
Algebraic proof systems over formulas

Dima Grigoriev a Edward A. Hirsch b,1

aIRMAR, Université de Rennes, Campus de Beaulieu, 35042 Rennes, cedex
France, http://www.maths.univ-rennes1.fr/∼dima.

bSteklov Institute of Mathematics at St.Petersburg, 27 Fontanka, 191023
St.Petersburg, Russia, http://logic.pdmi.ras.ru/∼hirsch.

Abstract

We introduce two algebraic propositional proof systems F-NS and F-PC. The main
difference of our systems from (customary) Nullstellensatz and Polynomial Calculus
is that the polynomials are represented as arbitrary formulas (rather than sums
of monomials). Short proofs of Tseitin’s tautologies in the constant-depth version
of F-NS provide an exponential separation between this system and Polynomial
Calculus.

We prove that F-NS (and hence F-PC) polynomially simulates Frege systems,
and that the constant-depth version of F-PC over finite field polynomially simu-
lates constant-depth Frege systems with modular counting. We also present a short
constant-depth F-PC (in fact, F-NS) proof of the propositional pigeon-hole prin-
ciple. Finally, we introduce several extensions of our systems and pose numerous
open questions.

Key words: Algebraic propositional proof systems, Frege systems

Dedicated to Anatol Slissenko
from whom we have learned a lot

1 Introduction

A (Cook–Reckhow) proof system [CR79] for a language L is a polynomial-time
computable function mapping strings in some alphabet onto L. If there would
be a proof system Π for a co-NP-hard language such that for every x ∈ L,

1 Supported by CRDF, NATO, and RAS Young Scientists Program (6th contest-
expertise, 1999, grant No.1).

Preprint submitted to Elsevier 28 July 2013

the shortest proof π of x (i.e., the shortest string π such that Π(π) = x) had
size polynomial in the size of x, then we would have NP = co-NP.

A proof system Π1 polynomially simulates a proof system Π2 iff there is a
polynomial-time computable function f mapping every Π2 proof π to a Π1

proof of the same element of L, i.e., Π1(f(π)) = Π2(π).

A propositional proof system is a proof system for the co-NP-complete lan-
guage TAUT of all Boolean tautologies. Since this language is in co-NP, any
proof system for a co-NP-hard language L can be considered as a proposi-
tional proof system. However, note that one needs to fix a concrete reduction
of TAUT to L before proving, e.g., that such a system does (not) polynomially
simulate another propositional proof system.

Algebraic proof systems played a significant role in propositional proof com-
plexity during the past decade. The two most popular systems are Nullstellen-
satz (NS) [BIK+96] and Polynomial Calculus (PC) [CEI96]. These are proof
systems for the co-NP-hard problem of unsolvability of a system of polynomial
equations: We are given several polynomials over a field F and asked whether
these polynomials have no common roots in the algebraic closure of F. The
polynomials are represented as sums of monomials cxy. . .z, where x, y, . . ., z
are variables, and c is a constant (represented in binary).

To see that this problem is co-NP-hard, note that a Boolean formula Φ in CNF
in n variables x1, . . ., xn can be easily translated into polynomials F1, . . ., Fk

such that the polynomials

F1, . . ., Fk, x2
1 − x1, . . ., x2

n − xn

have no common roots iff Φ is unsatisfiable. Namely, let xj1 , . . ., xjm be the
variables occuring in the i-th clause Ci of Φ. Then Fi = l1. . .lm where lt = xjt
if xjt occurs positively in Ci and lt = (1− xjt) otherwise.

In PC, one starts with a system of polynomial equations (i.e., with a set of
polynomials treated as axioms) and derives new polynomials using two rules

P1; P2

P1 + P2

and
P

P ·Q
.

I.e., one can take a sum 2 of two already derived polynomials P1 and P2, or
multiply an already derived polynomial P by an arbitrary polynomial Q. The
goal is to derive the polynomial 1, because this proves that Φ is unsatisfiable.

2 Usually, an arbitrary linear combination is allowed, but clearly it can be replaced
by two multiplications and one addition.

2

In NS, a proof of {F1, . . ., Fm} is a set of polynomials {G1, . . ., Gm} such that∑
i FiGi = 1. Any such proof can be translated into PC in a natural way.

However, the translation in the opposite direction is not possible: there is a
sequence of tautologies having polynomial-size PC proofs but no polynomial-
size NS proofs [CEI96]. In fact, NS is equivalent to the tree-like version of
PC [BIK+97].

It is known that both PC and NS are sound and complete, but they are not
polynomially bounded. Namely, one can prove a linear lower bound on the
maximum degree of intermediate polynomials (this is done in [Raz98] for axiom
polynomials of logarithmic degree, and in [BGIP01] for axiom polynomials of
constant degree; see also [AR01]). Then by [IPS99, Theorem 6.2] one obtains
an exponential lower bound on the total number of monomials in the proof.

Pitassi [Pit97] considered a variant of PC where polynomials are represented
as formulas (i.e., terms) and not as sums of monomials. The resulting system
is still sound and complete, however, it is not a Cook–Reckhow proof system
because no polynomial-time deterministic procedure is known that could de-
cide whether an inference rule is applied in a right way. (Note: if we take a
sum of two polynomials P and Q in this system, we get not just the term
(P + Q)—the system would be incomplete in this way—but we can get an
arbitrary term representing the same polynomial).

In this paper, we augment this system by primitive rules that help to demon-
strate that two terms represent the same polynomial: associativity, commuta-
tivity, distributivity, etc. (See Subsection 2.1). These rules basically mean
that we work in a commutative ring; throughout this paper we call them the
primitive rules. We also require the next formula to be derived using either
the primitive rules or as a formal combination (P1 +P2) (resp., (P ·Q)) of two
already derived polynomials P1 and P2 (resp., of an already derived polyno-
mial P and an arbitrary polynomial Q). Therefore, we replace every “hard”
step like

(x+ y) · (x− y)

x2 − y2

3

by a sequence of “primitive” (polynomial-time verifiable) steps like

(x+ y) · (x− y)

x · (x− y) + y · (x− y)
(x− y) · x+ (x− y) · y
x2 − yx+ xy − y2

x2 − xy + xy − y2

x2 + (−1 + 1)xy − y2

x2 + 0− y2

x2 − y2
.

Although it may be still hard to derive a different term representing an already
derived polynomial, we can show that the power of the new calculus is sufficient
to polynomially simulate Frege systems. Namely, every proof in a Frege system
can be translated into a proof in our new system (which we call F -PC) with
at most polynomial increase in size (see Section 3).

