
NO-LEAK AUTHENTICATION
BY THE SHERLOCK HOLMES METHOD

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

“When you have eliminated the impossible, whatever remains, however improbable, must be the truth.”

Arthur Conan Doyle, The Sign of Four

Abstract. We propose a class of authentication schemes that are literally zero-
knowledge, as compared to what is formally defined as “zero-knowledge” in crypto-
graphic literature. We call this “no-leak” authentication to distinguish from an estab-
lished “zero-knowledge” concept. The “no-leak” condition implies “zero-knowledge”
(even “perfect zero-knowledge”), but it is actually stronger, as we illustrate by ex-
amples.

The principal idea behind our schemes is: the verifier challenges the prover with
questions that he (the verifier) already knows answers to; therefore, even a computa-
tionally unbounded verifier who follows the protocol cannot possibly learn anything
new during any number of authentication sessions. This is therefore also true for a
computationally unbounded passive adversary.

1. Introduction

For a general theory of public-key authentication (a.k.a. identification) as well as
early examples of authentication protocols, the reader is referred to [10]. In this pa-
per, we propose a class of challenge-response authentication schemes that are literally
zero-knowledge by design, because the verifier knows the correct response before com-
municating his challenge to the prover, which means he cannot possibly obtain any new
information from the prover’s response. We call this “no-leak” authentication because
the “zero-knowledge” terminology is “trademarked” in cryptographic literature by way
of specific formal definitions, see e.g. [3]. Unfortunately, “zero-knowledge” (or even
“perfect zero-knowledge”) is just a euphemism, i.e., those formal definitions do not
actually imply that there is no leak of information during any proof session. Even more
unfortunately, it seems to be a rather common misconception these days that “perfect
zero-knowledge” implies no leak for any honest verifier; this is what often happens with
euphemisms. People who believe this, when confronted with a counterexample, usu-
ally respond with something like “No, no, there is no leak of information in a perfect
zero-knowledge scheme”. We leave these people alone and refer the readers interested
in a more reasonable and scientific approach (than “No, no, there is no leak”) to [11]

Research of the first author was partially supported by the Federal Agency of the Science and
Innovations of Russia, State Contract No. 02.740.11.5192.

Research of the second author was partially supported by the NSF grants DMS-0914778 and DMS
1117675.

1



2

where an “hierarchy of zero-knowledge” is suggested, so that the presence of leak or
lack thereof depends on the (honest) verifier’s computational abilities.

Here we compare the established definition(s) of “perfect zero-knowledge” to our
definition of “no-leak” that applies, incidentally, to a computationally unbounded forger
as well. Perhaps the difference is best illustrated by scrutinizing the Graph ISO protocol
from [4], which is known to be “perfect zero-knowledge”, but it is obviously not “no-
leak”. We discuss this protocol in detail in our Section 4, while now we will try to
explain the difference in definitions of “perfect zero-knowledge” vs. “no-leak”. We note
that there are several somewhat different definitions of “perfect zero-knowledge” (for
example, the seminal paper [4] has 3 different definitions), so here we are just trying to
capture most essential features of those definitions to help us make our point.

Definition 1. [4] (“perfect zero-knowledge”) Let (P, V ) be an interactive proof
system for a language L. Let F be a polynomial-time probabilistic Turing machine
(PTM) that produces forged transcripts. Let T (x) denote the set of all possible true
transcripts (obtained by the verifier V actually engaging in an interactive proof with
the prover P on input x), and F(x) the set of all possible forged transcripts. The proof
system (P, V ) is called perfect zero-knowledge (for L) if there exists a forger F such
that for any x ∈ L:

(i) the set of forged transcripts is identical to the set of true transcripts, i.e., F(x) =
T (x);

(ii) the two associated probability distributions are identical, i.e., for any transcript
T ∈ T (x), one has PrT [T ] = PrF [T ].

