COMPLEXITY LOWER BOUNDS FOR
RANDOMIZED COMPUTATION TREES
OVER ZERO CHARACTERISTIC FIELDS

D. GRIGORIEV

IMR UNIVERSITE RENNES-1
BEAULIEU 35042 RENNES FRANCE
DIMAQ@QMATHS.UNIV-RENNES1.FR

We obtain a nonlinear complexity lower bounds for randomized computation
trees with branching signs {=,#} over zero characteristic fields. As consequences
we get Q(nlogn) lower bound for the distinctness problem and Q(n?) lower bound
for the knapsack problem. For more customary randomized computation trees over
reals with branching signs {<, >} the similar bounds were proved: for the knapsack

problem in [GK97] and for the distinctness problem in [G99].

Introduction.

Complexity lower bounds for algebraic decision and computation trees over the
reals, where for the branching the signs {<,>} are involved, were widely stud-
ied. In [SY82], [B83] the lower bound Q(log ¢ — n) was obtained for recognizing a
semialgebraic set with the number ¢ of connected components in the set or in its
complement. Afterwards in [CMP92] the lower bound was strengthened to Q(log ¢).
In [BLY92], [Y92], [BL94]| the lower bound Q(log x) was proved where yx is the Eu-
ler characteristic of the set. Finally, in [Y94], [MMP96] the strongest among these
“topological” lower bounds £2(log b) was obtained, where b is the sum of Betti num-
ber of the set. For the sets with the trivial topology, like polyhedra, these bounds
are not applicable and in [GKV97] the complexity lower bound Q(log N) was proved

using a differential-geometric approach, for recognizing a polyhedron with N faces
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(of all the dimensions). We mention also that for a parallel computation trees model

the upper complexity bound O(+/log N loglog N) close to the lower one (+/log N)
[Y81], [MP93] was obtained in [G97] for small dimensions.

Another challenging problem which was open for many years, is obtaining com-
plexity lower bounds for the randomized decision and computation algebraic trees.
Recall (see e.g. [M85]) that in the randomized models for any input point the answer
could be given with the probability of an error at most v < % In [GKMS96] a lower
bound Q(log N) was proved for randomized decision trees recognizing an arrange-
ment (i.e. aunion of hyperplanes) or a polyhedron with N faces. This gives as corol-
laries the lower bound Q(nlogn) for the distinctness problem Ui <;<;j<n{X; = X}
and the lower bound Q(n?) for the knapsack problem U {le = 1} (both

1c{t,...n} |ieT
problems are treated as arrangements). In [GK97] the lower bound Q(n?) was
proved for the knapsack problem for the more natural model of randomized com-
putation trees. In [G99] the lower bound Q(nlogn) was ascertained for the dis-
tinctness problem for the same model. The basic difference between the decision
and computation trees is that in the former one the testing polynomials (usually,
of some fixed degree) are given, while in the latter one the testing polynomials are
computed along a branch of the tree, thus the degree of testing polynomials could
grow exponentially, that provides major difficulties in proving the complexity lower
bounds. In [GKS96] the complexity lower bounds were ascertained also for the

randomized decision analytic tree, in which arbitrary analytic functions could be

used as testing ones.

Decision and computation trees over other fields rather than R are not so well
studied (see [S83], also [L90] where the case of recognizing an irreducible hypersur-
face was treated). In [B94] the trees with the signs {=,#} in branching instruc-
tions over algebraically closed fields of positive characteristic were introduced and
the lower bound (log, C) for recognizing a variety was obtained, where C' is the

degree of the Zeta-function of the variety. Also it is promised in [B94] to prove the



analogue of this bound over the fields of zero characteristic in a future paper.