In Section 4 we show that the tree-like version of F -PC is polynomially
equivalent to F -NS, an analog of NS in which Gi’s may be represented as
arbitrary formulas and the equality

∑
i FiGi = 1 must be proved using the

primitive rules only (this system is defined in Subsection 2.2). It is known
that Frege systems do not lose their power even if restricted to tree-like proofs
(see, e.g., [Kra95]). Since our polynomial simulation of Frege systems by F -PC
converts tree-like proofs into tree-like ones, it follows that F -NS polynomially
simulates Frege systems.

We then consider the constant-depth version of F -PC (i.e., the depth of every
formula in the proof is bounded by a constant, see Subsection 2.3 for defi-
nitions, cf. [GR00] where lower bounds for depth-3 arithmetic formulas were
established) and restrict our attention to finite fields. It turns out (see Sec-
tion 5) that this system polynomially simulates constant-depth Frege systems
with modular gates. We follow [Kra95] in the definition of the latter system.
This system has already been considered in [BIK+97] in connection to NS
with a constant number of levels of extension axioms.

We introduce also two extensions of F -PC: one extension based on Positivstel-
lensatz (see Subsection 2.4) and another one allowing to deduce a polyno-
mial when some its power is deduced (see Subsection 2.5). We illustrate a
possible application of this “radical rule” by employing the trick of Rabinow-
itsch [vdW31, Part 2, Chapter 11] to transform a derivation of 1 from a set
{1− zF, F1, . . . , Fm} into a derivation of F from the set {F1, . . . , Fm}.

In Section 6 we present a short F -PC proof (over Q) of the propositional
pigeon-hole principle (PHP) as well as for the subset sum problem. There is
nothing surprising in the existence of polynomial-size F -PC proofs of PHP,

4

because PHP has polynomial-size Frege proofs [Bus87] and F -PC polynomi-
ally simulates Frege systems. However, Buss’ proof [Bus87] involves a com-
plicated construction of addition circuits while our proof is very simple and
intuitive (actually, we employ the ability of F -PC to count). Our proof also
has depth bounded by a constant, while constant-depth Frege systems do not
have polynomial-size proofs of PHP [KPW95,PBI93]. In fact, our proof can
be conducted in constant-depth F -NS.

The results of Section 6, however, do not suffice to prove an exponential gap
between the lengths of proofs in PC and F -PC as propositional proof systems
(see the discussion in the end of Section 6). In Section 7 we demonstrate this
gap for Tseitin’s tautologies. In fact, we demonstrate the gap between PC and
constant-depth F -NS, the weakest system among the ones introduced in this
paper.

After this paper has been published, we realized that, in the case of finite fields,
a system similar to our system F -PC was briefly considered in [BIK+97] (it
was called equational logic there) and Theorem 8 was formulated.

2 The systems F-PC and F-NS and their extensions

In this section we introduce the two systems we study in this paper, and
discuss several extensions of these systems.

2.1 F-PC

The objects of our system F -PC are algebraic formulas. Formally, algebraic
formulas are the members of the smallest set satisfying the following condi-
tions:

(1) Constants (denoted by 1, −1, 0, etc.) are formulas.
(2) Variables are formulas.
(3) If P and Q are formulas, then the terms (P +Q) and (P ·Q) are formulas.

Constants and variables range over Q or over any finite field Zp. Sometimes
when speaking about algebraic formulas we will refer to them as polynomials.

Similarly to PC, the two basic rules are

P1; P2

(P1 + P2)
and

P

(P ·Q)
. (2.1)

5

Note that (P1 + P2) and (P · Q) here are terms (i.e., formal combinations):
no actual addition or multiplication is done. Since these rules are able to
produce only larger formulas, to derive the formula 1 (which is our goal)
we need also some (invertible) simplification rules (called the primitive rules
throughout this paper) yielding associativity, commutativity, distributivity,
etc. We allow to apply the primitive rules (but not (2.1)!) to any subterms
of the derived formulas, for example, the first rule below can be applied as
(A+ ((P +Q) +R))

(A+ (P + (Q+R)))
. Here is the list of these rules:

((P +Q) +R)

(P + (Q+R))
,

(P + (Q+R))

((P +Q) +R)
, (2.2)

((P ·Q) ·R)

(P · (Q ·R))
,

(P · (Q ·R))

((P ·Q) ·R)
, (2.3)

(P +Q)

(Q+ P)
,

(P ·Q)

(Q · P)
, (2.4)

((P +Q) ·R)

((P ·R) + (Q ·R))
,

((P ·R) + (Q ·R))

((P +Q) ·R)
, (2.5)

(P · 1)

P
,

P

(P · 1)
, (2.6)

(P · 0)

0
,

0

(P · 0)
. (2.7)

We also allow to replace a subterm P containing only constants by its value
cP (for example, (−1 + 1) simplifies to 0) and vice versa:

P

cP
,

cP
P
. (2.8)

An F-PC proof of a set {F1, . . ., Fm} of algebraic formulas is the derivation
of the formula 1 from the axioms F1, . . ., Fm using the rules (2.1)–(2.8).

Remark 1 We could write “an F-PC refutation”, but write “ proof” to em-
phasize that F-PC is a Cook–Reckhow proof system. To reach a compromise
between English and mathematics, the best way is to say that what we consider
is a proof of the fact that {F1, . . ., Fm} have no common roots.

As we already mentioned, to consider F -PC as a propositional proof system,
we have to fix a reduction of TAUT to the language of all sets of algebraic
formulas having no common roots. We could make this reduction from the
reduction of formulas in CNF to sets of polynomials described in Section 1.
However, the following (still standard) reduction is more natural.

6

There is still one variable for every Boolean variable (informally, true corre-
sponds to 0, and false corresponds to 1). Our set of algebraic formulas will
contain the formula x2−x for each variable x occurring in the input tautology
Θ and one additional formula ϕ(¬Θ) (cf. several polynomials in the reduction
described in Section 1). We define ϕ inductively: ϕ(¬Φ) = (1 − ϕ(Φ)), and
ϕ(Φ ⊃ Ψ) = (1− ϕ(Φ)) · ϕ(Ψ) for Boolean formulas Φ and Ψ (one can easily
extend ϕ to other logical connectives). We will refer to the algebraic formulas
from the image of ϕ as Boolean polynomials (we will later show that for any
of them we can derive P 2−P). Sometimes we will also call Boolean any other
polynomial P for which we can derive P 2 − P .

Remark 2 Any “refutation proof” of a Boolean polynomial ϕ(Φ) (i.e., the
derivation of 1 from ϕ(¬Φ)) can be transformed into a “proper proof” of ϕ(Φ)
(i.e., the derivation of ϕ(Φ) from the axioms x2

i − xi) by multiplying every
line in the derivation by 1−ϕ(Φ). Note that the axiom ϕ(¬Φ) transforms into
ϕ(Φ)(1− ϕ(Φ)).

