
Time hierarchies for cryptographic function inversion with advice

Dima Grigoriev∗ Edward A. Hirsch† Konstantin Pervyshev‡

November 3, 2005

Abstract

We prove a time hierarchy theorem for inverting functions computable in polynomial time
with one bit of advice. In particular, we prove that if there is a strongly one-way function
then for any k and for any polynomial p, there is a function f computable in linear time with
one bit of advice such that there is a polynomial-time probabilistic adversary that inverts f
with probability ≥ 1/p(n) on infinitely many lengths of input while all probabilistic O(nk)-time
adversaries with logarithmic advice invert f with probability less than 1/p(n) on almost all
lengths of input.

We also prove a similar theorem in the worst-case setting, i.e., if P 6= NP, then for every
l > k ≥ 1

(DTime[nk] ∩NTime[n])/1 ⊂
6=
(DTime[n l] ∩NTime[n])/1.

∗IRMAR, Université de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France. Web: http://name.math.

univ-rennes1.fr/dimitri.grigoriev/ .
†St.Petersburg Department of Steklov Institute of Mathematics, 27 Fontanka, 191011 St.Petersburg, Russia. Web:

http://logic.pdmi.ras.ru/~hirsch/ . Supported in part by INTAS project 04-77-7173 and Russian Science Support

Foundation.
‡Mathematics and Mechanics Dept., St.Petersburg State University, St.Petersburg, Russia. Web: http://logic.

pdmi.ras.ru/~pervyshev/ .

0

1 Introduction

One of the most challenging problems in cryptography is the complexity of inverting functions:
public-key cryptography could exist only if there is a function that is easy to compute but hard
to invert. A related natural question is whether adversaries that are allowed more time can invert
more functions. This is a cryptographic analogue to the classic problem of time hierarchies.

The formal statement about our cryptograhic time hierarchy is given in Theorem 1. For sim-
plicity of stating the result, consider first the worst-case setting (rather than the more complicated
cryptographic one). The worst-case setting is also interesting in its own sense. Under a natural
assumption that P 6= NP, every NP-complete language L from NTime[nw] gives a worst-case
one-way function f(x, y) as follows: let M(x, y) be the polynomial-time deterministic machine that,
given a witness y, verifies that x ∈ L; define f(x, y) = (1, x) if M(x, y) = 1, and f(x, y) = (0, x, y)
otherwise (see, e.g., [HO92]). The hierarchy problem thus can be formulated as

DTime[nk] ∩NTime[nw]
?
6= DTime[n l] ∩NTime[nw] (1)

(where nw is the complexity of computing the functions we are trying to invert). Complexity
classes DTime[nk] and DTime[n l], where l > k ≥ w, reflect the efforts that adversaries spend on
inverting the functions defined above.

Although time hierarchies for deterministic and nondeterministic computations are known
since 1960s [HS65, Coo73], the hierarchy (1) is not easy to prove since the corresponding class
DTime[nk]∩NTime[nw] is not a syntactic class, i.e., given a deterministic and a non-deterministic
machine it is impossible to check that they accept the same language. There was a recent progress
in proving time hierarchies for such semantic (or promise) classes. These recent advances motivated
this work and allowed to prove hierarchy theorems in the worst-case as well as in the cryptographic
setting (see below for details). We give a brief survey of the history of time hierarchies for syntactic
and semantic complexity classes, provide a more detailed view of the cryptographic setting and
review our techniques in the next paragraphs.

History of time hierarchies. In the 1960s Hartmanis and Stearns [HS65] showed that for any
constants k and l such that 1 ≤ k < l, DTime[nk] ⊂

6=
DTime[n l] where DTime[nd] is the class

of the languages decidable by multi-tape deterministic Turing machines operating within O(nd)
steps. A decade later, Cook [Coo73] proved a time hierarchy for nondeterministic computations:
NTime[nk] ⊂

6=
NTime[n l]. Both these results can be proved using the diagonalization, a technique

proposed by Cantor (cf. [For00]).
However, the diagonalization fails to prove hierarchy theorems for probabilistic classes, in partic-

ular, for BPTime, RPTime and ZPTime (the languages recognized by randomized algorithms
with bounded two-, one-sided and zero error correspondingly). The main obstacle is that these
classes impose some restrictions on the error probability of the randomized machines, and the set
of machines satisfying these restrictions is not known to be recursively enumerable. Therefore, a
straightforward diagonalization argument may produce a machine that does not define such lan-
guage.

The lack of different techniques resulted in many long-standing open questions in the area in-
cludingBPTime[n] vsBPP =

⋃

dBPTime[nd] and similar questions forRPTime and ZPTime.

