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Abstract

Given an arbitrary finite nontrivial group we describe a probabilistic public-key
cryptosystem in which the decryption function is chosen to be a suitable epimor-
phism from the free product of finite abelian groups onto this finite group. It
extends the quadratic residue cryptosystem (based on a homomorphism onto the
group of two elements) due to Rabin-Goldwasser-Micali. The security of the cryp-
tosystem relies on the intractability of factoring integers. As an immediate corollary
of the main construction we obtain a more direct proof (based on the Barrington
technique) of Sander-Young-Yung result on an encrypted simulation of a boolean
circuit of the logarithmic depth.

1 Homomorphic cryptography over groups

The main purpose of the paper is to find probabilistic public-key schemes in which the
encryption function has a homomorphic property. More precisely, we are interested in

∗Partially supported by RFFI, grants, 03-01-00349, NSH-2251.2003.1, 02-01-00093.
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a scheme in which the spaces of messages and of ciphertexts are groups Hk and Gk

respectively, depending on a security parameter k, and the decryption functions fk :
Gk → Hk are epimorphisms. In such a system the public key includes a set of generators
of the group ker(fk) and a system Rk of distinct representatives of the group Gk by ker(fk)
(transversal for a short). The probabilistic encryption of a message h ∈ Hk is performed
by computing an element grh ∈ Gk where rh ∈ Rk is such that fk(rh) = h, and g is a
random element of ker(fk). We call this probabilistic public-key scheme a homomorphic
cryptosystem with respect to the epimorphisms fk. The security of such a system is based
on the intractability of deciding whether or not the element of Gk belongs to the normal
subgroup ker(fk) of Gk. The case of special interest is when the group Hk does not depend
on the security parameter k; in this case we speak on the homomorphic cryptosystem over
the group H . The general problem of constructing homomorphic cryptosystems goes back
to [22] (see also [6]). Concerning public-key cryptosystems using groups (not necessary
homomorphic ones) we refer to [2, 9, 10, 11, 13, 14, 16, 21, 22].

Let H be a finite nontrivial group. A general approach to construct a homomorphic
cryptosystem over H can be explained as follows. Given a natural number k we find
groups Ak and Gk and an exact sequence of group homomorphisms

Ak
Pk→Gk

fk→H→{1} (1)

(recall that the exact sequence means that the image of each homomorphism in it coincides
with the kernel of the next one) such that under Assumption 1.1 below the homomorphism
Pk and the inverse to fk are trapdoor functions. The latter means that one can efficiently
compute Pk(a), a ∈ Ak, and generate random elements of the set f−1

k (h), h ∈ H , while
generating random elements of the set P−1

k (g), g ∈ Gk, as well as computing elements
fk(g), g ∈ Gk, can be performed efficiently only by means of secret keys.

Assumption 1.1 The problem TEST(Pk) of testing whether a given g ∈ Gk belongs to
im(Pk) = ker(fk) is intractable.

In fact, this assumption implies that the homomorphic cryptosystem over the group H
with respect to the homomorphisms fk is semantically secure against a passive adversary
(see [7] and the proof of Theorem 2.1 below) whereas the intractability of the following
problem means that Pk is a trapdoor function.

Problem INVERSE(Pk). Given g ∈ im(Pk) find a random element a ∈ Ak such that
Pk(a) = g.

To our best knowledge all the considered so far homomorphic cryptosystems are more
or less extensions of the following one. Let n be the product of two distinct large primes
of (bit-)size k = O(logn). Set

Ak = Z
∗
n, Gk = {g ∈ Z

∗
n : Jn(g) = 1}, H = Z

+
2 (2)
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where Jn denotes the Jacobi symbol. Then together with the natural homomorphisms
Pk : Ak → Gk and fk : Gk → H induced by the squaring function, these data define
a homomorphic cryptosystem over H (see [8, 7, 15]). (In this case computing f−1

k is
provided by a fixed non-square of G.) We call it the quadratic residue cryptosystem. The
security of this scheme is based on the quadratic residue assumption for the group Gk

(see [8, 7, 15]). A generalization of the quadratic residue cryptosystem using m-residues
for m > 2 was proposed in [2] (see also Section 2 below). For the Paillier cryptosystem
from [19] we have

Ak = Gk = Z
∗
n2 , Hk = Z

+
n

with the same assumptions on n and k as in the quadratic residue cryptosystem and the
corresponding homomorphisms Pk and fk being induced by raising to the nth power. For
the Okamoto-Uchiyama cryptosystem from [17] we have

Ak = Gk = Z
∗
p2q, Hk = Z

+
p

where p, q are distinct large primes of the same size k, and again the corresponding
homomorphisms Pk and fk being induced by raising to the nth power where n = pq.
Finally, we mention that homomorphic cryptosystems over certain dihedral groups were
studied in [21].