In what follows, we use −P instead of −1 ·P , use other common mathematical
notation, and omit straightforward calculations, for example,

−P + P

−P + 1 · P
(−1 + 1) · P

0 · P
0

.

Note that in F -PC we can (and will in this paper):

(1) Derive something from zero polynomial, because zero polynomial is triv-
ially derivable from any other polynomial.

(2) Omit some of the brackets and ignore the order of operands, because
associativity and commutativity make it easy to derive similar formulas
from each other.

(3) Treat a polynomial F −G as an equality F = G and substitute G for an
occurrence of F in any formula R containing F . This can be performed by
extracting the multiplier M = M(R) of this occurrence (define M((P0 +
P1)) = M(Pi) and M((P0 · P1)) = P1−i · M(Pi), where Pi is the part
of the formula (P0 + P1) or (P0 · P1) containing this occurrence of F ;
M(P) = 0 if P does not contain this occurrence; M(F) = 1 where F
refers to the occurrence we mean), adding (G−F) ·M to R and repeated
carrying G− F in brackets. In particular, we can substitute x for x2 for
any variable x.

(4) Multiply equalities F1 = G1 and F2 = G2: Multiply F1 − G1 by F2 and
F2−G2 by G1; the sum of the obtained polynomials is F1F2−G1G2, i.e.,
the equality F1F2 = G1G2.

7

(5) Verify in the following simple way that F is derivable from G: open
(some of the) brackets in both F and G, make appropriate substitutions
using already derived equalities, group similar summands and compare
the results. Clearly, one should care about the size of the proof obtained
by opening the brackets.

2.2 F-NS

An F -NS proof of a set {F1, . . ., Fm} of algebraic formulas consists of two
parts:

(1) A multiset {G1, . . ., Gm} of algebraic formulas.
(2) An F -PC derivation of 1 from the algebraic formula

m∑
i=1

FiGi

without the use of the two main rules (2.1) (i.e., we use only the primitive
rules).

2.3 Constant-depth F-PC and F-NS

When we refer to constant-depth version of either F -PC or F -NS, we mean
that the (initial and intermediate) polynomials are represented as formulas
(terms) of depth bounded by a constant while the multiplication and the ad-
dition have arbitrary arity (i.e., we omit unnecessary brackets). The primitive
rules must be modified accordingly.

The slight discrepancy with a trivial definition is motivated by the analogy
between constant-depth F -PC and constant-depth Frege systems. Depth-k
F -PC and F -NS are Cook–Reckhow proof systems for the language of all
insolvable systems of depth-(k − 1) algebraic formulas (we consider k ≥ 3 to
capture, at least, sums of monomials and their formal products). We need to
decrease here the depth by one to make the system complete (the primitive
rules can turn every depth-(k − 1) formula into a sum of monomials using
intermediate formulas of depth at most k).

Since constant-depth Boolean formulas are usually considered in the basis of
¬ and unbounded-arity ∨ (and sometimes ∧ which is a shorthand:

∧
i xi =

¬∨i ¬xi), we slightly modify the translation ϕ of Boolean formulas into alge-

8

braic formulas:

ϕ

(
m∨
i=1

Φi

)
=

m∏
i=1

ϕ(Φi).

To get a propositional proof system, we must combine this reduction with
a transformation of unbounded-depth Boolean formulas into constant-depth
ones. Since we consider this system only in connection to constant-depth Frege
systems (with modular counting), we do not need to fix this transformation.

Note that, formally, our reduction to systems of depth-(k − 1) algebraic for-
mulas works well only for k ≥ 7, because otherwise we are unable to translate
even a formula in 3-CNF (in fact, we still get a complete proof system for a
co-NP-hard problem, but the reduction must be further modified).

2.4 F-PC> and F-NS>

Similarly to Positivstellensatz and Positivstellensatz Calculus [GV01] we de-
fine new systems F -NS> and F -PC>. An F -NS> proof of a set {F1, . . ., Fm}
of algebraic formulas consists of two parts:

(1) Two multisets {G1, . . ., Gm} and {H1, . . ., Hl} of algebraic formulas.
(2) An F -PC derivation of 1 from the algebraic formula

m∑
i=1

FiGi −
l∑

i=1

H2
i

without the use of the two main rules (2.1) (i.e., we use only the primitive
rules).

Similarly, an F -PC> proof of {F1, . . . , Fm} is an F -PC derivation of a certain

algebraic formula of the form 1 +
l∑

i=1
H2

i from the formulae F1, . . . , Fm.

Alternatively, one can build algebraic formulas based versions of LSn calculi
[GHP01] where one translates Boolean formulas into inequalities P ≥ 0 instead
of polynomials P . (These calculi are generalizations of Lovász-Schrijver calculi
[LS91,Lov94].) For example, a Boolean formula Φ can be translated into the
inequality −ϕ(Φ) ≥ 0 for the same ϕ as in Subsection 2.1; of course, x2−x ≥ 0
and x− x2 ≥ 0 for each variable x must be added. The primitive rules (2.2)–
(2.8) still can be applied to any subterm of an inequality. The rules for working
with inequalities can be, e.g.,

P1 ≥ 0; P2 ≥ 0

(P1 + P2) ≥ 0
and

P1 ≥ 0; P2 ≥ 0

(P1 · P2) ≥ 0
.

9

One can also introduce an axiom scheme Q2 ≥ 0 allowing to introduce the
square of any algebraic formula Q. (This particular set of rules and axioms
corresponds to the system LSn

∗ [GHP01].) The goal is to derive the inequality
−1 ≥ 0.

We mention also that another complete system for deducing polynomial in-
equalities was considered in [LMR96], the main difference of the latter system
is allowing to introduce auxiliary variables.

2.5 F-PC
√

The (radical) system F -PC
√

is the system F -PC extended by the rule

P 2

P
.

One can also define the system PC
√

similarly, and the system F -NS
√

by
including the radical rule in the list of primitive rules. Note that this rule is in
accordance with Nullstellensatz [vdW31] since P vanishes on the variety given
by the equalities F1 = . . . = Fm = 0 if and only if a certain power P d belongs to
the ideal generated by F1, . . ., Fm. Although this rule looks redundant because
every Boolean (i.e., comprising polynomials x2

i − xi for 1 ≤ i ≤ n) ideal is
radical, this rule apparently could accelerate proofs in some cases.

Consider, for example, the following issue. We have defined an F -PC (resp.,
F -NS, PC, etc.) proof of Φ as a derivation of 1 from the set S = {ϕ(¬Φ), x2

1−
x1, . . . , x

2
n − xn}. Frequently, such a derivation is called “refutation” instead

of “proof”. There is another possibility to prove that Φ is a tautology: let
us call a “proper proof” a derivation of ϕ(Φ) from {x2

1 − x1, . . . , x
2
n − xn}.