In the present paper we focus (apparently, for the first time) on the randomized
computation trees over fields F' of zero characteristic (the results were announced
in [G98]). For the problem of recognizing an arrangement S = 1<EJ<mHi’ where
H; C F" are hyperplanes, we prove the complexity lower bound Q(Ioé N ), here N
is the lower bound for the number of faces in any subarrangement 1<L]J<qH ¢; of §
where ¢ > am for an appropriate constant o > 0 (theorem 2). As consequences we
obtain the lower bounds Q(nlogn) for the distinctness problem (corollary 2) and
Q(n?) for the knapsack problem (corollary 3). Notice that a similar problem for

obtaining a nonlinear lower bound for the distinctness problem for the randomized

computations over the real field still remains open (see [GK97]).

It is interesting to observe that considering arrangements (so the varieties of
codimension 1) is essential as shows the example from [BKL93], where a randomized
computation tree with the linear complexity O(n) is designed for recognizing the
equality set problem {(z1,...,2n,y1,...,yn) € F*": (21,...,2,) is a permutation
of (y1,...,yn)}, being not an arrangement, but rather a union of n-dimensional

planes in 2n-dimensional space.

The proof of theorem 2 relies on corollary 1 in which the lower bound Q(log N)
is proved on the multiplicative complexity of any function f which vanishes on an
arrangement with N faces. In its turn, the proof of the corollary 1 is based on the
degree method [S73], on the complexity of computing the gradient [BS83] and on
the technical core of the paper, namely theorem 1, in which a lower bound on the
degree of the gradient map of f is ascertained in terms of N (over the algebraic

closure F of F).

Basically, it is shown in the proof of theorem 1 that the limits of the gradients
at the points tending to a singular point (namely, to a vertex of the arrangement in
n-dimensional space), sweep the whole (n — 1)-dimensional projective space. The

difficulty, why the method of [BS83] could not be used in a more direct way, is that



it 1s not excluded that the degree of the gradient map for a polynomial could be
greater than the one for a multiple of this polynomial.
It would be interesting to get similar lower bounds for the randomized compu-

tation trees over the fields of positive characteristic.

1. Complexity of multiples of a product of linear functions.

Let F' be an algebraically closed field of zero characteristic. Consider pairwise
distinct hyperplanes Hy,..., H,, C F", let L; € F[Xy,...,X,] be a linear function

such that its variety of zeroes H; = {L; =0}, 1 <i:<m. By S = <U< H; denote
1<:<

an arrangement, L = [[ L;,so S ={L = 0}.
1<i<m
If for some 1 <13 < -+ < i < m the dimension dim(H;, N---NH; _, ) =k,

the intersection H;, N--- N H is called k-face of S. In this section by N we

in—k:
denote the number of O-faces (in other words, vertices) of S.

Let a polynomial 0 # f € F[Xy,...,X,]| be a certain multiple of L. Sim-

ilar to [S73], [L90] consider the graph of f joined by its gradient grads(z) =

e} e}
(%’ 781:];) ().

G={(z1,- ., Tn, 20, Y1, Yn); (T1,...,2n) € F", x0

= flz1,.. s 2n), (Y1, .- yn) = grady(z)} C F2"H.
The main purpose of the present section is to prove a lower bound on the degree
(see e.g. [MT76], [ST73], [S94]) degG in terms of N (see theorem 1 below). As
usual while studying the degree one considers the embedding of an affine variety
G C F*t1 c P?tl = P2*TL(F) into the projective space. Then deg G equals to
the maximal possible (and simultaneously, typical) number of points of intersections

of the projective closure G C P?"*! with linear subspaces, provided the intersection

is finite.
Theorem 1. degG > 22”%

Proof. Introduce the following rational map ¢ : F?" ! — P +2n=1 defined by the



formula

1/)(”6177rn7107y177yn):({r1y]}y1yn)70§L§n7 ].S]S?’L

where {z;y;} denote n(n + 1) projective coordinates. Observe that ¢ is the com-
position of the canonical maps F"*! x (F* —0) — F"t! x P! — prtl xpr-t
Pr*+2n =1 where the latter one is the Segre embedding. Thus, ¢ is defined when
not all yq,...,y, vanish (the role of ¥ is to make the coordinates of the gradient

to be projective). Obviously dim¢(G) = dim G = n.