The main result of the present paper consists in the construction of a homomorphic
cryptosystem over an arbitrary finite nontrivial group H ; the security of it is based on
the assumption on the intractability of the following slight generalization of the factoring
problem:

Problem FACTOR(n,m). Let n = pq where p and q are primes of the same size.
Suppose that m > 1 is a constant size divisor of p − 1 such that GCD(m, q − 1) =
GCD(m, 2). Given a transversal of (Z∗

n)
m in the group Gn,m = {g ∈ Z

∗
n : Jn(g) ∈

{1, (−1)m}}, find the numbers p, q.

First the main result is proved for a cyclic group H (see Section 2), in this case the groups
Gk are finite and Abelian. Then in Section 3 a homomorphic cryptosystem is yielded for an
arbitrary H , in this case the group Gk becomes a free product of certain Abelian groups
produced in Section 2. In Section 4 we recall the result from [1] on a polynomial size
simulation of any boolean circuit B of the logarithmic depth over an arbitrary unsolvable
group H (in particular, one can take H to be the symmetric group Sym(5)). Combining
this result with the homomorphic cryptosystem from Section 3 provides an encrypted
simulation of B over the group Gk: the output of this simulation at a particular input
is a certain element g ∈ Gk, and thereby to know the output of B one has to be able to
calculate f(g) ∈ H , which is supposedly to be difficult due to Theorem 3.2. In contrast to
a different approach to encrypt boolean circuits proposed in [24], our construction is more
direct and allows one to accomplish the protocol called evaluating an encrypted circuit
(see Section 4). Also the problem of encrypting boolean circuits is discussed in [21].
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We complete the introduction by making some remarks concerning our construction
and cryptosystems based on groups. First, we notice that in the present paper the group
H is always rather small, while the groups Gk could be infinite but being always finitely
generated. However, the infiniteness of Gk is not an obstacle for performing algorithms of
encrypting and decrypting (for the latter using the trapdoor information) since Gk is a free
product of groups of a number-theoretic nature like Z∗

n; therefore one can perform group
operations in Gk efficiently and on the other hand this allows one to provide evidence for
the difficulty of a decryption. In this connection we mention a public-key cryptosystem
from [5] in which fk was the natural epimorphism from a free group Gk onto the group H
(infinite, non-abelian in general) given by generators and relations. In this case for any
element of H one can produce its preimages (encryptions) by inserting in a word (being
already a produced preimage of fk) from Gk any relation defining H . In other terms,
decrypting of fk reduces to the word problem in H . In our approach the word problem
is solvable easily due to a special presentation of the group Gk (rather than given by
generators and relations). The same is true for the homomorphic cryptosystem of [10]
where free groups were given as subgroups of modular groups.

Another idea of a homomorphic (in fact, isomorphic) encryption E (and a decryption
D = E−1) was proposed in [13]. Unlike our construction the encryption E : G → G
is executed in the same set G (being an elliptic curve over the ring Zn) treated as the
set of plaintext messages. If n is composite, then G is not a group while being endowed
with a partially defined binary operation which converts G in a group when n is prime.
The problem of decrypting this cryptosystem is close to the factoring of n. In this aspect
[13] is similar to the well-known RSA scheme (see e.g. [7]) if to interpret RSA as a
homomorphism (in fact, isomorphism) E : Z∗

n → Z∗
n, for which the security relies on the

difficulty of finding the order of the group Z∗
n.

