(1). In
the following theorem we use a presentation of a ring homomorphism which is analogous
to the presentation of a group homomorphism from [14].

Theorem 3.2 Let R be a finite ring presented by the list of elements together with the

Cayley tables of its additive and multiplicative groups and A be a subring of the ring

Matn(Zm) where max{n, logm} ≤ |R|O(1). Suppose that f : A → R is a homomorphism

given by generators of the ideal ker(f), a transversal X of ker(f) in A and the restriction

of f to X. Then given a ∈ A the element f(a) can be found in polynomial time in |R|.

Proof. Using the decomposition (6) one can reduce the problem of computing f(a),
a ∈ A, in polynomial time to |P(m)| problems of computing fq(aq), q ∈ P(m), where
aq = aq′ ∈ Aq and fq : Aq → Rq is the homomorphism induced by f . Thus without loss
of generality we assume that the characteristic of A equals pd for a prime p and d ≥ 1.
Since d ≤ logm ≤ |R|O(1) one can find an embedding A → Matnd(Zp) in time |R|O(1).
Then the ideal ker(f) becomes a linear space over a finite field Fp of dimension at most
(nd)2. Using linear algebra over Fp a linear basis of this space can be found within the
same time. This enables us to solve efficiently whether or not an arbitrary element a ∈ A
belongs to ker(f).

Let now a ∈ A. Then there exists the uniquely determined element xa ∈ X such that
xa − a ∈ ker(f). Moreover, from the previous paragraph it follows that this element can
be found in time |R|O(1) (it suffices to test for each x ∈ X whether or not x−a ∈ ker(f)).
Since f(a) = f(a + xa − a) = f(xa) and the element f(xa) is known as the part of
presentation of f , the element f(a) can be found within the same time.
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