To better illustrate the difference between this and the following definition, we say,
somewhat informally, that the former implies that in a perfect zero-knowledge proof
system, if a specific leak of information (about the prover’s secret key, say) can occur
with probability p during an interaction between V and P , then it can occur with
the same probability p if V does not interact with P at all, but just simulates such
interaction.

By comparison, in the following definition the condition is (again, informally) that
no leak should occur at all, i.e, the probability p alluded to in the previous paragraph
is always 0. The following definition is an attempt to formalize this idea. Note also
that in our definition, the “polynomial-time” restriction on the forger is dropped.

Definition 2. (“no-leak”) Let (P, V ) be an interactive proof system for a language L.
It is called no-leak if, for any x ∈ L and for any function f from L to N, any sequence
T (x) of true transcripts obtained in time ≤ f(x) by interaction of the verifier V with
the prover P on input x, could be also constructed, even by a deterministic algorithm,
by V alone (i.e., without interacting with P ) in time ≤ f(x).

In other words, the prover can contribute nothing whatsoever to the verifier’s ability
of producing any sequence of true transcripts.

Probably the easiest way to achieve the “no-leak” property is to have the verifier V
only ask those questions that he already knows the correct answers to. In this scenario,



3

the corresponding proof system will obviously be perfect zero-knowledge since whatever
V can compute after interacting with the prover, he could already have computed
before interacting with the prover. At the same time, “perfect zero-knowledge” does
not necessarily imply “no leak”; as we have already mentioned, this is best illustrated
by scrutinizing the graph ISO protocol from [4], so the reader who is not convinced
at this point that the ‘no-leak” condition is stronger than “perfect zero-knowledge”, is
referred to our Section 4.

It is well known that the main motivation for studying zero-knowledge proof systems
is their application to authentication, which is also our main motivation here. The
reason why we call our idea of authentication the “Sherlock Holmes method” is the
following. It is the case with most natural decision problems in algebra (such as the
identity problem, the conjugacy problem, the membership problem, etc.) that, for a
generic input, the “no” answer can be obtained much more efficiently than the “yes”
answer. Thus, if the prover “eliminates the impossible” by (efficiently) getting the “no”
answers whenever she can, she is left with the only remaining possibility for a “yes”
answer. We note that in a typical concrete realization of this idea, the prover will not
be able to give a “yes” answer by any other method than “eliminating the impossible”,
which is why we call it the “Sherlock Holmes method.”

To conclude the Introduction, we summarize what we think are the most interesting
features of our proposal:

(1) A verifier who follows the protocol cannot possibly obtain from the prover any
information that he does not already know. This is therefore also true for a
passive adversary, even computationally unbounded one.

(2) There is no “concrete” problem for the adversary to solve in order to obtain the
prover’s long-term private key from her public key. The problem he/she faces
is to obtain a test for non-membership in a set that he/she does not know.

Now a natural question is whether a verifier who does not follow the protocol (e.
g. a cheating verifier) can obtain any information during an authentication session
by offering challenges without knowing a priori what the correct response should be.
We comment on this question in Section 3 where we answer several typical questions
about our idea of “no-leak” proof in the form of a dialog with an inquisitive reader. We
thought that arranging this material in the dialog format after describing our meta-
protocol would be more helpful to the reader than if we made it part of the Introduction.
Here we just say that our schemes are not any more insecure against cheating verifiers
than existing authentication schemes are. It is just that the novelty of the present
paper concerns the honest verifier scenario, whereas for the cheating verifier scenario
we do not offer any new input.

Finally, we note that, in theory, our general scheme can also be used for encryption,
see Remark 1 at the end of Section 2, although this is outside of the focus of our paper.
In particular, we do not make any claims concerning security of relevant encryption
schemes and do not discuss practical hardness assumptions. It should be understood
that the focus of this paper is on theoretical aspects.



4

2. The meta-protocol

In this section, we give a description of our general idea of “authentication by the
Sherlock Holmes method”, leaving particular realizations to the next sections. Here
Alice is the prover and Bob the verifier.