Consider also a rational map o : pritn-l _, P"~! being a linear projection:
o({zij} ryr - tyn) = (Y1 1 -+ yn) (its role is to distinguish the coordinates of
the gradient).

First we remark that the theorem holds easily in case n = 1. Indeed, the arrange-
ment S C F consists of N points being the zeroes of L, therefore deg f > N since
L‘f The graph G = {(z, f(z), f'(z)) : * € F} C F? and its degree deg G > deg f.
Henceforth, we assume that n > 2.

Besides, we suppose that N > 1, otherwise the theorem is evident.

Lemma 1. For any vertez 2() = (x§0)7 e ,17510)) of S set ;c(()o) = f(xgo), e ,;c%o)) =

0. Then dim(o((G) NH®)) = n — 1, where (n — 1)-dimensional projective linear

subspace

HO = HE@ ) = ({2} ryr )i y) €BPTF C P

(0)

15 determined by the linear equations z;; = x; 'y;, 0 <1< n, 1 <j<n.

Remark. Lemma 1 implies that H(®) C 4(G) and therefore, o(¢(G) N H?) =
J(H(O)) =P

Proof of the lemma. W.l.o.g. we assume for the sake of simplifying the notations
that 2(® = 0 and the hyperplanes {X; = 0},...,{X, = 0} C F" are among
H,,...,Hy, (this could be achieved by a suitable linear transformation of the co-

ordinates).



Suppose that the conclusion in lemma is wrong. Then there exists a non-zero
homogeneous polynomial h € F[Yy,...,Y,] such that h(yi,...,yn) = 0 for any
point ({0} 1 g1 : -+ 1 ya) € Y(G)(NH).

Write f = fo + fo41 + -+ + fs,, where f; is the homogeneous component of

f of degree j and fs # 0. Since X, -+ X,|f we have s > n > 2, moreover in the

.. . of __ Ofs Ofs41
decomposition into the sum of homogeneous components 9N, = 5% + 9% 4.4
Ofsy

9%, the least component 54—5];} of degree (s — 1) does not vanish identically.

Let us show that for any line {(tzy,...,tx,)ier C F", where a point 0 #
(x1,...,2,) € F™, passing through +(® = 0, such that grady, does not vanish
on this line identically (and thus, does not vanish for any ¢ # 0, as grady, is

homogeneous), it holds

(1) <{0};§£ ;}J;) (21,...,2n) € H(G)

Indeed, we have aa—)gj(ml, cotay) = ts_lfvj(t,xl, =

_ s _19fs .
(ts 15_)€+ts<9(9ﬁ7+j1+_,,_|_t31 1af—)(;> (1,...,2,),1 <7 <nand f(txy,...,te,) =
tsﬁ)(t,:cl,...,:ﬂn) for suitable polynomials f:),fl,...,ﬁ € F[t,zy,...,2,]. Then

the point

({txi -ts—lfj} : {t% : ts—lfj} T e ts—lfn>
1<i,j<n 1<j<n

belongs to ¢(G). Dividing all the coordinates over the common factor ¢*~! and

after that substituting ¢t = 0 we get (1) for the resulting limit point.

Thus, for any point (z1,...,z,) € F™ we have h ((%,--- ,%) (xl,...,;cn)) =
0 since h is homogeneous, i.e. h (5)1?1 A %) =0.

Consider the monomial ordering deglez, according to which a monomial is higher
than another one if either its total degree is greater or the degrees of both coincide
and the monomial is higher in the lexicographical ordering (with respect to a certain
fixed ordering of the variables Xq,...,X,).

Let M = X{l -+» X!n be the least monomial of f, in deglez ordering (hence M is

also the least monomial of f), then iy > 1,...,7,, > 1 since X; --- X,,|f. Therefore,
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the least monomial of g—g{; 1s XMJ Let h = ; hKYlK1 YnA" In the expansion
v

P 5 K, K,
of h (8)]?1 g ,—a)]} ) the least monomials (Xﬂl) (%) of the items are

. .. . . M\ Pt M\
pairwise distinct; indeed, assuming the contrary we have, (X_1> <X_) =1

for some integers py, ..., p, not all of them being zeroes, then the vector (p1,...,pn)
is collinear with the vector (iy,...,i,), thus M@+ Fin = M but iy + -+ + i, >
n > 2 and we get a contradiction. Since the least monomials of the items are

pairwise distinct, they cannot cancel each other, this leads to the contradiction

with A (%, R %) = 0 and proves the lemma.