Formally, “refutations” and “proper proofs” give different propositional proof
systems. (Note that in customary PC and NS using “proper proofs” instead
of “refutations” needs updating the translation of formulas into polynomials
since we defined it only for CNFs; for many Boolean formulas Φ, this results
in exponentially large polynomials).

Trivially, any proof in a “proper proof” system can be transformed (with a
negligible increase in size) into a proof in a “refutation” system. Can we do
it in the reverse direction? For Boolean polynomial F = ϕ(Φ), the answer is
“yes” in both F -PC (see Remark 2) and PC (because F 2−F is an element of
the ideal generated by x2

i − xi, i.e.,
∑
Hi(x

2
i − xi)). However, for non-Boolean

F this may not work. Although it is impossible to transform a “refutation”
of (1 − F) into a “proper proof” of F , we now show how to transform a
“refutation” of (1 − zF) (where z is a new variable) into a “proper proof”

10

of F , using the radical rule. For this, we apply “the trick of Rabinowitsch”
[vdW31, Part 2, Chapter 11].

A “proper proof” of F in NS
√

is a “proper proof” of F in NS followed by
several applications of the radical rule to

∑
i FiGi. Consider an NS

√
“refu-

tation” (this is the same as NS “refutation”) (1− zF)G+
∑

i FiGi = 1. For-
mally substituting the rational function 1/F for the variable z (observe that G
and G0 could contain z) in the latter equality and cleaning the denominator,
we get F d =

∑
i FiG

′
i since the first term in the NS

√
-refutation in ques-

tion vanishes after the performed substitution; moreover, d ≤ maxi deg(Gi),
deg(G′j) ≤ deg(F d) + maxi deg(Gi) ≤ (deg(F) + 1) ·maxi deg(Gi). Now apply-

ing several times the radical rule this provides an NS
√

derivation of F from
{F1, . . ., Fm} of degree growing at most polynomially in the degree of a NS

√

derivation of 1 from {1− zF, F1, . . ., Fm}

To get a “proper proof” of F in PC
√

from a “refutation” of (1−zF) in PC
√

,
we verify by induction along the proof that for each its line

∑
FiGi, one can

derive a polynomial F dz+1∑FiGi|z=1/F by few applications of the rules of

PC
√

, where dz is the maximum degree of z in the intermediate polynomials

of the “refutation” (including the polynomials Q used in the
P

P ·Q
rule).

Suppose that
∑
FiGi is obtained as the sum of two already derived polynomi-

als
∑
FiG1i and

∑
FiG2i. By induction one can derive F dz+1∑FiG1i|z=1/F +

F dz+1∑FiG2i|z=1/F . Clearly, this gives F dz+1∑FiGi|z=1/F . If
∑
FiGi is ob-

tained as the product of an already derived polynomial
∑
FiGi1 and a polyno-

mial Q, by induction we can derive F 2dz+1∑FiGi (we multiply by F dzQ|z=1/F

instead of Q). Multiplying by F
∑
FiGi and using the radical rule, one gets

F dz+1∑FiGi. Finally, we get “a proper PC
√

proof” of F dz+1. Then the mul-
tiplication by F c (where c+dz+1 is the nearest power of two) and the repeated
application of the radical rule allows one to derive F itself.

The same arguments can be conducted for F -NS
√

. We leave the correspond-
ing question for F -PC

√
open. (Note that in the cases of F -NS and F -PC

degree bounds do not suffice for obtaining bounds on the size of derivation.)

3 F-PC simulates Frege systems

In this section it does not matter whether we consider F -PC over Q or over
Zp: we use only the existence of the constants 0, 1 and −1.

Theorem 3 The system F-PC polynomially simulates Frege systems.

11

PROOF. We consider Hilbert’s system: The axioms are

(A1) Γ ⊃ (∆ ⊃ Γ),
(A2) (¬∆ ⊃ ¬Γ) ⊃ ((¬∆ ⊃ Γ) ⊃ ∆),
(A3) (Γ ⊃ (∆ ⊃ Λ)) ⊃ ((Γ ⊃ ∆) ⊃ (Γ ⊃ Λ)).

The only rule of the inference is modus ponens: Γ and Γ ⊃ ∆ imply ∆.

The main part of the proof is the following lemma.

Lemma 4 For any Boolean formula Φ, the shortest F-PC proof of the poly-
nomial (ϕ(Φ))2 − ϕ(Φ) has size polynomial in size of Φ.

PROOF. We prove it by induction on the construction of Φ. Let G = ϕ(Γ),
D = ϕ(∆), and suppose that G2−G and D2−D have derivations of sizes γ ≤
c|Γ|2 and δ ≤ c|∆|2 respectively (the constant c will be clear from what follows).
Note that using the primitive rules we can easily derive R = (1−G)2− (1−G)
from G2−G. Hence, in the case Φ = ¬Γ the polynomial (ϕ(Φ))2−ϕ(Φ) has a
derivation of size at most c|Φ|2 (if c is large enough). We now consider the case
Φ = (Γ ⊃ ∆). By multiplying D2−D by (1−G)2, we obtain P = (1−G)2D2−
(1−G)2D. On the other hand, we can derive Q = (1−G)2D − (1−G)D by
multiplying R by D. Summing P and Q, we derive ((1 − G)D)2 − (1 − G)D
which is (ϕ(Φ))2 − ϕ(Φ). The size of this proof (from G2 − G and D2 − D)
is upper bounded by d|Φ| for some constant d, i.e., the size of the proof from
axioms is at most d|Φ|+ c|Γ|2 + c|∆|2 = c(|Γ|+ |∆|)2 + d|Φ| − 2c|Γ||∆|. Now,
choose c ≥ 2d; then the size of our proof is at most c|Φ|2. 2

We now show that ϕ translates axioms into polynomials having F -PC deriva-
tions of size polynomial in |Γ|, |∆| and |Λ|.

(A1) Let G = ϕ(Γ), D = ϕ(∆). Since we can derive G2−G, by commutativity
and distributivity we have (1 − G)G. Then we multiply it by (1 − D)
and by commutativity and associativity we obtain (1−G)((1−D)G) =
ϕ(Γ ⊃ (∆ ⊃ Γ)).

(A2) Here, we need to derive (1−D(1−G))·((1−DG)D) up to simplifications.
Opening the brackets gives (D −D2) + (GD2 −D2G) + (D3G−G2D3);
it now remains to derive this formula. The first two summands can be
easily derived from D2−D and from the axioms, respectively. The third
summand is G2 −G multiplied by −D3.