Alice’s private key consists of: (a) a subset S0 of some “universal” set S; (b) an
efficient test telling that a given element of S does not belong to S0; (c) a way to disguise
S0 to some S′0, e.g., a self-bijection ϕ of the universal set S, such that ϕ(S0) = S′0 and
it is possible for Alice to efficiently compute both ϕ and ϕ−1. In some realizations, (c)
is not really necessary, and the role of S′0 is played just by a subset of S0.

Alice’s public key is a pair of sets S′0, S1 that either are disjoint or have negligible
intersection. Note that the verifier does not know whether Alice has a “non-membership
test” for S′0 or for S1; this information is not public! Both sets are given to the public
in such a way that it is possible to efficiently select a random element from either set.

We note that the idea of a “non-membership test” for S0 (see part (b) of Alice’s
private key above) can be expressed in a more precise language. Alice should have her
private separator T , such that S0 ⊂ T , the intersection T ∩ S1 is empty or negligible,
and T is a “nice” set in the sense that the problem of membership in T is efficiently
solvable. Thus, Alice can efficiently check membership of an element x in question in
the set T ; then, if x /∈ T , she knows for sure that x /∈ S0. If x ∈ T , then she assumes
that x ∈ S0; the “tighter” (i.e., the closer to S0) T is, the more chances this assumption
has to be correct. Thus, even though there might be many different separators for a
given pair of sets, a good separator is hard for the adversary to find without knowing
the set S0.

The protocol itself is the following sequence of steps.

(1) Bob selects a tuple (x′1, . . . , x
′
2m) of random elements from either S′0 or S1, with

exactly m elements from S′0 and exactly m elements from S1, and sends it to
Alice.

(2) Alice checks, using her private test, for every i, whether for the element xi

corresponding to x′i, one has xi /∈ S0. If her test fails, Alice assumes that
xi ∈ S0 (equivalently, x′i ∈ S′0). Then she sends a tuple of m

2 “1”s to Bob, in m
2

randomly selected places corresponding to x′i /∈ S′0. She gives no indication of
the results of her test for the remaining 3m

2 places.
(3) Bob, who knows the right answer, simply compares it to Alice’s response and

accepts or rejects authentication accordingly.

To prevent the adversary from guessing the right answer with non-negligible prob-
ability, several rounds of this protocol may be run (depending on what probability is
accepted as “negligible”); this is similar to the Feige-Fiat-Shamir scheme [1]. We note
that if, say, m = 40, then the probability of guessing the right answer in a single session
is less than 10−6.

Remark 1. The protocol in this section can also be used for encryption. Namely, if
Bob wants to transmit an encrypted bit to Alice, he sends her a random element from



5

S′0 in case he wants to transmit a “0”, and a random element from S1 in case he wants
to transmit a “1”.

As we have already pointed out in the Introduction, we do not pursue this direction
here, and in particular, we do not make any claims concerning security of relevant
encryption schemes.

2.1. Correctness of the protocol. The protocol is perfectly correct in the sense that
if Alice is in possession of her private key and both parties follow all steps of the protocol,
then Alice will be able to answer all Bob’s challenges correctly with probability 1, and
Bob will then accept Alice’s authentication with probability 1. Even if the intersection
T ∩ S1 is not empty and Alice’s test fails for some elements sent by Bob, this will not
affect Alice’s response because her response only includes places where her test did not
fail.

Also, since Bob does not obtain from Alice any information that he does not already
know, he can construct by a deterministic algorithm any true authentication session
transcript, without interacting with Alice. Thus, the following is obvious:

Proposition 1. No information about the prover’s private key is leaked during any
authentication session with an honest verifier in the above authentication scheme, i.e.,
it is a “no-leak” proof system in the sense of Definition 2.

This proposition should not create an impression that our authentication scheme is
secure only in the honest verifier scenario. It is not any more insecure against cheating
verifiers than existing authentication schemes are. It is just that the novelty of the
present paper concerns the honest verifier scenario, whereas for the cheating verifier
scenario we do not offer any new input. See our Section 3 for a somewhat more detailed
discussion of this issue.