1

In 2002 Barak [Bar02] suggested a new technique for proving time hierarchies that uses an
optimal algorithm introduced by Levin [Lev73]. This technique was developed later by Fortnow
and Santhanam [FS04] and Goldreich, Sudan and Trevisan [GST04] who showed that there exists
a polynomial time hierarchy for BPTime with one-bit advice, that is for the class of the languages
recognizable by probabilistic algorithms with two-sided error that use one bit of advice for every
input length (only algorithm equipped with right advice needs to satisfy the requirements of the
class). Formally, it was proved that BPTime[nk]/1 ⊂

6=
BPTime[nl]/1. The same result holds for

RPTime [FST05] as well.
In 2005 Fortnow, Santhanam and Trevisan [FST05] came up with an idea that it is possible to

prove a time hierarchy with short advice for a wide range of computations at once. Essentially,
their technique gives a hierarchy for any reasonable complexity class defined using nondeterministic
(including probabilistic) polynomial-time machines with advice function a(n) = O(logn · log logn),
for example, for ZPTime/a(n), RPTime/a(n), (NTime∩ coNTime)/a(n), UTime/a(n) (non-
deterministic machines with unambiguous accepting path), MATime/a(n) (Merlin-Arthur games
with time-bounded Arthur), AMTime/a(n) (Arthur-Merlin games with time-bounded Arthur)
(see [Aar] for formal definitions).

Recently, van Melkebeek and Pervyshev [vMP05, Per05] proved that a polynomial time hierar-
chy with one bit of advice exists for the same broad range of computations. For example, it was
proved that

ZPTime[nk]/1 ⊂
6=
ZPTime[nl]/1.

Our results. In this paper we prove two hierarchy theorems for inverting one-way functions with
one bit of advice. Namely, we prove a version of (1) in the worst-case setting: for every positive
constant w ≥ 1 and for all l > k ≥ w,

DTime[nk] ∩NTime[nw] ⊂
6=
DTime[n l] ∩NTime[nw],

and we prove a similar theorem in the cryptographic setting. The technique in the worst-case setting
is similar to the one used in [Per05] (however, our result is not implied by the general results
of [vMP05, Per05]); the cryptographic setting requires several more tricks, which are informally
discussed below.

A strongly one-way function is a function that is easy to compute but hard to invert. More
specifically, (1) it is computable in polynomial time, (2) it is “honest”, i.e., every string in its image
has an at most polynomially longer pre-image, and (3) no polynomial-time randomized algorithm
inverts this function on infinitely many input lengths with significant probability. This probability
of success depends on the input length n. Significant probability is the one that is greater than
1/r(n) for some polynomial r(n).

We say that a (polynomial-time randomized) adversary M r(n)-breaks a function f iff M
inverts f with probability at least 1/r(n) on infinitely many input lengths. Evidently, if there is
a polynomial r and an adversary that r(n)-breaks f , then f is not a strongly one-way function.
A natural question arises when we consider the exact time that adversaries use for breaking a
function: Is it possible to break more functions using more time?

Under the assumption that strongly one-way functions exist, we answer this question affirma-
tively by proving, in particular, that for any polynomial r and every k > 1 there is a length-
preserving function G computable in linear time with one bit of advice that has a polynomial-time

2

randomized adversary that r(n)-breaks it, but has no such O(nk)-time adversaries (even with log-
arithmically many bits of advice). (See Theorem 1 for the exact time bound of the successful
adversary and for a stronger formulation that allows this adversary to break the function with a
higher probability than the weaker adversaries.) In other words, we prove a time hierarchy theo-
rem for adversaries to strongly one-way functions with one bit of advice. Note that the successful
adversary itself does not use any advice.

Our technique. Starting with any strongly one-way function f , we construct a function F that
is easier to invert than f at some input lengths. The difficulty of inverting F gradually decreases
on the (infinite) sequence of lengths π, l(π), l(l(π)), . . . for a prime π and an appropriate padding
function l; the function F equals f on inputs of length π and is easily invertible on higher input
lengths in this sequence. Now consider any adversary M that r(n)-breaks the function F in time
O(nk). It appears that for some number n = l(l(. . . (π) . . .)), M breaks the function F with
probability 1/r(l(n)) on length l(n) but not on length n with probability 1/r(n). Our construction
of F allows to compute (and invert) F at length n using queries to F (or to an adversary) at length
l(n). We can thus construct another adversary N that would invoke M on inputs of length l(n) to
invert function F at length n.

However, the probability of breaking function F at length n by our adversary is still 1/r(l(n)),
which is less than the desired probability 1/r(n). To overcome this difficulty we employ the hardness
amplification technique (cf. [Gol01]). Going into more details, our function F is obtained by
concatenating several instances of the original function f for a smaller length of input. Now
invoking the adversary M several times on inputs of length l(n) by substituting our query for
different instances of f increases the probability of success to 1/r(n) (and even higher, if needed).
Of course, the price for it is an increase in the running time.

It is straightforward to modify F in such a way that N r(n)-breaks it and M does not (just
use one bit of advice to wipe out “non-interesting” inputs lengths from our sequence). However,
our goal is that any O(nk)-time adversary Mi fails to r(n)-break F . To achieve it, our adversary
N invokes all the O(nk)-adversaries M1, M2 and so on in the way that is very similar to the
construction of Levin’s optimal algorithm [Lev73].

The theorem in the worst-case setting is proved a bit differently (and much simpler).

Paper organization. In the subsequent sections we give definitions (Section 2), prove our main
theorem in the cryptographic setting (Section 3) and prove its worst-case analogue (Section 4).
Section 5 lists remaining open questions.

2 Definitions

Definition 1. A function is in FTime[t(n)] if it can be computed within time O(t(n)) on a multi-
tape deterministic Turing machine. Also define FP =

⋃

k FTime[nk]. Notations DTime[t(n)]
and P stand for predicates (i.e., languages) in FTime[t(n)] and FP; NTime[t(n)] and NP stand
for predicates computed by appropriate multi-tape non-deterministic Turing machines.