Lemma 2. deg¢(G) > N

Proof. Consider a variety V = Mm P C [F’"2+2"_1, where P = {{z;j }1<ij<n :
{0} : y1 : -+ ¢ yn} is the subspace (of codimension n) obtained by means of
substituting zeroes for the coordinates {zp; }1<i<n.

Pick out any vertex z(9) of S (taking into account that N > 1), then ¥(G) N
H(© C V and lemma 1 entails that dim(o(V N 7—[(0))) =n — 1. On the other hand,
consider a hyperplane {Xg = 0} C F?"*! then v(G) NP C ¥(GN{Xy = 0}),
hence dim (¢(G) NP) < dim(G N{Xo = 0}) < n — 1, therefore, no n-dimensional
irreducible component of ¥(G) lies entirely in P and because of that dimV <n—1,
thus dimV =n — 1.

The theorem on the dimensions of the fibres [S94], [M76] implies the existence
(actually, an open set) of a point y(® = (yio) Do y,(lo)) € P" ! such that
the preimage J_l(y(o-)) NV consists of a finite number of points and moreover,
y© ¢ o(V N 7—[(0)) for any vertex (% of S. Therefore, degm > N since the
intersection of V' with the subspace {yry;o) = yj’yz(o)}lgm‘gn consists of a finite
number of points ¢! (y(®)) NV, and for any of vertices z(®) = (:l:go), e ,;17510)) of S

o,

this intersection contains the point ({:cgo)ygo)}lgmgn {0}y : ‘yglo)) due to

the choice of y(® (cf. [S94],[S73]). Lemma 2 is proved.

To complete the proof of the theorem one could invoke the inequality deg ¥(G) <



o]

degt - deg G (see [ST3], [S94]), but in order to estimate degt one should consider
Graph ¥ of the map ¥ into the projective space P +2n=1 and Segre embedding
Graph ) into P(2n+2)(n*+2n)—1 (see [MT76], [S94]) which would increase its degree.
Instead of that, we give an alternative self-contained proof of the required inequality
deg)(G) < 22"*ldegG.

Take a subspace P C P +2n=1 of the codimension n such that PNy (G) consists
of deg(G) = degm points (such a subspace exists since for almost any n-
codimensional subspace its intersection with m consists of degm points and
for almost any subspace its intersection with the set ( ) — (@) of dimension less
than n is empty). Then ()" (P) N G) = P N ¢(G). Hence deg(G) does not
exceed the number of irreducible components of the variety ¢ ~!(P) N G which in
its turn is less or equal to deg (v~ (P) N G) < degv~!(P)deg G according to the
Bezout inequality for locally closed sets proved in [H83] which extends the more
customary case of the closed projective sets intersecting completely, see e.g. [MT76],
[S94], also [S73]. The local closedness of the set »~1(P) follows from the next
paragraph.

It remains to estimate degv~!(P). If P is determined by linear equations of
the form > aijzij + Y, a;y; = 0, then v ~1(P) C F?"*! is determined

0<i<n 1<j<n 1<i<n

(out of the plane L = {y; = --- = y, = 0} where ¢ is not defined) by quadratic

equations of the form

(2) Y aijziy+ Y aiyi =0

By induction on 0 < ¢ < 2n one could choose the linear combinations gy,...,g4 €
F[Xy,...,Xn, X0, Y1,...,Y,] of the equations of the form (2) satisfying the prop-
erty that any irreducible component of codimension less than ¢ of the locally closed
set {g1 = --+ = g, = 0} — L is also an irreducible component of ¥ "' (P). As q,41
one can choose a linear combination of the equations of the form (2) such that g,44
does not vanish identically on any irreducible component of {¢g = --- = g, = 0},

not being an irreducible component of ¥y ~!(P). At the end of this process ¢»~!(P)



is a union of several irreducible components of {¢g; = - -+ = gan4+1 = 0} (the latter
variety could contain few extra its 0-dimensional irreducible components). Hence
degp™H(P) < deg{g1 = -+ = gant1 = 0} < 2271 again due to the Bezout
inequality.