In Sections 5 and 6, we give two particular realizations of our meta-protocol just
to illustrate the diversity of possible applications of our main idea. We emphasize
once again though that we avoid detailed technical discussions (in particular, making
quantitative statements) in this paper and keep the focus on theoretical aspects.

3. Questions and answers

In this section, we answer some questions/concerns that a reader may have at this
point; these questions have actually been asked by some of our colleagues. We thought
that arranging this material in the dialog format after describing our meta-protocol
would be more helpful to the reader than if we made it part of the Introduction.

Q. Do you prove that recovering the prover’s private key from her public key in any of
your particular realizations is computationally infeasible? In particular, do you prove
the existence of one-way functions?

A. No and no. Moreover, our focus in this paper is on leak (or lack thereof) of infor-
mation during authentication session, rather than on security of the prover’s public key
construction.



6

Q. If not, then what is the novelty of your proposal?

A. The main novelty is that in our authentication scheme, a verifier who follows the pro-
tocol cannot possibly obtain from the prover any information that he does not already
know. This is also true for a passive adversary, even computationally unbounded one.
(Of course, a computationally unbounded adversary can usually find correct responses
to the verifier’s challenges by using “brute force”, but this is a different story.)

Q. In that case, what is the difference between your protocol and the classical zero-
knowledge Graph Non-ISO protocol [5] where the prover convinces the verifier that two
given graphs are non-isomorphic by giving to the verifier only the information that he
already knows?

A. In the Graph Non-ISO protocol [5] the prover is assumed to be computationally
unbounded (i.e., there is no “trapdoor”). Therefore, the Graph Non-ISO protocol
cannot be used for authentication purposes in any meaningful scenario in real life.

Q. Well then, how about well-known zero-knowledge protocols with trapdoor, such as
Graph ISO, or quadratic residuosity, or Feige-Fiat-Shamir scheme?

A. None of these protocols is “no-leak”; we think it is best illustrated by analyzing the
Graph ISO protocol; this is what we do in the next Section 4.

Q. What about a verifier who does not follow the protocol? What if he just produces
some random challenges? Can he obtain some information about the prover’s private
key from her responses in that case?

A. The answer to this question may depend on a particular realization of our meta-
protocol; more specifically, on the size of the sets S′0 and S1 relative to the size of the
“universal” set S from which a “frivolous” verifier can pick up his random challenges.
Typically, the sets S′0 and S1 are negligible in S, which implies that if a frivolous verifier
picks his challenges randomly from S, he will get the “not in S0” response for every
random element from S. Whether or not this can give him any useful information
about S0 other than S0 is negligible in S, again depends on a particular protocol, but
this question has been well studied in the context of zero-knowledge schemes in the
“usual” sense, and we do not offer any new insight into this question in the present
paper.

Q. Does this mean that your authentication schemes are insecure against cheating
verifiers?

A. No, our schemes are not any more insecure against cheating verifiers than existing
authentication schemes are. It is just that the novelty of the present paper concerns
the honest verifier scenario, whereas for the cheating verifier scenario we do not offer
any new input.

Q. Well then, how useful is your new input in real life? Isn’t it true that in real life,
the cheating verifier scenario is prevalent?

A. Not really. The honest verifier scenario is used by millions of people every day while
doing Internet shopping or banking (provided, of course, they use trusted bankers or



7

merchants, which is what most people do). It is true that occasionally, during Internet
shopping, there might be a concern about the verifier being honest. What usually
happens is that the remote host has to authenticate itself to your computer first, in
which case your computer plays the role of an honest verifier. Thus, in this case the
protocol is just a combination of two authentication protocols with honest verifiers. Of
course, in non-commercial (e.g. military) applications, a situation where the verifier is
malicious is not so unusual, but it appears that in real life in general, authentication
with an honest verifier is still prevalent.