Let us denote the class of all multi-tape probabilistic Turing machines computing functions
within (worst-case) time O(t(n)) by PFTime[t(n)]. Note that PFTime[·] classes are classes of
machines and not of functions, and these machines may return different results depending on their
coin tosses (later we will be interested in the probability that such a machine outputs the value

3

of some particular function of its input). We also assume that all our polynomial-time machines
are supplied with a specific time bound of the form C · nk and an alarm clock, i.e., they actually
terminate within the declared time bound. Finally, define PFP =

⋃

k PFTime[nk].
For a complexity class C (of languages, functions, or machines), we write C/a(n) if Turing

machines employed in the definition of C are supplied with length a(n) advice on one of their tapes.
For each of the above classesDTime[nk],DTime[nk]/a(n), PFTime[nk], andPFTime[nk]/a(n),

we fix an effective (and easily computable) enumeration M1,M2, . . . of the machines (but not of
their advice strings) such that Mi’s alarm clock interrupts it after TMi

(n) = CMi
· nk steps for

0 < CMi
≤ i.

Definition 2. f : {0, 1}∗ → {0, 1}∗ is a strongly one-way function secure against a uniform proba-
bilistic adversary (or just strongly one-way function) if f ∈ FP, f is honest (i.e., for every y ∈ Im f
there is a string in f−1(y) of length bounded by a polynomial of |y|), and for every polynomial p
and every A ∈ PFP, ∃N ∀n > N

Pr{A(f(x)) ∈ f−1(f(x))} <
1

p(n)
,

where the probability is taken over x uniformly distributed on {0, 1}n and over the internal coin
tosses of A.

Definition 3. A ∈ PFP is a successful r(n)-adversary for f : {0, 1}∗ → {0, 1}∗ if it serves as a
counterexample in Definition 2, i.e., for infinitely many n,

Pr{A(f(x)) ∈ f−1(f(x))} ≥ 1

r(n)
. (2)

When (2) holds for a particular length n, we say that A r(n)-breaks f at this length.

Remark 1. An honest FP function is strongly one-way iff it has no successful p(n)-adversaries
for any polynomial p.

Definition 4. We define strongly one-way functions and adversaries with advice similarly.

Definition 5. A function T from non-negative integers to non-negative integers is called proper
(cf. [Pap91, Section 7.1]; note that we need neither monotonicity nor space restrictions of [Pap91])
if the string 0T (n) (i.e., T (n) in unary) is computable in time O(n + T (n)) when given any string
of length n as its input.

3 More time means inverting more functions with greater proba-

bility

We first need a technical lemma that gives a construction of a padding function with certain
properties. (We move its proof to the appendix because of the space constraints.)

Lemma 1. Let {π1, π2, . . .} be the set of all odd primes. Let r(n) = R ·nρ (where R > 0 and ρ ≥ 0
are (computable) constants) and r′ be a proper function such that 1 < b ≤ r′(n) ≤ r(n) (where b
is a constant). Then there exists a function l : N → N such that

4

1. ∃n0∀n ≥ n0 (r′(n))l(n)/n > 2 · r(l(n)).

2. ∀n n|l(n).

3. Let ls(n) denote l(. . . (l(
︸ ︷︷ ︸

s

n)) . . .). Then ∀s, s′, j, j′ ((s, j) 6= (s′, j′) ⇒ ls(πj) 6= ls
′
(πj′)).

4. l is proper.

5. Given ls(πj) in unary, the number πj can be computed in time O(ls(πj)).

6. l(n) = O
(

n logn
log r′(n)

)

.

Remark 2. If r′(n) = r(n) (for example, this case is considered in Corollary 1 below) it suffices
to take l(n) = 2n.

The following lemma states that if strongly one-way functions exist, then there is a strongly
one-way length-preserving function computable in linear time. We also formulate a version of it
where the original function is a length-preserving permutation; then the newly constructed linear-
time function inherits this property. We need these lemmas because it would be interesting to make
the functions in our time hierarchy as easy to compute as possible (but still hard to invert). With
these two lemmas we manage to construct our time hierarchy so that the functions are computable
in linear time with only one bit of advice. To make our paper self-contained, we prove these lemmas
in the appendix (they are based on folklore results; however, we do not know whether they were
ever published together with the linear-time requirement).

Lemma 2. Assume there is a strongly one-way function. Then there exists a length-preserving
strongly one-way function computable in linear time.

Lemma 3. Assume there is a strongly one-way permutation. Then there exists a strongly one-way
permutation computable in linear time. Moreover, there is a family of trapdoor permutations, the
functions constructed by this lemma form a family of trapdoor permutations as well.

Theorem 1. Assume that strongly one-way functions exist. Let r(n) = R · nρ (where R > 0 and
ρ ≥ 0 are (computable) constants) and r′ be a proper function such that 1 < const ≤ r′(n) ≤ r(n).
Let p(n) = n logn

log r′(n) . Consider any proper slowly growing non-decreasing function ζ(n).

Then for every k ≥ 1 and every proper function a(n) = O(log n) there is a length-preserving
function G computable in FTime[n]/1 that has a successful r′(n)-adversary in

PFTime[(p(n))k · r(p(n)) · (log n)3 · (log r ′(n))−2 · ζ(n) · 2 a(n)] (⊆ PFP)

but no successful r(n)-adversary in PFTime[nk]/a(n).