Finally, we mention some other cryptosystems using groups. The well-known example
is a cryptosystem which relies on the Diffie-Hellman key agreement protocol (see e.g. [7]).
It involves cyclic groups and relates to the discrete logarithm problem [14]; the complexity
of this system was studied in [3]. Some generalizations of this system to non-abelian groups
(in particular, the matrix groups over some rings) were suggested in [18] where security was
based on an analog of the discrete logarithm problems in groups of inner automorphisms.
One more example is a cryptosystem from [16] based on a monomorphism Z

+
m → Z

∗
n

by means of which x is encrypted by gx (modn) where n, g constitute a public key; its
decrypting relates to the discrete logarithm problem and is feasible in this situation due
to a special choice of n and m (cf. also [2]). Certain variations of the Diffie-Hellman
systems over the braid groups were described in [11]; there several trapdoor one-way
functions connected with the conjugacy and taking root problems in the braid groups
were proposed.
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2 Homomorphic cryptosystems over cyclic groups

To make the paper selfcontained we describe below an explicit homomorphic cryptosystem
over a cyclic group of an order m > 1 proposed in [2]. The decryption of it is based on
taking m-roots in the group Z

∗
n for a suitable n ∈ N. It can be considered in a sense as a

generalization of the quadratic residue cryptosystem over Z+
2 (see (2)). Throughout this

section we denote by |n| the bit size of a number n ∈ N.
Given a positive integer m > 1 denote by Dm the set of all pairs (p, q) where p and q

are distinct odd primes such that

p− 1 = 0 (modm) and GCD(m, q − 1) = GCD(m, 2). (3)

Let (p, q) ∈ Dm, n = pq and Gn,m be a group defined by

Gn,m = {g ∈ Z
∗
n : Jn(g) ∈ {1, (−1)m}}. (4)

Thus Gn,m = Z
∗
n for an odd m and [Z∗

n : Gn,m] = 2 for an even m. In any case this
group contains each element h = hp × hq such that 〈hp〉 = Z

∗
p and 〈hq〉 = Z

∗
q where

hp and hq are the p-component and the q-component of h with respect to the canonical
decomposition Z

∗
n = Z

∗
p × Z

∗
q. From (3) it follows that m divides the order of any such

element h and {1, h, · · · , hm−1} is a transversal of the group Gm
n,m = {gm : g ∈ Gn,m} in

Gn,m. This implies that Gn,m/G
m
n,m

∼= Z
+
m where the corresponding epimorphism is given

by the mapping
fn,m : Gn,m → Z

+
m, g 7→ ig

with ig being the element of Z+
m such that g ∈ Gm

n,mh
ig . From (3) it follows that ker(fn,m) =

Gm
n,m = im(Pn,m) where

Pn,m : An,m → Gn,m, g 7→ gm

is a homomorphism from the group An,m = Z
∗
n to the group Gn,m. In particular, we

have the exact sequence (1) with Ak = An,m, Pk = Pn,m, fk = fn,m, Gk = Gn,m where
k = |p| = |q|, and H = Z

+
m. Next, it is easily seen that any element of the set

Rn,m = {R ⊂ Gn,m : |fn,m(R)| = |R| = m}

is a right transversal of Gm
n,m in Gn,m. We notice that by the Dirichlet theorem on primes

in arithmetic progressions (see e.g. [4]) the set Dm is not empty. Moreover, by the same
reason the set

Dk,m = {n ∈ N : n = pq, (p, q) ∈ Dm, |p| = |q| = k} (5)

is also nonempty for sufficiently large k ∈ N.
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LetH be a cyclic group of orderm > 1 (below without loss of generality we assume that
H = Z

+
m). We describe a probabilistic polynomial time algorithm which yields a certain

n ∈ Dk,m. The algorithm picks randomly integers p = 1 (modm) and q = −1 (modm)
from the interval [2k, 2k+1] and tests primality of the picked numbers by means of e.g. [23].
According to [4] there is a constant c > 0 such that for any b relatively prime with m there
are at least c2k/(ϕ(m)k) primes of the form mx + b in the interval [2k, 2k+1]. Therefore,
after O(k) attempts the algorithm would yield a pair (p, q) ∈ Dk,m with a probability
greater than ǫ for a certain constant 0 < ǫ < 1. Thus given k ∈ N one can design in
probabilistic time kO(1) a number n ∈ Dk,m and a random element R ∈ Rn,m (see e.g. [16]).
This produces a homomorphic public-key cryptosystem S(H) over H with respect to the
homomorphisms fk : Gk → H where fk = fn,m and Gk = Gn,m. We also set Ak = An,m
and Pk = Pn,m.

Theorem 2.1 Let H be a cyclic group of order m > 1. Then under Assumption 1.1 the
homomorphic cryptosystem S(H) is semantically secure against a passive adversary. In
addition, the problems INVERSE(Pn,m) and FACTOR(n,m) are probabilistic polynomial
time equivalent.