4. Why is the Graph ISO proof system not “no-leak”?

In this section, we try to resolve the confusion that stems from taking the “perfect
zero-knowledge” euphemism too literally. To that end, we recall the well-known Graph
ISO protocol from [4]. Here Alice is the prover and Bob the verifier.

(1) Alice’s public key consists of two isomorphic graphs, Γ0 and Γ1. Alice’s private
key is an isomorphism ϕ : Γ1 → Γ0. Alice is supposed to prove to Bob that Γ0

is isomorphic to Γ1.
(2) To begin a session, Alice selects a random bit b, a random isomorphism σ :

Γb → H, and sends the “commitment” graph H to Bob.
(3) Bob chooses a random bit c and sends it to Alice.
(4) Alice responds with an isomorphism τ : Γc → H.
(5) Bob verifies that τ is, indeed, an isomorphism.

Obviously, if the same graph H appears as commitment in two different sessions, and
if the corresponding challenge bits c are different, then Bob, who gets isomorphisms
τ0 : Γ0 → H and τ1 : Γ1 → H, can recover the isomorphism τ−1

0 τ1 between Γ1 and Γ0.
Therefore, after two sessions, Bob can obtain, with non-zero probability, information
that he did not have before he started to interact with Alice. Thus, it is easy to see
that the above proof system is not “no-leak” in the sense of Definition 2. Indeed, if
interaction between Bob Alice produces a sequence of, say, just two transcripts with
the same commitment graph H and different corresponding challenge bits c, then to
reproduce this sequence with probability 1 by a deterministic algorithm, Bob would
need a lot more than just 2 attempts.

At the same time, this proof system is “perfect zero-knowledge” in the sense of
Definition 1 because Bob can obtain the same information with the same probability (but
not with probability 1!) if he simulates the protocol by himself, without interacting with
Alice. Specifically, by selecting random isomorphisms α : Γ0 → H1 and β : Γ1 → H2, he
may end up, with non-zero probability, with H1 = H2, hence recovering an isomorphism
between Γ1 and Γ0.

5. A particular realization: subset sum

In this section, we offer a particular realization of the meta-protocol from Section 2,
exploiting the hardness of the subset sum problem, see e.g. [2]. We note that the com-
plexity of this particular problem was previously used in [7] in different cryptographic



8

contexts, namely for constructing a pseudo-random generator and a universal one-way
hash function.

The “universal” set S in this section is the set of all m-tuples of m-dimensional
vectors over Q.

Alice’s private key is a set S0 = {a1, . . . , am} of m random linearly independent (over
Q) m-dimensional vectors with integer coordinates, which is therefore a basis of Qm.
However, the vector a1 is special: the g.c.d. of its coordinates is even.

Alice’s public key includes the vector a1 and a set of k > m random vectors c1, . . . , ck

from the Z+-span of S0.
Now we give a description of the authentication protocol. To simplify the notation,

we give an exposition where Bob challenges Alice with just a single element rather than
with a tuple of elements, as in the meta-protocol in Section 2.

(1) Bob selects, with equal probabilities (see our subsection 5.1 for details), ei-
ther a random vector c ∈ Span

Z+
(a1, c1, . . . , ck) or a random vector c ∈

SpanZ+(1
2a1, c1, . . . , ck) and sends the vector c to Alice; in the latter case, Bob

takes care that the coefficient at 1
2a1 is odd. Here SpanZ+ denotes the set of

all linear combinations of given vectors with nonnegative integer coefficients.
(2) Alice, using standard linear algebra, finds (rational) coordinates of c in the basis

S0. If at least one of these coordinates is not a nonnegative integer, she knows
that c /∈ SpanZ+(a1, c1, . . . , ck); therefore, she sends “1” to Bob. If all coordi-
nates are nonnegative integers, Alice assumes that c ∈ Span

Z+
(a1, c1, . . . , ck),

and sends “0” to Bob.
(3) Bob, who knows the right answer, simply compares it to Alice’s response and

accepts or rejects authentication accordingly.