Finally, deg /(@) < 22"*Tldeg G, together with lemma 2 this proves the theorem

In the following corollary we utilize introduced above notations. From now on

let F' be an arbitrary field of zero characteristic.

Corollary 1. Let L|f, f # 0, then the multiplicative complezity C of f is greater

or equal to +(log, N — 2n — 1)

For the proof we treat the polynomials L, f over the algebraic closure F of F.
Notice that the [BS83] implies that the multiplicative complexity of the family of
polynomials (f,grad;) is less or equal to 3C, hence [S73] entails that deg G < 23¢

(cf. also [L90]), which together with the theorem 1 proves the corollary.

2. Complexity lower bound for randomized computation trees

Let us consider first a deterministic algebraic computation tree (CT) 7' which
recognizes an arrangement S. Prune from 7" all possible degenerate branches which
lead to the sign # for identically vanishing testing functions. After that the resulting
CT (which we still denote by T") possesses the unique (we call it “thick”) branch
with the testing polynomials fi,..., fr € F[Xi,...,X,], respectively, such that
all the signs along this branch are #. Denote f = f;--- fr. Obviously, the set
W ={f #0} C F" of the points satisfying the tests along the “thick” branch
is open and dense in the Zariski topology (see e.g. [M76]). Evidently, the total
complexity of the sequence fi,..., fr does not exceed k, therefore, the complexity
of f being the product of this sequence, does not exceed 2k — 1. The output of the
“thick” branch should be “no”,i.e. W NS = ¢, hence L|f.

For any 0 <r < n — 1 denote by ¢,(S5) the number of r-faces of S.
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Proposition. The complexity of a deterministic computation tree recognizing an

arrangement S is greater than £ (log, ¢r(S) —2(n —r)).

Remark. Moreover, we show that a certain branch (in fact, the ”"thick” one) of
a computation tree contains at least §(logy ¢,(S) —2(n — r)) multiplications.

To prove the proposition take a (n — r)-dimensional plane P C F™ in generic
position and restrict CT 77 and S on P. Then the multiplicative complexity of the
restriction f|p is still less or equal than 2k — 1 and the arrangement SN P C P
has ¢, (S) vertices. Since L|p | f|p, one applies the corollary 1 and concludes that

(2k — 1) > 3 (logy ¢, (S) — 2(n — r) — 1), thus the proposition is proved.

5

But our main issue are the randomized algebraic computation trees (RCT, see
e.g. [M85], [GKMS96], [GK97]). Under RCT we mean a collection of CT T' = {T,}
and a probabilistic vector p, > 0, > po = 1 such that CT T, is chosen with the
probability p,. The depth of an RCQT (treated as its complexity) is defined as the
maximum of the depths of all T,,’s (actually the equivalent complexity classes are
obtained if to define the depth of an RCT as the expectation of the depths of T},’s
[M85]). The main requirement is that for any input an RCT gives a correct output
with probability at least 1 —~ > % (v is called the error probability of RCT, see

e.g. [M85], [GKMS96]).

Let ko be the complexity (depth) of T, then any testing polynomial in 7" has the

oko+2
1-2v

degree at most 2%0. Take N = [ —‘ and arbitrary N pairwise distinct elements
ai,...,any € F. Consider a grid R = {ay,...,ay}" ! € F*"!. Then for any
polynomial 0 # g € F[X1,...,X,_1] of degree at most 2¥o+! the number of zeroes
of g on R does not exceed 2koF1. Nn=2 < 1;&]\7”—1 (see [S80]).