(A3) Here, we need to derive (1−(1−G)((1−D)L))·((1−(1−G)D)((1−G)L)),
where L = ϕ(Λ). This formula is equal to

(G3L2 − 3G2L2 + 3GL2 − L2)(D2 −D)

+(G2D − 2GD +G+D − 1)(L2 − L)− L2(G2 −G)

12

(it can be verified by opening all brackets), which is a sum of G2 − G,
D2 −D and L2 − L multiplied by appropriate polynomials.

It is clear that modus ponens can be proved using size linear in the sizes of
the formulas Γ and Γ ⊃ ∆: having ϕ(Γ) = G and ϕ(Γ ⊃ ∆) = (1− G)D, we
can multiply G by D, add the result to (1−G)D, and after simplifications we
have D, i.e., ϕ(∆). Therefore, we can indeed transform the proof of a Boolean
formula Θ in Hilbert’s system into a derivation of ϕ(Θ) in F -PC from the
polynomials x2

i − xi with only a polynomial increase in size (moreover, the
only point where non-linear increase can occur is the translation of the axioms
of Hilbert’s system). Summing ϕ(Θ) with the axiom ϕ(¬Θ), we get 1. 2

Remark 5 Note that Frege systems polynomially simulate F-PC over Z2.
However, we do not know whether it holds over any other field.

4 F-NS is just tree-like F-PC

How much of the power of F -PC is taken away by replacing it with F -NS?
Although we do not know whether F -NS can polynomially simulate F -PC, in
this section we show that F -NS still can polynomially simulate Frege systems.
Namely, we show that F -NS can polynomially simulate tree-like F -PC (“tree-
like” means that every derived polynomial is used only once; if we need it
again, we must derive it once more), cf. [BIK+97] which proves that NS
polynomially simulates tree-like PC over Zp. The claim now follows since tree-
like Frege systems have the same power as usual (DAG-like) ones (see, e.g.,
[Kra95]), and the proof of Theorem 3 translates tree-like Frege proofs into
tree-like F -PC proofs.

Clearly, tree-like F -PC simulates F -NS, cf. the fact that tree-like PC simu-
lates NS [BIK+97]. Therefore, the following theorem establishes the equiva-
lence between tree-like F -PC and F -NS.

Theorem 6 F-NS polynomially simulates tree-like F-PC.

PROOF. We first show that a tree-like F -PC proof can be transformed (with
at most polynomial increase in size) into two derivations:

(1) A derivation πT of some formula T from the axioms using no primitive
rules.

(2) A derivation πT,1 of 1 from T using only primitive rules.

We transform it inductively; at each intermediate step of our induction we
will have two derivations: a “normal” derivation πU of some formula U from

13

the axioms, and a derivation πU,1 of 1 from U using only the primitive rules.

We move the applications of the primitive rules from the first derivation to
the second derivation one by one. Consider the last application of a primitive
rule in πU . Let S be a subformula to which this rule is applied. Note that if we
omit this application, S will remain as a whole till the end of the proof, and
this will be the only difference between the old final formula U of the proof
and the new final formula U ′. Let us apply the same rule to U ′; we then obtain
U and therefore have a derivation πU ′,1 deriving 1 from U ′. Observe that every
step of this induction increases the proof size at most by the square of the size
of the original proof.

Note that πT is just the syntactic tree of the term T . We define the coefficients
Gi of our F -NS proof

∑m
i=1 FiGi (see Subsection 2.2 above) inductively. The

argument of Mi(·) is a subtree of πT . For the axioms Fi, the formula Mi(Fi) is
defined to be 1 if i = j, and 0 otherwise. If the root R of a subtree πR is derived
as the sum of two formulas P and Q, we define Mi(πR) = (Mi(πP) +Mi(πQ)),
where πP and πQ are the subtrees corresponding to the proofs of P and Q
respectively. If the root of πR is derived as (P · Q), where P is an already
derived formula, then Mi(πR) = (Mi(πP) · Q). Finally, we let the coefficient
Gi be Mi(πT).

Clearly, the size of every Gi is less or equal to the size of T . We must now
present the proof of 1 from

∑m
i=1 FiGi using only the primitive rules.

If suffices to show that there is a derivation (of size polynomial in the size of
T) of T from this sum using only the primitive rules. The proof is by induction
on the construction of Mi’s. Suppose that we have derived the term T in which
some subterms Rj are replaced by(

m∑
i=1

FiMi(πRj
)

)
. (4.1)

Then we rearrange one of such sums
∑

i FiMi(πR). If Mi(πR)’s were obtained as
(Mi(πP)·Q), we transform sum (4.1) into ((

∑
i FiMi(πP))·Q). If Mi(πR)’s were

obtained as (Mi(πP)+Mi(πQ)), then we transform (4.1) into ((
∑

i FiMi(πP))+
(
∑

j FjMj(πQ))). If the argument of Mi’s is an axiom Fj, then we simplify (4.1)
to Fj. 2

Corollary 7 F-NS polynomially simulates Frege systems.

PROOF. Note that tree-like Frege systems polynomially simulate Frege sys-
tems [Kra95], and the proof of Theorem 3 translates tree-like Frege proofs into
tree-like F -PC proofs. 2

14

5 Constant-depth F-PC over Zp simulates constant-depth Frege
systems with MODp gates

In this section we show that constant-depth F -PC over Zp polynomially simu-
lates constant-depth Frege systems with MODp gates. (The depth of algebraic
formulas may be bounded by a different constant than the depth of Boolean
formulas).

We switch to the basis of ¬ and unbounded-arity ∨ (and sometimes ∧ which is
a shorthand:

∧
i xi = ¬∨i ¬xi) for this section (cf. Subsection 2.3). Note that

the axioms of Hilbert’s system translate into the same polynomials in ϕ(Γ),
ϕ(∆), ϕ(Λ) as before, and so does modus ponens. It is easy to see that de-
spite we modified ϕ for the constant-depth version of F -PC, still it translates
Boolean formulas into Boolean polynomials, i.e., the analog of Lemma 4 still
holds. We summarize that the proof of Theorem 3 still works for constant-
depth Boolean formulas, and transforms constant-depth Frege proofs into
constant-depth F -PC proofs.

A Frege system with MODp gates (see, e.g., [Kra95]) includes propositional
connectives MODp,i of unbounded arity (0 ≤ i ≤ p − 1). Informally,
MODp,i(x1, . . ., xk) means that the number of xi’s having the value true equals
i modulo p. We add the axiom schemes

MODp,0(∅)

and

¬MODp,i(∅)

for each i = 1, . . ., p−1. For each nonnegative integer k, we add also the axiom
schemes

MODp,i(Φ1, . . .,Φk,Φk+1) ≡
≡ ((MODp,i(Φ1, . . .,Φk) ∧ ¬Φk+1)

∨(MODp, (i−1) mod p(Φ1, . . .,Φk) ∧ Φk+1).