We note that there is a negligible probability for Bob to reject a legitimate Alice
because it may happen that all coordinates of c in the basis S0 are nonnegative integers,
but c /∈ SpanZ+(a1, c1, . . . , ck). It may, in fact, even happen (again, with negligible
probability) that c ∈ SpanZ+(a1, c1, . . . , ck), but Bob expected Alice to respond with a
“1” because he selected his c ∈ SpanZ+(1

2a1, c1, . . . , ck).
We also note that the reason for using a public vector a1 with g.c.d. of coordinates

even is to have Bob’s vector c in SpanQ+(a1, c1, . . . , ck) in either case, because there is
a polynomial-time test detecting whether or not a given vector belongs to the Q+-span
of other given vectors (cf. linear programming problem), see [8] or [12].

Finally, we note that the problem faced by the adversary who wants to impersonate
the prover is the following: find out whether or not the matrix equation Bx = c has a
solution for x as a vector with nonnegative integer coordinates. Here B is the matrix
made up of coordinates of the vectors a1, c1, . . . , ck, c is the challenge vector selected by
Bob, and x is the vector unknown to both the prover and the adversary. A special case
of this problem, where B is just a vector with integer coordinates, x is a 0-1 vector,
and c is just an integer, is known as the subset sum problem and is NP-complete, see
e.g. [2]. Moreover, as pointed out, for example, in [3, p.41], it appears that the subset
sum problem might be hard on random instances, not just on some carefully selected
ones.



9

5.1. Suggested parameters and key generation. Suggested parameter values for
the protocol above are:

(1) The dimension of vectors is m = 20.
(2) Coordinates of the vectors ai: random nonnegative integers ≤ 10. We note that

m random m-dimensional vectors like that are going to be linearly independent
with overwhelming probability.

(3) Vectors ci are constructed by Alice as random linear combinations of the vectors
ai with nonnegative integer coefficients ≤ 10. The number of vectors ci is
k = 2m.

(4) At step (1) of the protocol, Bob constructs his vector c as a random linear com-
bination of the public vectors a1, c1, . . . , ck with nonnegative integer coefficients
≤ 10, with one possible exception: according to the protocol description, he may
choose the coefficient at a1 to be of the form n

2 , where n is odd, 1 ≤ n ≤ 19.

6. A particular realization: polynomial equations

In this section, we offer another particular realization of the meta-protocol from
Section 2.

Alice’s private key consists of: (i) a large prime p ≡ 3 (mod 4); (ii) two random
polynomials h(x1, . . . , xk) and g(x1, . . . , xk) over Zp; (iii) a random constant c ∈ Zp.

Alice’s public key includes: (i) polynomial f(x1, . . . , xk) = (h(x1, . . . , xk))2 −
c (mod p). (Polynomial f is published as a polynomial over Z, without specifying p.)
Thus, for any x1, . . . , xk ∈ Z, there is u ∈ Z such that f(x1, . . . , xk)+c = u2(mod p); (ii)
polynomial s(x1, . . . , xk) = −((g(x1, . . . , xk))2 + 1)2 − c (mod p). (Again, polynomial
s is published as a polynomial over Z, without specifying p.) Thus, a value of the
polynomial s(x1, . . . , xk) + c is never a square modulo p because -1 is not a square
modulo p (since p ≡ 3 (mod 4)), and (g(x1, . . . , xk))2 + 1 is never equal to 0 modulo p,
for the same reason.

Now we give a description of the authentication protocol. Again, to simplify the
notation, we give an exposition where Bob challenges Alice with just a single element
rather than with a tuple of elements, as in the meta-protocol in Section 2.

(1) Bob selects (see our subsection 6.1 for details) random integers x1, . . . , xk and
plugs them, with equal probabilities, into either f or s. He then sends the
result, call it Bob(x1, . . . , xk), to Alice.