Now embed the grid R into each hyperplane H;, 1 < ¢ < m (in an arbitrary
way), one can assume w.l.o.g. that the embeddings in the different hyperplanes
have no common points. The union of all these embeddings we denote by A C S.

Observe that for the “thick” branches of T' the output “yes” could be given

with the probability at most 7. Indeed, there exists a point which belongs to the
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open sets W, which correspond to the “thick” branches of T, for all @ and to the
complement F™ — S; for this point the incorrect output “yes” could appear with a
probability at most ~.

Therefore, there exists a such that CT T, gives the output “no” for its “thick”
branch and besides, gives the correct output (so, “yes”) for at least (1 — 2v)|A| =
(1 —2y)m N™! points among A, denote this set of points by Ag C A. Indeed,
otherwise the correct output for the points from A is given with an expectation less
than (1 — 2v) + ~, the latter summand v refers to a such that the "thick” branch
of T,, gives the output "yes” (see above); that would contradict to the definition of
~. Let fi,..., fr be the testing polynomials along the “thick” branch of T, then
f = fi - fr vanishes at Ag (obviously, k < ko, deg fi < 2!, deg f < 2*o+! and the
complexity of f does not exceed 2k — 1).

Assume that there are exactly number ¢ of hyperplanes H; ,..., H; among

H,,...,H,, such that each of them contains more than I_QAN”_1 points from

Bo. Then (m — 125 - N"=1 4+ "1 > (1= 27)m N*), whence ¢ > L8m.

Observe now that f vanishes on each of hyperplanes H

iy

., H;, (due to the choice
of N). Denote by L€ F[Xy,...,X,] the product of ¢ linear functions which
define H;_,..., H; . Then Z|f Finally, applying corollary 1 as in the proof of the
proposition (i.e. to the restriction of L and f onto a certain plane), we obtain the

following lower bound on the complexity of RCT.

Theorem 2. Assume that for any ngzm—‘ hyperplanes among Hy, ..., Hy,, the
arrangement ScS§= <U< H; being a union of these hyperplanes, has at least
1<:<

N faces of all the dimensions. Then the complexity of RCT with error probability

v < 3 which recognizes S, is greater than ¢(logy N — 2n —log, n).

1—2v
142~

Remark. In fact, one could replace by any other constant less than 1 — 2.

Now we give two application of theorem 2.

Corollary 2. Any RCT recognizing the distinctness, i.e. the arrangement S =



14

U {X:=X,} has the complezity at least Q(nlogn).
1<i<j<n

The proof exploits an idea from [GKMS96]. Fix any constant 1 > 3 > 0 and take
at least ﬁ@ hyperplanes Hy, ..., H, among {X; = X;}, 1 <1 < j <n. Let us
show that the arrangement H, U ---U H, has at least n" faces, then theorem 2
would entail the corollary. For the sake of simplicity of notations suppose that n is
even.

Consider all possible subsets I C {1,...,n} for which [I| = Z. By the argument
of counting in average there exists a subset [ such that among <g)2 hyperplanes
of the kind {X; = X;} where ¢ € I, j ¢ I there are at least ﬁ"; from Hy,...,H,.
Denote a = 2(1 — /T — ) > 0. There exist at least an numbers i,...,1; € I

2

such that for any i, 1 < t; < t there are at least an hyperplanes of the kind

{Xi,, = X;}, j ¢ [ among Hy,...,H,. Indeed, otherwise among the hyperplanes
of the kind {X; = X;},i € I, j ¢ I one could find at least (2 —an)” = 22(1 — 3)
hyperplanes which are not among Hy, ..., H,.

For i; choose one of the possible of at least [an] hyperplanes of the kind {X;, =
X}, 71 ¢ I among Hy,...,Hy; after that for iy choose one of the possible of
at least ([an] — 1) hyperplanes of the kind {X;, = X,,}, 72 # Jji1, j2 ¢ I among
Hy,...,H,; and so on. Finally, for i[,, we have at least 1 possibility for ji,n)-
Any possible intersection of the hyperplanes {X;, = X }N---N{X;, , = X;, .}

provides a face of the codimension [an|, and there are at least [an]! such faces.