Remark 3. Note that Theorem 1 allows to make the probability of success of the more powerful
adversary an arbitrary constant (in fact, it is possible even to replace it by a function tending to
one, which requires a slight modification of Lemma 1). However, the price for it is a polylogarithmic
increase in running time; the corollary below considers the case when the probabilities of success of
both adversaries are equal (and thus the time bounds for the two adversaries are closer). Note that
even in this simple case the gap in the hierarchy is proportional to the inverse of success probability
of adversaries.

5

Corollary 1. Assume strongly one-way functions exist. Let r(n) = R ·nρ (where R > 0 and ρ ≥ 0
are (computable) constants). Consider any proper slowly growing non-decreasing function ζ(n).
Then for every k ≥ 1 there is a length-preserving function G computable in FTime[n]/1 that has
a successful r(n)-adversary in PFTime[r(n) · nk log n · ζ(n)] but no successful r(n)-adversary in
PFTime[nk]/1.

Proof of Theorem 1. By Lemma 2 there is a length-preserving linear-time computable strongly one-
way function f . We now define a new length-preserving function G that combines the original f
(employed at certain input lengths) with “padded” (i.e., weakened) f (employed at other input
lengths). The informal idea behind it is that for a certain amount of padding the function remains
secure against weaker adversaries while becomes insecure against slightly stronger ones.

Using l(n) given by Lemma 1, we define F as the collection of functions Fn : {0, 1}n → {0, 1}n
for all input lengths n, where

Fn(x) =

{

f(x1..πi
) ◦ . . . ◦ f(x(n−πi+1)..xn

), if ∃!i, s : n = ls(πi),

undefined, otherwise.

Note that Fl(n)(x) = Fn(. . .) ◦ . . . ◦ Fn(. . .) if Fn is defined, i.e., Fl(n) splits its input into l(n)/n
parts of length n and applies Fn to each of them separately.

Assume there is an adversary M that r(l(n))-breaks the function F at length l(n). Following,
e.g., [Gol01, Theorem 2.3.2], we construct a procedure I that uses the adversary M and inverts Fn

with some substantial probability.

Procedure I (accepts input y of length n; uses M as an oracle):

• For i := 1 to l(n)/n do

– Pick u(1), . . . , u(l(n)/n) uniformly and independently from {0, 1}n.
– Compute z(1)◦. . .◦z(l(n)/n) = M(Fn(u

(1))◦. . .◦Fn(u
(i−1))◦y◦Fn(u

(i+1))◦. . .◦Fn(u
(l(n)/n))).

– If Fn(z
(i)) = y, then output z(i) and stop.

We now estimate the probability of success of I. Let Sn be the set of all strings x of length n
for which I inverts the function Fn (i.e., computes an element of F−1

n (Fn(x))) with probability at
least 1/r1(n) over internal coin tosses of I and M (we will choose r1(n) later):

Sn =

{

x ∈ {0, 1}n
∣
∣
∣
∣
Pr

{
I(Fn(x)) ∈ F−1

n (Fn(x))
}
≥ 1

r1(n)

}

.

We will show that |Sn| is big enough, namely,

|Sn|
2n

>
1

r2(n)
, (3)

where r2(n) will be also chosen later.
Assume to the contrary that (3) does not hold. Let

s(n) = Pr
{

M(Fl(n)(u)) ∈ F−1
l(n)(Fl(n)(u))

}

,

6

where the probability is taken over u uniformly distributed on {0, 1}l(n) and over internal coin
tosses of M . Since M r(l(n))-breaks Fl(n), we have

s(n) ≥ 1

r(l(n))
.

Let us split u ∈ {0, 1}l(n) into u(1) ◦ · · · ◦ u(l(n)/n), each u(i) being of length n (clearly, all u(i)’s
are independent and uniformly distributed whenever u is). Then s(n) is the sum of s1(n) and s2(n)
defined by

s1(n) = Pr
{

M(Fl(n)(u)) ∈ F−1
l(n)(Fl(n)(u)) ∧ ∃i u(i) /∈ Sn

}

,

s2(n) = Pr
{

M(Fl(n)(u)) ∈ F−1
l(n)(Fl(n)(u)) ∧ ∀i u(i) ∈ Sn

}

.

Recall that Fl(n)(u) = Fn(u
(1)) ◦ . . . ◦ Fn(u

(l(n)/n)). We can estimate s1(n) as

s1(n) ≤
l(n)/n
∑

i=1

Pr
{

M(Fl(n)(u)) ∈ F−1
l(n)(Fl(n)(u)) ∧ u(i) /∈ Sn

}

≤
l(n)/n
∑

i=1

Pr
{

I(Fn(u
(i))) ∈ F−1

n (Fn(u
(i))) ∧ u(i) /∈ Sn

}

<
l(n)

n · r1(n)
,

and s2(n) as

s2(n) ≤ Pr
{

∀i u(i) ∈ Sn

}

≤
(

1

r2(n)

)l(n)/n

.

Hence
l(n)

n · r1(n)
+

(
1

r2(n)

)l(n)/n

> s1(n) + s2(n) = s(n) ≥ 1

r(l(n))
.