(2) Alice computes a = Bob(x1, . . . , xk)+ c (mod p) and checks whether or not a is
a square modulo p. If not, she knows that Bob(x1, . . . , xk) 6= f(x1, . . . , xk) and
sends “1” to Bob. If it is, Alice assumes that Bob(x1, . . . , xk) = f(x1, . . . , xk)
and sends “0” to Bob.

(3) Bob, who knows the right answer, simply compares it to Alice’s response and
accepts or rejects authentication accordingly.

The way Alice checks whether or not a is a square modulo p is as follows. She raises
a to the power of p−1

2 . If the result is equal to 1 modulo p, then a is a square modulo
p; if not, then it is not.



10

6.1. Suggested parameters and key generation. Suggested parameter values for
the protocol above are:

(1) The number k of variables: between 3 and 5.
(2) The value of p: on the order of 2t, where t is the security parameter.
(3) The degree of Alice’s private polynomials h, g: between 2 and 3.
(4) Bob generates his integers x1, . . . , xk uniformly randomly from the interval

[1, 2
t
k ].

Remark 2. The adversary may try to attack Bob’s challenge by solving one of the
equations f(x1, . . . , xk) = Bob(x1, . . . , xk) or s(x1, . . . , xk) = Bob(x1, . . . , xk) for in-
tegers x1, . . . , xk, or just try to find out whether either of these equations has integer
solutions. The corresponding decision problem (the Diophantine problem, or Hilbert’s
10th problem) is known to be undecidable, see [9]. In our situation, however, adversary
actually faces a promise problem since he/she knows that at least one of the equations
has integer solutions. Furthermore, in our situation the range for the unknowns is
bounded. Still, the “bounded” Diophantine problem is known to be NP-hard, see e.g.
[2], which makes this kind of attack look infeasible, although we avoid making such
claims in this paper, as was explained in the Introduction.

Acknowledgement. Both authors are grateful to Max Planck Institut für Mathematik,
Bonn for its hospitality during the work on this paper. We are also grateful to Nelly
Fazio and William E. Skeith for useful discussions.

References

[1] U. Feige, A. Fiat and A. Shamir, Zero knowledge proofs of identity, Journal of Cryptology 1
(1987), 77–94.

[2] M. Garey, J. Johnson, Computers and Intractability, A Guide to NP-Completeness, W. H.
Freeman, 1979.

[3] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools. Cambridge University
Press, 2007.

[4] O. Goldreich, S. Micali, A. Wigderson, Proofs that Yield Nothing but their Validity, or All
Languages in NP have Zero-Knowledge Proof Systems, J. ACM 38 (1991), 691–729.

[5] S. Goldwasser, S. Micali, and C. Rackoff, The Knowledge Complexity of Interactive Proof Sys-
tems, SIAM J. Comput. 18 (1) (1989), 186-208.

[6] D. Grigoriev, I. Ponomarenko, Constructions in public-key cryptography over matrix groups,
Contemp. Math., Amer. Math. Soc. 418 (2006), 103–119.

[7] R. Impagliazzo, M. Naor, Efficient cryptographic schemes provably as secure as subset sum, J.
Cryptology 9 (1996), 199–216.

[8] L. G. Khatchyian, A polynomial algorithm in linear programming, Doklady Akad. Nauk USSR,
244 (1979), 1093–1096 (Russian). [Translated as Soviet Math. Doklady 20 (1979), 191–194.]

[9] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing), The MIT Press, 1993.
[10] A. Menezes, P. van Oorschot, and S. Vanstone, Handbook of Applied Cryptography, CRC-Press

1996.
[11] O. Pandey, R. Pass, A. Sahai, W. Tseng and M. Venkitasubramaniam, Precise concurrent zero

knowledge, in: Eurocrypt 2008, Lecture Notes Comp. Sc. 4965 (2008), 397–414.
[12] A. Schrijver, Theory of Linear and Integer Programming, John Wiley 1998.



11

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
E-mail address: dmitry.grigoryev@math.univ-lille1.fr

Department of Mathematics, The City College of New York, New York, NY 10031
E-mail address: shpil@groups.sci.ccny.cuny.edu