(Here ≡ and ∧ are just shorthands). To translate formulas with MODp con-
nectives into algebraic formulas over Zp we extend ϕ to MODp gates by

ϕ(MODp,i(Φ1, . . .,Φk)) = (k − i− ϕ(Φ1)− . . .− ϕ(Φk))p−1.

To see that the obtained formula is Boolean, it is sufficient to prove Ap − A
where A denotes k − i − ϕ(Φ1) − . . . − ϕ(Φk) (then A2p−2 − Ap−1 follows

15

easily). Note that we can represent A as the sum of Boolean polynomials
F1, . . ., Fk+((p−i) mod p), where Fj = 1 − ϕ(Φj) for 1 ≤ j ≤ k and Fj = 1
otherwise. When we open brackets in (

∑
j Fj)

p and group similar “monomi-
als”, all summands except F p

j cancel because p divides their coefficients. Since
Fj are Boolean (by induction hypothesis), the claim follows, i.e., the ana-
log of Lemma 4 holds even for constant-depth Boolean formulas with MODp

gates. Namely, for such formula Φ, the algebraic formula (ϕ(Φ))2 − ϕ(Φ) has
polynomial-size constant-depth F -PC proof over Zp.

Theorem 8 Constant-depth F-PC over Zp polynomially simulates constant-
depth Frege systems with MODp gates.

PROOF. By the above discussion concerning the proofs of Lemma 4 and
Theorem 3, it suffices to show that the axiom schemes for MODp,i connectives
have short proofs in F -PC over Zp.

The schemes for ∅ translate into trivial formulas involving no variables. The
only non-trivial case is that of

1− (1− (1−B)S) · (1− (1− S)B), (5.1)

where

B = (A+ F)p−1,

S = (1− (1− Ap−1)(1− F))(1− (1− (A+ 1)p−1)F),

A = k − i− ϕ(Φ1)− . . .− ϕ(Φk),

and F = 1− ϕ(Φk+1).

Note that (5.1) can be transformed into (B − S)2 (to verify, open all brackets
and use B2 −B and S2 − S). Therefore, it suffices to prove B − S.

Using F 2 − F the formula B can be transformed as follows:

(A+ F)p−1 = Ap−1 + F
p−2∑
j=0

(
p− 1

j

)
Aj = Ap−1 + F ((A+ 1)p−1 − Ap−1).

On the other hand, opening the external brackets in S and using F 2−F gives

1− (1− Ap−1)(1− F)− (1− (A+ 1)p−1)F

= Ap−1 + F ((A+ 1)p−1 − Ap−1).

2

16

6 PHP

In this section we present a short proof of the propositional pigeon-hole prin-
ciple in constant-depth F -PC over Q, moreover, this proof can be conducted
in constant-depth F -NS.

PHPn is usually formulated as(
n+1∧
i=1

n∨
k=1

pik

)
⊃

n∨
k=1

∨
1≤i<j≤n+1

(pik ∧ pjk),

and its negation written in the basis {¬,∨} is

¬
(n+1∨

i=1

¬
n∨

k=1

pik

)
∨

n∨
k=1

∨
1≤i<j≤n+1

¬(¬pik ∨ ¬pjk)

 .

We now give a short F -PC proof of the F -PC version of ¬PHPn:

1−
n+1∏
i=1

(1− pi1pi2. . .pin) ·
∏

1≤i<j≤n+1

n∏
k=0

(1− (1− pik)(1− pjk)) (6.1)

or, equivalently,

∀i, pi1pi2. . .pin (6.2)

∀i < j, ∀k, (1− pik)(1− pjk). (6.3)

We start by (informally) switching to another set of variables

qik = (1− pik)
∏

1≤l<k

pil.

In the real derivation, these variables are replaced by the corresponding for-
mulas. We can easily prove

∀i, 1− qi1 − qi2 − . . .− qin (6.4)

∀i,∀j < i,∀k, qikqjk (6.5)

∀i, ∀k,∀l < k, qikqil (6.6)

∀i, k, q2
ik − qik. (6.7)

17

Indeed, all summands in (6.4) after opening brackets cancel except (6.2). Then,
(6.5) is just (6.3) multiplied by

∏
1≤l<k(pilpjl). The formula (6.6) is a product

containing pil(1− pil). Finally, (6.7) follows from

qik = ϕ

¬pik ∨ ∨
1≤l<k

pil

(see Lemma 4).

We sum (6.4) for all i’s and rearrange it as

(n+ 1)−
n∑

k=1

xk, (6.8)

where xk = q1k + . . .+ qn+1,k. Note that xk is Boolean: open the brackets in

(q1k + . . .+ qn+1,k)2 − (q1k + . . .+ qn+1,k)

and use (6.5) and (6.7).

To derive 1 from (6.8) (which is an instance of the subset sum problem
[IPS99]), we inductively derive the polynomial

Sn(Sn − 1). . .(Sn − n), (6.9)

where Si = x1 + x2 + . . .+ xi.

We start from S1(S1 − 1) which is simply x2
1 − x1. The induction step is to

prove

Si(Si − 1). . .(Si − i) (6.10)

from

Si−1(Si−1 − 1). . .(Si−1 − (i− 1)). (6.11)

This derivation itself will be done inductively too. To stress the difference
between the two induction arguments, we denote Si−1 by S and xi by x.
Multiply (6.11) by S + (i + 1)x − i. Opening brackets in the last two terms
(S− (i−1))(S+(i+1)x− i) of the product, adding −i(x2−x) and bracketing
again, we get (S+ix−(i−1))(S+x−i) (to verify, open the brackets and notice
that the difference is i(x2 − x)). We now turn our attention to the previous

18

expression (S − (i − 2)) in brackets, open the brackets in (S − (i − 2))(S +
(i− 1)x− (i− 2)) etc. Finally, we arrive at (6.10).

To derive 1 from (6.9), substitute in it n + 1 for Sn (use (6.8)) and multiply
the result by 1/(n+ 1)!.

Observe that this proof can be made tree-like and hence may be conducted in
F -NS. On the other hand, observe that all the involved formulas in the proof
are of depth bounded by a constant.