Letting

r1(n) = 2 · r(l(n)) · l(n)
n

· 1

1− 2ε
,

r2(n) = r′(n) · 1

1 + ε

(for a small constant ε > 0) we come to a contradiction with our assumption. We thus have a “suc-
cess set” Sn of the desired density> 1

r2(n)
; it remains to amplify the success rate on Sn by repeating I

C · r1(n) times for a sufficiently large constant C:

1−
(

1− 1

r1(n)

)C·r1(n)

> 1− e−C ≥ 1

1 + ε

(the last inequality is by the choice of C).
Thus if we ask I to simulate M itself and repeat I for C · r1(n) times, we get an adversary

A(M) that runs in time O(r1(n) · l(n)
n · (TM (l(n)) · log TM (l(n))) = O(l(n)

2

n2 · r(l(n)) · (TM (l(n)) ·

7

log TM (l(n))) (recall from Sect. 2 that TM denotes M ’s time bound; the logarithmic overhead is
spent for simulation [HS66]) and inverts Fn with probability at least

1

r2(n)
· (1− e−C) ≥ 1

r′(n)
.

Consider any proper slowly growing non-decreasing function ζ(n). Let B be the set of such
numbers n that at least one of the PFTime[nk]/a(n) machines M1, . . . ,M√

ζ(n)
(recall our effective

enumeration of machines in Sect. 2) with some a(n)-size advice r(n)-breaks F at length n. Let
E = {n ∈ N | l(n) ∈ B ∧ n /∈ B ∧ ∃! l, s : n = ls(πi)}. We now define our function G as a collection
of functions Gn : {0, 1}n → {0, 1}n:

Gn(x) =

{

Fn(x), if n ∈ E

f(x), otherwise
. (4)

We claim that G satisfies the statement of the theorem:

1. The function G is computable in FTime[n]/1.

Given an advice for the set E, we know whether to compute f ∈ FTime[n] or Fn. Given
an input of length n = ls(πi), the number πi can be computed in time O(n) due to the
condition 5 of Lemma 1. Given this number, the input can be easily split into pieces of size
πi each and f can be applied to each of them for a time cost of O(n

πi
· πi) = O(n) in total.

2. The function G does not have a successful r(n)-adversary in PFTime[nk]/a(n).

If Mi is a successful r(n)-adversary in PFTime[nk]/a(n) for G, then it is a successful ad-
versary on an infinite subset of E (because f is one-way), which contradicts the definition of
E.

3. The function G has a successful r′(n)-adversary in

PFTime[(p(n))k · r(p(n)) · (log n)3 · (log r ′(n))−2 · ζ(n) · 2 a(n)]

on an infinite set of input lengths, namely, on E. (When we choose specific l below, it will
be clear that this time bound suffices.)

Enumerate the machines M = M1, . . . ,M√
ζ(n)

(recall the enumeration from Sect. 2) and all

their possible a(n)-size advices α. For each M and α, compute A(M/α)(y), verify its answer
by computing Fn, and output this answer if it is correct. It can be done within

O

(
l(n)2

n2
· r(l(n)) · (TM (l(n)) · log TM (l(n))) ·

√

ζ(n) · 2a(n)
)

= O

(
l(n)k+2

n2
· r(l(n)) · log l(n) · ζ(n) · 2a(n)

)

time (note that TMi
(m) ≤

√

ζ(m) ·mk for i ≤
√

ζ(m)). It remains to substitute the bound

O
(

n logn
log r′(n)

)

for l(n).

To verify that E is indeed infinite, note that there are infinitely many numbers πi such that
πi /∈ B (otherwise it is straightforward to construct a PFP r(n)-adversary for the original

8

one-way function f : just simulate the machines M1, . . . ,M√
ζ(n)

with all possible advices).

On the other hand, for every prime πi there is a number s such that ls(πi) ∈ B (since the
function f ◦ . . . ◦ f

︸ ︷︷ ︸

lk(πi)/πi

can be inverted deterministically in time lk(πi)/πi · 2πi · πk0
i).

Remark 4. It is easy to see from the proof of Theorem 1 that if length-preserving permutations
exist, then one can start directly with a function provided by Lemma 3 (instead of Lemma 2); then
the newly constructed function G becomes a length-preserving permutation as well. Also if the
original one-way function has a trapdoor, G inherits it.

4 More time and one bit of advice means computing more func-

tions inside NTime[n]/1

Theorem 2. If P 6= NP, then for every l > k ≥ 1 and every proper function a(n) = O(logn),
(

DTime[n l · 2 a(n)] ∩NTime[n]
)/

1 6⊆ DTime[nk]/a(n).

Corollary 2. If P 6= NP, then for every l > k ≥ 1, (DTime[nk]∩NTime[n])/1 ⊂
6=
(DTime[n l]∩

NTime[n])/1.

Proof of Theorem 2. Let ε = l− k. W.l.o.g, ε < 1. Let SAT∗ be an (NP-complete) version of SAT
consisting of formulas in conjunctive normal form padded by |F |2/ε−|F | zeroes, where |F | denotes
the length of the binary representation of formula F . Evidently, SAT∗ is solvable in linear time in
any reasonable model of nondeterministic computations.

Consider language A such that

x ∈ A ⇐⇒ ((x = 1y ∧ y ∈ SAT∗) ∨ (x = 0y ∧ y ∈ A)).