Proof. We recall that the cryptosystem S(H) is semantically secure iff it is impossible
in polynomial in k time to find h1, h2 ∈ H such that a probabilistic polynomial time
algorithm can’t distinguish for g ∈ Gk between fk(g) = h1 and fk(g) = h2 (see [7]).
Thus the first part of the theorem immediately follows from the definition of the problem
TEST(Pk) (cf. [8, 7]).

To prove the second part suppose that we are given an algorithm solving the problem
FACTOR(n,m). Then one can find the decomposition n = pq. Now using Rabin’s
probabilistic polynomial-time algorithm for finding roots of polynomials over finite prime
fields (see [20]), one can solve the problem INVERSE(Pn,m) for an element g ∈ Gn,m as
follows:

Step 1. Find the numbers gp ∈ Z
∗
p and gq ∈ Z

∗
q such that g = gp × gq, i.e.

gp = g (mod p), gq = g (mod q).

Step 2. Apply Rabin’s algorithm for the field of order p to the polynomial xm− gp
and for the field of order q to the polynomial xm − gq. If at least one of this
polynomials has no roots, then output “P−1(g) = ∅”; otherwise let hp and hq be
corresponding roots.

Step 3. Output “P−1
n,m(g) 6= ∅” and h = hp × hq.

We observe that the set P−1
n,m(g) is empty, i.e. the g is not an m-power in Gn,m, iff at least

one of the elements gp and gq found at Step 1 is not an m-power in Z
∗
p and Z

∗
q respectively.
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This implies the correctness of the output at Step 2. On the other hand, if the procedure
terminates at Step 3, then hm = hmp × hmq = gp × gq = g, i.e. h ∈ P−1

n,m(g). Thus the
problem INVERSE(Pn,m) is reduced to the problem FACTOR(n,m) in probabilistic time
kO(1).

Conversely, suppose that we are given an algorithm solving the problem
INVERSE(Pn,m). Then the following procedure using well-known observations [7] en-
ables us to find the decomposition n = pq.

Step 1. Randomly choose g ∈ Z
∗
n. Set T = {g}.

Step 2. While |T | < 3 − (m (mod 2)), add to T a random m-root of the element
gm yielded by the algorithm for the problem INVERSE(Pn,m).

Step 3. Choose h1, h2 ∈ T such that q = GCD(h1 − h2, n) 6= 1. Output q and
p = n/q.

To prove the correctness of the procedure we observe that there exists at least 2 (resp. 4)
different m-roots of the element gm for odd m (resp. for even m) where g is the element
chosen at Step 1. So the loop at Step 2 and hence the entire procedure terminates with a
high probability after a polynomial number of iterations. Moreover, let Tq = {hq : h ∈ T}
where hq is the q-component of h. Then from (3) it follows that |Tq| = 1 for odd m, and
|Tq| ≤ 2 for even m. Due to the construction of T at Step 2 this implies that there exist
different elements h1, h2 ∈ T such that (h1)q = (h2)q, and consequently

h1 = (h1)q = (h2)q = h2 (mod q).

Since h1 6= h2 (modn), we conclude that h1 − h2 is a multiple of q and the output at
Step 3 is correct.

We complete the section by mentioning that the decryption algorithm of the homo-
morphic cryptosystem S(H) can be slightly modified to avoid applying Rabin’s algorithm
for finding roots of polynomials over finite fields. Indeed, it is easy to see that an element
g = gp×gq of the group Gn,m belongs to the subgroup ofm-powers iff g

(p−1)/m
p = 1 (mod p)

and g
(q−1)/m′

q = 1 (mod q) where m′ = GCD(m, q − 1).

3 Homomorphic cryptosystems using free products

Throughout the section we denote by WX the set of all the words w in the alphabet X ;
the length of w is denoted by |w|. We use the notation G = 〈X ;R〉 for a presentation of
a group G by the set X of generators and the set R of relations. Sometimes we omit R
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to stress that the group G is generated by the set X . The unity of G is denoted by 1G
and we set G# = G \ {1G}.