Remark. For the more customary trees over the real field FF = R with the signs
{<,>} at the testing nodes, lower bound Q(nlogn) for the distinctness problem
was proved in [GKMS96] in case of the randomized algebraic decision trees. In case
of the randomized computation trees the complexity of the distinctness problem

was posed as an open question in [GK97].

Corollary 3. Any RCT recognizing the restricted integer programming (RIP)

{ U } {aX =1} C F™ has the complezity at least Q(n*log ).
a€{0,...,7—1}"
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Notice that in the particular case 57 = 2 this problem coincides with the knapsack
problem.

The corollary follows from theorem 2 and from [GK97] where it is proved in
particular, that for some o > 0 any subarrangement of the RIP consisting of | 77"

hyperplanes of the form {aX = 1} has at least j>‘"2 faces for a suitable A > 0.

Remark. Actually, the corollary 3 in case of an algebraically closed field F' can be
deduced directly from the complexity lower bound Q(n?logj) for the RIP for the

randomized computation trees over the real field F = R with the signs {<,>}

[GK97]. Indeed, in case of the field F = C (or algebraic numbers F' = Q) one
can easily convert RCT T into RCT T® over F = R (respectively, F = Q N R),
representing each computed polynomial ¢ in RCT T as g = g1 + v/—1 g2 where
g1,92 € R[Xy,...,X,] and computing both g;, g, in T™® . This gives the corollary
3 in case of F = C or F = Q.

For an arbitrary algebraically closed field F' one can write the condition of the
non-existence of a RCT with a fixed low enough complexity and fixed probabilities
po which recognizes RIP, as a formula of the first order theory of algebraically
closed fields with the coefficients in Q (provided that p, € Q). This formula is true
over F = C (and over F = Q), hence it is true over an arbitrary algebraically closed

field F.

Remark. The results of this paper can be extended from the considered above
arrangements to the so-called ”distorted” arrangements. Namely, for irreducible
polynomials hq,...,hp € F[X1,...,X,] (here we assume F to be algebraically
closed) a "distorted” arrangement is a variety W = {hy---h,, = 0} C F™. A
"distorted” k-face of W is an irreducible k-dimensional variety Wy C F™ for which
there exist 1 < 1y,...,1,—x < m such that Wy is an irreducible component of the
variety {h;, = --- = h;,_, = 0} and in addition, for almost any (in Zariski topology)

point € Wy, the gradients grady,, (z),...,grads, _ (z) are linearly independent.
Let f € F[Xy,...,X,] vanish on W and N denote the number of 0-faces of W.
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Then the inequality from theorem 1 still holds. Indeed, for any 0-face * € W we
make a linear transformation of the coordinates, after which the gradient gradhij (2)
becomes orthogonal to the coordinate hyperplane {X; = 0},1 < j < n and =
becomes the origin of the coordinates. Then the least homogeneous component of
hi; (at the point z) equals to ¢; X;,¢; # 0,1 < 7 < n. Hence the least homogeneous
component of h;, ---h; equals to (¢1---¢n) Xy -+ Xy, therefore X -+ X, divides
the least homogeneous component of the polynomial f, and the proof of theorem
1 goes through for the polynomial f almost literally, thereby as well the proof of
corollary 1.

The proof of theorem 2 also goes through for ”distorted” arrangements. Instead
of the grid R in the proof one should take a suitable finite subset of points from
a hypersurface {h; = 0} C F",1 <1 < n to guarantee that if any polynomial
g € FIXy,...,X,] of a given degree vanishes at any fraction of 3 > 0 among these
points then h;|g (of course, the number of points in this finite subset depends on
B and on the degree of g). For example, one could consider a linear projection
7w : F" — F" ! such that dim(x{h; = 0}) = n — 1, take an appropriate grid

Ry C F™71 then the preimage 7 ~!'(R;) could replace R in the proof.
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