In other words, suffixes of the words from A∩{0, 1}n+1 contain all satisfiable formulas of length
nε/2 or less, which means that if we are able to solve all inputs of length n + 1, then (for an
overhead of ·nε/2 in time) we are able to produce satisfying assignments for positive answers by
self-reducibility : for a formula F and a variable v, consider two formulas F |v=0 and F |v=1, and if
one of them is satisfiable (i.e., its properly padded version belongs to A ∩ {0, 1}n+1), apply this
procedure to it recursively; continue the recursion until the formula trivializes. It is also clear that
A is NP-complete.

The following language B is obtained from A using padding (cf. [FS04]):

x ∈ B ⇐⇒ ∃i ∈ N (x = 02
i

y ∧ y ∈ A ∧ 2i > |y|).

Clearly, A reduces to B; hence, B is NP-complete. It is also clear that all words of B of the same
length correspond to words of A of equal length. Let pad(x) denote the next x corresponding to the
same y, i.e., pad(x) = 02

i+1

y whenever x = 02
i

y and |y| < 2i. Denote also first(m) = the smallest
length of x’s corresponding to y’s of length m, and next(n) = |pad(|x|)| for any x of length n. Let
nexti(n) = next(. . . next

︸ ︷︷ ︸

i

(n)).

9

Recall from Sect. 2 that we fixed an effective enumeration of DTime[nk]/a(n) machines Mi

(but not of their advices). Assume ζ(n) is any slowly growing non-decreasing proper function.

Claim: If there is a DTime[nk]/a(n)-machine Mi and advice α for it such that Mi/α solves B
correctly for all inputs of length next(n) (where ζ(next(n)) ≥ i), then the following algorithm OPT
running in time O(nk+ε/2 log n · ζ(n) · 2a(n)) solves B correctly for all inputs of length n (the factor
nε/2 in the time bound is for the self-reducibility procedure, and the factor log n is for simulation
[HS66]).

Algorithm OPT (accepts input x of length n).

For all machines M = M1,M2, . . . ,M√
ζ(n)

and all advice strings a of length a(n) do

• Run M(pad(x)) for TM (next(n)) steps.

• If the answer is positive, verify it by self-reducibility.

• If the answer is correct, then output “Yes” and stop.

Output “No”.

Select now such lengths for language C:

x ∈ C ⇐⇒ OPT solves B correctly on all words of length |x|.

Clearly,

C ∈ (NTime[n] ∩DTime[nk+ε/2 log n · ζ(n) · 2 a(n)])/1 ⊆ (NTime[n] ∩DTime[nk+ε · 2 a(n)])/1,

where the advice bit says whether OPT indeed solves B correctly on all words of the corresponding
length. It is also clear that for each m, C ∩ ({0, 1}first(m) ∪ {0, 1}next(first(m)) ∪ . . .) is infinite,
because almost all words of it are very “easy” (because they are padded). It remains to show that
C /∈ DTime[nk]/a(n).

Assume that there is a DTime[nk]/a(n) machine M with advice sequence A = (α1, α2, . . .) that
solves C. For any m, consider the first i such that C ∩ {0, 1}nexti(first(m)) is non-empty. Since M/A
solves C and we have chosen the first such i, the claim above implies that i = 0. Since this happens
for every m, M/A and hence OPT itself solve an NP-complete problem B, which contradicts the
assumption P 6= NP.

Remark 5. Note that a factor of nε/2 = n(l−k)/2 in the running time of the more powerful deter-
ministic machine is due to the self-reducibility procedure. A similar theorem formulated in terms of
worst-case one-way functions would not have this factor since the output of an adversary inverting
f can be verified by applying f to it; thus, the time complexity of the successful adversary would be
O(nk log n · ζ(n) · 2a(n)).

5 Open questions

1. Our results are conditional on the existence of strongly one-way functions in the cryptographic
setting and on P 6= NP in the worse-case setting. Prove these results unconditionally.

10

2. Following cryptography tradition, we treat an adversary as successful if it breaks the function
on an infinite number of input lengths. It would be interesting to consider a more natural
formulation in terms of average-case complexity.

References

[Aar] S. Aaronson. Complexity Zoo. http://www.complexityzoo.com.

[BFL91] L. Babai, L. Fortnow, and C. Lund. Non-deterministic exponential time has two-prover
interactive protocols. Computational Complexity, 1:3–40, 1991.

[Bar02] B. Barak. A probabilistic time hierarchy theorem for slightly nonuniform algorithms. In
Proceedings of the 6th International Workshop on Randomization and Approximation
Techniques in Computer Science, volume 2483 of Lecture Notes in Computer Science,
pages 194–208. Springer-Verlag, 2002.

[Coo73] S. Cook. A hierarchy theorem for nondeterministic time complexity. Journal of Com-
puter and System Sciences, 7:343–353, 1973.

[For00] L. Fortnow. Diagonalization. Bulletin of the European Association for Theoretical
Computer Science, 71:102-112, June 2000.

[FS04] L. Fortnow and R. Santhanam. Hierarchy theorems for probabilistic polynomial time. In
Proceedings of the 45th IEEE Symposium on Foundations of Computer Science, pages
316–324. IEEE, 2004.