3.1. Calculations in free products of groups. Let us remind the basic facts on
free products of groups (see e.g. [12, Ch. 4]). Let G1, . . . , Gn be finite groups, n ≥ 1.
Given a presentation Gi = 〈Xi;Ri〉, 1 ≤ i ≤ n, one can form a group G = 〈X ; R〉 where
X = ∪ni=1Xi (the disjoint union) and R = ∪ni=1Ri. It can be proved that this group does
not depend on the choice of presentations 〈Xi;Ri〉, 1 ≤ i ≤ n. It is called the free product
of the groups Gi and is denoted by G = G1 ∗ · · · ∗Gn; one can see that it does not depend
on the order of factors. Without loss of generality we assume below that Gi is a subgroup
of G and Xi = G#

i for all i. In this case G ⊂ WX and 1G equals the empty word of WX .
Moreover, it can be proved that

G = {x1 · · ·xl ∈ WX : xj ∈ Gij for 1 ≤ j ≤ l, and ij 6= ij+1 for 1 ≤ j ≤ l − 1}. (6)

Thus each element of G is a word of WX in which no two adjacent letters belong to the
same set among the sets Xi, and any two such different words are different elements of G.
To describe the multiplication in G let us first define recursively the mapping WX → G,
w 7→ w as follows

w =

{
w, if w ∈ G,
. . . (x · y) . . ., if w = . . . xy . . . with x, y ∈ Xi for some 1 ≤ i ≤ n,

(7)

where x · y is the product of x by y in the group Gi. One can prove that the word w
is uniquely determined by w and so the mapping is correctly defined. In particular, this
implies that given i ∈ n we have

x1 · · ·xl ∈ Gi ⇔ x1 · · ·xl = xj1 · · ·xjl′ (8)

where {j1, . . . , jl′} = {1 ≤ j ≤ l : xj ∈ Gi} and j1 < · · · < jl′ . Now given g, h ∈ G the
product of g by h in G equals gh.

Lemma 3.1 Let G = G1 ∗ · · · ∗Gn, K = K1 ∗ · · · ∗Kn be free products of groups and fi
be an epimorphism from Gi onto Ki, 1 ≤ i ≤ n. Then the mapping

ϕ : G→ K, x1 · · ·xl 7→ fi1(x1) · · ·fil(xl) (9)

where xj ∈ Gij , 1 ≤ j ≤ l, is an epimorphism. Moreover, ϕ|Gi = fi for all 1 ≤ i ≤ n.

Proof. Since K = 〈Y 〉 where Y = ∪ni=1K
#
i , the surjectivity of the mapping ϕ follows

from the surjectivity of the mappings fi, 1 ≤ i ≤ n. Next, let ϕ0 : WX → WY be
the mapping taking x1 · · ·xl to fi1(x1) · · · fil(xl). Then ϕ(g) = ϕ0(g) for all g ∈ G and
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ϕ0(ww
′) = ϕ0(w)ϕ0(w

′) for all w,w′ ∈ WX . Since ww′ = ww′ for all w,w′ ∈ WX , this
implies that

ϕ(g)ϕ(h) = ϕ0(g)ϕ0(h) = ϕ0(g)ϕ0(h) = ϕ0(gh) = ϕ(gh)

for all g, h ∈ G. Thus the mapping ϕ is a homomorphism. Since obviously ϕ|Gi = fi for
all i, we are done.

Let H be a finite nontrivial group and K be the free product of cyclic groups generated
by all the elements of H#. Set

R(0) = {h(mh) ∈ WH# : h ∈ H#},

R(1) = {h(i)h′ ∈ WH# : h, h′ ∈ H#, 0 < i < mh, h
i · h′ = 1H},

R(2) = {hh′h′′ ∈ WH# : h, h′, h′′ ∈ H#, h′ 6∈ 〈h〉, h · h′ · h′′ = 1H}

where h(i) is the word of length i ≥ 1 with all letters being equal h, mh is the order of
h ∈ H and · denotes the multiplication in H . Then one can see that

K = 〈H#;R(0)〉 (10)

and there is the natural epimorphism ψ′ : K → H ′ where H ′ = 〈H#;R(0) ∪ R(1) ∪
R(2)〉. Since relations belonging to R(i), i = 0, 1, 2, are satisfied in H , we conclude that
ker(ψ′)h1 6= ker(ψ′)h2 whenever h1 and h2 are different elements of H (we identify 1K and
1H). On the other hand, it is easy to see that any right coset of K by ker(ψ′) contains a
word of length at most 1, i.e. an element of H . Thus K = ∪h∈H ker(ψ′)h and H ∼= H ′,
whence the mapping

ψ : K → H, l 7→ hl (11)

where hl is the uniquely determined element of H for which l ∈ ker(ψ′)hl, is an epimor-
phism with ker(ψ) = ker(ψ′).