Remark 9 Note that the above version of PHP is given by polynomials of
large degree (see (6.1)). On the other hand, in [Raz98] (see also [IPS99]) the
injective PHP given by polynomials of degree at most two was studied. These
are essentially the polynomials (6.4)–(6.7), where qik are treated as variables
and not as shorthands for formulas. The paper [Raz98] establishes the lower
bound Ω(n) on the degree of PC proofs of this set of polynomials. This implies
an exponential lower bound [IPS99, Theorem 6.7] on the size of the shortest
PC proof of this set of polynomials. Our short derivation of 1 from (6.4)–(6.7)
demonstrates an exponential separation between PC and constant-depth F-PC
(and also F-NS) as proof systems for the language of all insolvable systems of
polynomial equations. However, it does not give a separation of these systems
as propositional proof systems, because the formulation of PHP studied in
[Raz98] may be not in the image of PC’s translation of Boolean formulas. The
separation between propositional proof systems PC and constant-depth F-PC
(and F-NS) is given in Section 7 by means of Tseitin’s tautologies.

By the same token, the subset sum problem provides the same separation re-
sult as the formulation of PHP from [Raz98] does, because [IPS99] gives an
exponential lower bound on the size of the shortest PC proof of any instance
of the subset sum problem, and we obtained a short constant-depth F-PC (and
even F-NS) proof of its instance (6.8) (in the Boolean variables xi).

7 Tseitin’s tautologies

In this section we show an exponential gap between lengths of proofs in PC
and F -PC viewed as propositional proof systems. First, we show that Tseitin’s
tautologies have short F -PC proofs while they have no PC proofs over any
field of characteristic different from two. Afterwards, using the generalization
of Tseitin’s tautologies given in [BGIP01], we show how to handle the re-
maining case; in fact, the generalization works for any field containing a p-th
root of unity for some prime p. Our F -PC proof can be conducted even in
constant-depth F -NS. This exhibits an exponential separation between the
propositional proof systems PC and constant-depth F -NS over any field.

19

7.1 Fields of characteristic different from two

Let G = (V,E) by any undirected graph with an odd number of vertices and
with expansion ε, i.e., for any subset S ⊆ V of cardinality at most |V |/2, the
graph G has at least (1 + ε)|S| neighbors of S. For any number of vertices,
there are such G’s of degree bounded by a constant c (see, e.g., [Alo86]).

Tseitin’s tautology for G is given by the Boolean formula

¬ ∧
v∈V

⊕
e∈Ev

xe (7.1)

(where Ev is the set of edges incident to v) and its negation is the following
formula in CNF:

∧
v∈V

∧
i1,...,ideg(v)∈{0,1},
i1⊕...⊕ideg(v)=0

 ∨
k: ik=0

xe(v,k) ∨
∨

l: il=1

¬xe(v,l)

 , (7.2)

where e(v, i) denotes the i-th edge in Ev. There is one variable xe for every
edge e of G.

The PC translation of (7.2) is given by the polynomials

x2
e − xe, (7.3)∏

k: ik=0

xe(v,k) ·
∏

l: il=1

(1− xe(v,l)) (7.4)

where in (7.3) e ranges over E, in (7.4) v ranges over V and (i1, . . ., ideg(v))
ranges over {0, 1}deg(v) and i1 ⊕ . . . ⊕ ideg(v) = 0. (There are

∑
v∈V 2deg(v)−1

polynomials in (7.4), each of degree at most c).

In [BGIP01] a linear degree lower bound for another formulation of this prob-
lem is shown:

X2
e − 1, (7.5)

1 +
∏
e∈Ev

Xe, (7.6)

where in (7.5) e ranges over E, and in (7.6) v ranges over V (note that there
are no X2

e −Xe polynomials). The following argument shows that this lower
bound holds also for (7.3)–(7.4).

20

First, replace all occurrences of Xe’s in (7.5)–(7.6) by (2xe − 1). We get

4(x2
e − xe), (7.7)

1 +
∏
e∈Ev

(2xe − 1). (7.8)

Note that any low degree PC proof of (7.3)–(7.4) can be easily extended to
a low degree proof of (7.7)–(7.8): the polynomials (7.3) and (7.7) can be ob-
tained from each other by multiplying by four, and, for a fixed v, (7.8) and
the sum of (7.4) (for i1, . . ., ideg(v) ∈ {0, 1} such that i1 ⊕ . . .⊕ ideg(v) = 0) are
two constant-degree polynomials that have the same values on {0, 1}|Ev | and
therefore differ by∑

e∈Ev

(Gv,e(x
2
e − xe)),

where Gv,e are some constant-degree polynomials.

Now consider any such low degree proof of (7.7)–(7.8) and replace in it all
occurrences of xe’s by (Xe +1)/2. We obtain a low degree proof of (7.5)–(7.6).
But such proofs do not exist [BGIP01]. Thus, our assumption that there is a
low degree PC proof of (7.3)–(7.4) is false. Therefore, by [IPS99, Theorem 6.2]
there are no polynomial-size proofs of Tseitin’s tautologies (7.2) in PC.

However, there are such proofs in F -PC. Consider the F -PC translation of
(7.2). The system (7.3)–(7.4) can be obtained from it very easily. We already
mentioned that we can derive (7.7)–(7.8) from it. Now change in these alge-
braic formulas all occurrences of xe’s by (Xe + 1)/2, where Xe denotes the
expression (1

2
· (xe + 1)). We arrive at (7.5)–(7.6).

Consider the polynomials (7.6) as equalities
∏

e∈Ev
Xe = −1 and multiply them

one by one, substituting 1 for X2
e ’s using (7.5) (cf. Subsection 2.1). Finally,

we arrive at the equality 1 = (−1)|V |, i.e., to the polynomial 2. It remains to
divide it by two. One can verify that our F -PC proof can be conducted in
constant-depth F -NS.

7.2 Fields of arbitrary characteristic

One could generalize this construction (see [BGIP01]) starting with a prime
p and an expander G = (V,E) such that |V | ≡ 1 (mod p). Considering G as a
directed (in arbitrary way) graph we assign to each its edge e a variable Xe

which satisfy the following conditions. If ē is the edge with the orientation
opposite to e, then we include the polynomial XeXē − 1 in the input system

21

of polynomials. We also include the polynomials Xp
e − 1 (which replace (7.5)).

Finally, for each vertex v we include the polynomial
∏
Xe − ω, where ω is a

p-th root of unity (we assume that the ground field contain ω) and the product
ranges over all the edges e emanating from v (this polynomial replaces (7.6)).
The obtained system can be represented by a Boolean formula (cf. (7.1)) which
we denote by Ψp.

Similarly to above, one could produce a constant-depth proof of Ψp in F -NS.
On the other hand, a linear lower bound on the degree of the shortest PC
proof of Ψp over any field of characteristic distinct from p is established in
[BGIP01].