[FST05] L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In
Proceedings of the 37th ACM Symposium on the Theory of Computing, pages 348–355.
ACM, 2005.

[Gol01] O. Goldreich. Foundations of Cryptography : Volume 1, Basic Tools. Cambridge
University Press, 2001.

[GST04] O. Goldreich, M. Sudan, and L. Trevisan. From logarithmic advice to single-bit advice.
Technical Report TR-04-093, Electronic Colloquium on Computational Complexity,
2004.

[HO92] L. A. Hemaspaandra and M. Ogihara, The Complexity Theory Companion. Springer,
2002.

[HS65] J. Hartmanis and R. Stearns. On the computational complexity of algorithms. Trans-
actions of the American Mathematical Society, 117:285–306, 1965.

[HS66] F. Hennie and R. Stearns. Two-tape simulation of multitape Turing machines. Journal
of ACM, 13(4):533–546, 1966.

[Lev73] L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265–
266, 1973. In Russian.

11

[vMP05] D. van Melkebeek and K. Pervyshev. A generic time hierarchy for semantic models
with one bit of advice. Technical Report TR-05-111, Electronic Colloquium on Com-
putational Complexity, 2005.

[Pap91] C. Papadimitriou. Computational Complexity. Addison-Wesley, 1991.

[Per05] K. Pervyshev. Time hierarchies for computations with a bit of advice. Technical Report
TR-05-054, Electronic Colloquium on Computational Complexity, 2005.

[TV02] L. Trevisan and S. Vadhan. Pseudorandomness and average-case complexity via uniform
reductions. In Proceedings of the 17th Annual IEEE Conference on Computational
Complexity, volume 17, 2002.

[Yao82] A. Yao. Theory and application of trapdoor functions. In Proceedings of the 23th
Annual IEEE Symposium on Foundations of Computer Science, pages 80–91, 1982.

12

A A padding function

Lemma 1. Let {π1, π2, . . .} be the set of all odd primes. Let r(n) = R ·nρ (where R > 0 and ρ ≥ 0
are (computable) constants) and r′ be a proper function such that 1 < b ≤ r′(n) ≤ r(n) (where b
is a constant). Then there exists a function l : N → N such that

1. ∃n0∀n ≥ n0 (r′(n))l(n)/n > 2 · r(l(n)).

2. ∀n n|l(n).

3. Let ls(n) denote l(. . . (l(
︸ ︷︷ ︸

s

n)) . . .). Then ∀s, s′, j, j′ ((s, j) 6= (s′, j′) ⇒ ls(πj) 6= ls
′
(πj′)).

4. l is proper.

5. Given ls(πj) in unary, the number πj can be computed in time O(ls(πj)).

6. l(n) = O
(

n logn
log r′(n)

)

.

Proof. First of all, if ρ = 0, then an appropriate linear function l(n) = n · const satisfies all these
requirements. Thus we assume that r is non-constant.

We first construct a function m(n) that satisfies the requirement 1 and then replace it with a
slightly larger l(n) that satisfies other requirements. Taking the binary logarithm of the inequality
in requirement 1, we transform it into

m(n)

n
log r′(n)

?
> log(2 ·R ·m(n)ρ), (5)

i.e.,

m(n)
?
>

nρ

log r′(n)

(
logm(n) + ρ−1(1 + logR)

)
. (6)

Let

µ(n) =

(

1 +

⌈
1

log b

⌉)⌈
nρ

⌈log r′(n)⌉

⌉

, m(n) = 2µ(n) ⌈log µ(n)⌉ .

It is easy to see that µ(n) = Θ(n
log r′(n)) and m(n) = Θ(n logn

log r′(n)). Also,

µ(n) ≥
(

1 +
1

log b

)
nρ

log r′(n) + 1
· log r

′(n)

log r′(n)
=

1 + 1
log b

1 + 1
log r′(n)

· nρ

log r′(n)
≥ nρ

log r′(n)

and
logm(n) + ρ−1(1 + logR) = log µ(n) + log ⌈logµ(n)⌉+ const < 2 log µ(n)

for sufficiently large numbers n. Therefore inequality (6) holds for all sufficiently large numbers n.

Finally, let l(n) = n · t2, where (t − 1)2 ≤ max{m(n)
n , 1} < t2. It is easy to see that it still

satisfies requirement 1. Requirement 2 is trivially satisfied; requirement 3 holds, because πj and πj′

are the only prime factors of ls(πj) and ls
′
(πj′) of odd multiplicity; it is also clear that l is proper

(requirement 4). To verify 5, note that to figure out πj it is enough to try at most
√

ls(πj) possible

13

factors and perform division by each of them at most logarithmic number of times to check the
multiplicity. Finally, it is easy to see that

l(n) = O(m(n)) = O

(
n logn

log r′(n)

)

.

Indeed, if m(n)
n ≥ 16, we have t > 4 and 2(t − 1)2 > t2. Therefore, l(n) = n · t2 < 2n · (t − 1)2 ≤

2n · m(n)
n = O(m(n)). Otherwise, m(n)

n < 16. Thus, we have t2 ≤ 16 and l(n) = O(n). Recall that

m(n) = Θ(n logn
log r′(n)) and log r′(n) = O(logn). Hence m(n) = Ω(n) and l(n) = O(m(n)).