8 Further research

Since F -NS polynomially simulates Frege systems, proving lower bounds for
it (and hence for F -PC) seems a hard problem. There is however a lot of
apparently easier problems related to the constant-depth versions of F -PC
and F -NS. For example, all we know about constant-depth F -PC over Q
(resp., over Zp) is that

• it polynomially simulates constant-depth Frege systems (resp., with MODp

gates);
• it polynomially simulates PC over Q (resp., over Zp);
• it has polynomial-size proofs of PHP (over Q) and Tseitin’s tautologies.

What kind of Frege systems (without extension rules) could simulate constant-
depth F -PC? We know even less about constant-depth F -NS. Does it simu-
late tree-like constant-depth F -PC? Finally, we do not know any lower bounds
even for constant-depth F -NS over any field.

We have also introduced several extensions of F -PC. It would be interesting to
clarify whether these extensions actually amplify F -PC. Observe that there is
a degree two PC> (even NS>) proof of the subset sum problem with positive
weights

∑
aixi = m, where integers ai > 0, m < 0 [Gri01]. Note that these

integers are written in binary form. We ask whether there is a short proof of
this problem in F -PC. Note that a linear lower bound Ω(n) on degrees of its
PC proofs is shown in [IPS99]. This exhibits a gap between PC> and PC over
Q (due to [IPS99, Theorem 6.2]).

Another extension of F -PC (considered in [Pit97]) emerges when one allows to
replace an algebraic formula with arbitary algebraic formula representing the
same polynomial without verification of their equivalence. Such verification of
course could be done in BPP. As an example for which it is not clear how to

22

verify quickly a formula in a deterministic way (say, using the primitive rules
above, see Subsection 2.1, or some similar system of formula transformations)
we can propose the Newton formula

k∑
j=0

(−1)jσjτk−j = 0

where τl =
∑n

i=1 x
l
i and σj are elementary symmetric functions for which

there are depth three formulas (over zero characteric fields) obtained from the
Lagrange interpolation polynomial due to M. Ben-Or (see, e.g., [Shp01]).

Finally, we ask whether using other kinds of formulas can make F -PC or
F -NS stronger, e.g., one may try using the exponentiation which would allow
to use F d for exponentially large d in a polynomial-size proof.

9 Acknowledgements

The second author would like to thank Boris Konev for useful discussions and
V. P. Orevkov for providing multiple references.

References

[Alo86] N. Alon. Eigenvalues and expanders. Combinatorica, 6:83–96, 1986.

[AR01] M. Alekhnovich and A. A. Razborov. Lower bounds for polynomial
calculus: Non-binomial case. In Proceedings of the 42nd Annual IEEE
Symposium on Foundations of Computer Science, FOCS’01, pages 190–
199, 2001.

[BGIP01] S. Buss, D. Grigoriev, R. Impagliazzo, and T. Pitassi. Linear gaps between
degrees for the polynomial calculus modulo distinct primes. Journal of
Computing and System Sciences, 62:267–289, 2001.

[BIK+96] P. Beame, R. Impagliazzo, J. Kraj́ıček, T. Pitassi, and P. Pudlák. Lower
bounds on Hilbert’s Nullstellensatz and propositional proofs. Proc.
London Math. Soc., 73(3):1–26, 1996.

[BIK+97] P. Beame, R. Impagliazzo, J. Kraj́ıček, P. Pudlák, A. A. Razborov, and
J. Sgall. Proof complexity in algebraic systems and bounded depth Frege
systems with modular counting. Computational Complexity, 6(3):256–298,
1996/97.

[Bus87] S. Buss. Polynomial size proofs of the propositional pigeonhole principle.
Journal of Symbolic Logic, 52:916–927, 1987.

23

[CEI96] M. Clegg, J. Edmonds, and R. Impagliazzo. Using the Groebner basis
algorithm to find proofs of unsatisfiability. In Proceedings of the 28th
Annual ACM Symposium on Theory of Computing, STOC’96, pages 174–
183, 1996.

[CR79] S. A. Cook and A. R. Reckhow. The relative efficiency of propositional
proof systems. Journal of Symbolic Logic, 44(1):36–50, 1979.

[GHP01] Dima Grigoriev, Edward A. Hirsch, and Dmitrii V. Pasechnik. Complexity
of semi-algebraic proofs. Technical Report 01-103, Electronic Colloquium
on Computational Complexity, December 2001.

[GR00] D. Grigoriev and A. Razborov. Exponential lower bounds for depth 3
arithmetic circuits in algebras of functions over finite fields. Applicable
Algebra in Engineering, Communication and Computing, 10(6):465–487,
2000.

[Gri01] D. Grigoriev. Complexity of Positivstellensatz proofs for the knapsack.
Computational Complexity, 10:139–154, 2001.

[GV01] D. Grigoriev and N. Vorobjov. Complexity of Null- and Positivstellensatz
proofs. Annals of Pure and Applied Logic, 113(1–3):153–160, 2001.

[IPS99] R. Impagliazzo, P. Pudlák, and J. Sgall. Lower bounds for the polynomial
calculus. Computational Complexity, 8(2):127–144, 1999.

[KPW95] J. Kraj́ıček, P. Pudlák, and A. Woods. Exponential lower bound to the
size of bounded depth frege proofs of the pigeonhole principle. Random
Structures and Algorithms, 7:15–39, 1995.

[Kra95] J. Kraj́ıček. Bounded Arithmetic, Propositional Logic, and Complexity
Theory, volume 60 of Encyclopedia of Mathematics and its Applications.
Cambridge University Press, 1995.

[LMR96] H. Lombardi, N. Mnev, and M.-F. Roy. The Positivstellensatz and small
deduction rules for systems of inequalities. Mathematische Nachrichten,
181:245–259, 1996.

[Lov94] L. Lovász. Stable sets and polynomials. Discrete Mathematics, 124:137–
153, 1994.

[LS91] L. Lovász and A. Schrijver. Cones of matrices and set-functions and 0–1
optimization. SIAM Journal on Optimization, 1:166–190, 1991.

[PBI93] T. Pitassi, P. Beame, and R. Impagliazzo. Exponential lower bounds for
the pigeonhole principle. Computational Complexity, 3:97–140, 1993.

[Pit97] T. Pitassi. Algebraic propositional proof systems. In Neil Immerman and
Phokion G. Kolaitis, editors, Descriptive Complexity and Finite Models,
volume 31 of DIMACS Series in Discrete Mathematics and Theoretical
Computer Science. American Mathematical Society, 1997.

24

[Raz98] A. A. Razborov. Lower bounds for the polynomial calculus.
Computational Complexity, 7:291–324, 1998.

[Shp01] A. Shpilka. Affine projections of symmetric polynomials. In Proceedings of
the 16th Annual IEEE Conference on Computational Complexity, pages
160–171, 2001.

[vdW31] B. L. van der Waerden. Moderne Algebra. Springer–Verlag, 1st edition,
1930/31.

25