B A linear-time length-preserving one-way function

Lemma 2. Assume there is a strongly one-way function. Then there exists a length-preserving
strongly one-way function computable in linear time.

Proof. Assume f is a strongly one-way function computable in time nk where k ≥ 1 without loss
of generality. Let us define an auxiliary function t that we will use in the construction of length-
preserving one-way function g to handle the variable length of images of the original function f :

t(1 ◦ s) = 11 ◦ t(s),
t(0 ◦ s) = 10 ◦ t(s),

t(ǫ) = ǫ.

Our new one-way function g is given by

g(x) = t(f(x̄)) ◦ 0n−|t(f(x̄))| (7)

where n = |x| and x̄ = x1..n̄, a prefix of x of length n̄ = ⌊(n/2)1/k⌋. Function t helps us to trace
the output of f(x̄) inside g(x).

Clearly, g is a length preserving function (note that |f(x̄)| ≤ n̄k ≤ n/2). Also, g is computable
in linear time. It remains to prove that g is hard to invert. For the sake of obtaining a contradiction,
assume that an adversary M inverts g with significant probability, that is for some polynomial p(n)
for infinitely many numbers n we have

Pr{M(g(x)) ∈ g−1(g(x))} >
1

p(n)
, (8)

where probability is taken over x uniformly distributed on {0, 1}n and over the internal coin tosses
of M .

Let us construct an adversary N that would invert f with some significant probability on
infinitely many input lengths. The adversary is given z̄ = f(x̄). Since f is honest, there are at
most poly(|z̄|) possibilities for the length n̄ of the shortest argument x̄′ such that f(x̄′) = z̄. Our
adversary N also has to guess a number n such that n̄ = ⌊(n/2)1/k⌋ is a valid value for n̄ and the
adversary M breaks g at length n. This can be done with some significant probability 1/poly(n̄)
as well. The adversary N performs as follows:

1. Guess n and let n̄ = ⌊(n/2)1/k⌋.

14

2. Let z = t(z̄) ◦ 0n−|t(z̄)|.

3. Print M(z)1..n̄.

Let us denote x = x̄ ◦ x̃, where x̃ is uniformly distributed on {0, 1}n−n̄. Then we have

Pr{N(f(x̄)) ∈ f−1(f(x̄))} ≥ 1

poly(n̄)
Pr{M(t(f(x̄)) ◦ 0n−|t(f(x̄))|)1..n̄ ∈ f−1(f(x̄))}

=
1

poly(n̄)
Pr{f(M(g(x))1..n̄) = f(x̄)}

=
1

poly(n̄)
Pr{g(M(g(x))) = g(x)}

≥ 1

poly(n̄)
· 1

p(n)
=

1

poly(n̄)
,

where the probability is taken over x̄ uniformly distributed on {0, 1}n̄ and over the internal coin
tosses of adversary N . (Note that the second equality holds because the use of the function t
guarantees that if g(M(g(x))) = g(x), then n̄ is defined unambigiously.)

Lemma 3. Assume there is a strongly one-way permutation. Then there exists a strongly one-way
permutation computable in linear time. Moreover, there is a family of trapdoor permutations, the
functions constructed by this lemma form a family of trapdoor permutations as well.

Proof. Assume f is a strongly one-way permutation computable in time nk where k ≥ 1 without
loss of generality. Let us construct a one-way permutation g such that

g(x) = f(x̄) ◦ x̃ (9)

where n = |x| and x̄ = x1..n̄, a prefix of x of length n̄ = ⌊n1/k⌋, and x̃ = x(n̄+1)..n, the remaining
suffix of x.

Clearly, g is a permutation. Also, g is computable in linear time. It remains to prove that g
is hard to invert. For the sake of obtaining a contradiction, assume that an adversary M inverts
g with significant probability, that is for some polynomial p(n) for infinitely many numbers n we
have

Pr{M(g(x)) ∈ g−1(g(x))} >
1

p(n)
, (10)

where the probability is taken over x uniformly distributed on {0, 1}n and over the internal coin
tosses of M .

Let us construct an adversary N that would invert f with some significant probability on
infinitely many input lengths. The adversary is given z̄ = f(x̄). Our adversary N performs as
follows:

1. Let n̄ = |z̄| and guess n such that n̄ = ⌊n1/k⌋.

2. Let z = z̄ ◦ z̃ where z̃ is uniformly distributed on {0, 1}n−n̄.

3. Print M(z)1..n̄.

15

Let us denote x = x̄ ◦ x̃, where x̃ is uniformly distributed on {0, 1}n−n̄. Then we have

Pr{N(f(x̄)) ∈ f−1(f(x̄))} ≥ 1

poly(n̄)
Pr{M(f(x̄) ◦ z̃) ∈ f−1(f(x̄))}

≥ 1

poly(n̄)
Pr{f(M(g(x̄ ◦ x̃))1..n̄) = f(x̄)}

≥ 1

poly(n̄)
Pr{g(M(g(x))) = g(x)}

≥ 1

poly(n̄)
· 1

p(n)
=

1

poly(n̄)
,

where the probability is taken over x̄ uniformly distributed on {0, 1}n̄ and over the internal coin
tosses of adversary N .

The claim about trapdoor permutations is also easy to see, because a trapdoor for f serves as
trapdoor for g as well (after adjusting the input length appropriately).

16