3.2. Main construction of a homomorphic cryptosystem. Let us describe a
homomorphic cryptosystem S(H) over a finite nontrivial group H . If it is a cyclic group
of an order m > 1, then we define S(H) to be the homomorphic cryptosystem from
Section 2 (see Theorem 2.1). Otherwise we proceed as follows.

Let us fix a natural k (being a security parameter). Let H# = {h1, . . . , hn} where n
is a positive integer (clearly, n ≥ 3). Set Dk,H = ∪ni=1Dk,mi where mi is the order of the
group Ki = 〈hi〉 (see (5)). Given 1 ≤ i ≤ n choose ni ∈ Dk,mi and set Si = S(Ki) to be
the homomorphic cryptosystem over the cyclic group Ki with respect to the epimorphism
fi : Gi → Ki (see Theorem 2.1). Without loss of generality we assume that Gi is a
subgroup of the group Z

∗
ni
. Then fi = fni,mi, and we set Ai = Ani,mi , Pi = Pni,mi,

Ri = Rni,mi and
G = G1 ∗ · · · ∗Gn, f = ψ ◦ ϕ, (12)
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where the mappings ϕ and ψ are defined by (9) and (11) respectively, with K = K1 ∗ · · · ∗
Kn. From Lemma 3.1 and the definition of ψ it follows that the mapping f : G → H is
an epimorphism from G onto H .

To complete the construction we need to define a group A = Ak, a homomorphism
P = Pk from A to G and randomly choose a transversal of ker(f) in G. To do this we set

Xϕ = X ∪A0 X = ∪ni=1Gi \ ker(fi), A0 = ∪ni=1Ai, (13)

all the unions are assumed to be the disjoint ones. Denote by → the transitive closure of
the binary relation ⇒ on the set WXϕ defined by

v ⇒ w iff w = x−1x0vx, v, w ∈ WXϕ (14)

where x ∈ X ∪ {1A} and x0 ∈ A0 ∪ {1A} with 1A being the empty word of WXϕ . Thus
v → w if there exist words v = w1, w2, . . . , wl = w of WXϕ such that wi ⇒ wi+1 for
1 ≤ i ≤ l − 1. We set

Aϕ = {a ∈ WXϕ : 1Aϕ → a}, Pϕ : Aϕ → G, a1 · · · ak 7→ Pϕ(a1) · · ·Pϕ(ak) (15)

where Pϕ|X = idX and Pϕ|Ai = Pi for all i. We observe that if v ∈ ker(ϕ) and v ⇒ w for
some v, w ∈ WXϕ then obviously w ∈ ker(ϕ) (see (14)). By induction on the size of a word
this implies that Pϕ(Aϕ) ⊂ ker(ϕ). A straightforward check shows that Aϕ is a subgroup
of the group 〈Xϕ〉. (Indeed, let v, w ∈ Aϕ. Obviously, vw ∈ Aϕ whenever v ∈ A0 ∩ {1A}.
Arguing by induction of |v| it suffices to verify that vw ∈ Aϕ whenever v = x−1x0x with
x ∈ X ∪ {1A} and x0 ∈ A0 ∪ {1A}. However, in this case we have 1A → w ⇒ xwx−1 ⇒
x−1x0(xwx

−1)x = vw.) In particular, the mapping Pϕ is a homomorphism. Similarly, the
group Aψ and the mapping Pψ defined by

Aψ = {r ∈ WRψ : f(r) = 1H}, Pψ : Aψ → G, a 7→ a (16)

where Rψ = ∪ni=1Ri, are the subgroup of the group 〈Rψ〉 and the homomorphism of it to
G respectively. Besides, it is easily seen that the restriction of ϕ to the set Rϕ = G∩WR

induces a bijection from this set to the group K. This shows that Rϕ is a right transversal
of ker(ϕ) in G. Finally we define the group A and the homomorphism P by

A = Aϕ ×Aψ, P : A→ G, (a, b) 7→ Pϕ(a)Pψ(b). (17)

Let R be a right transversal of ker(f) in G, for instance one can take R = {1G} ∪ {r′i}i∈n
where r′i is the element of Ri such that ψ(r′i) = hi, 1 ≤ i ≤ n.

We claim that the homomorphism P : A→ ker(f) is in fact an epimorphism. Indeed,
the set Rϕ defined after (16) is a right transversal of ker(ϕ) in G. So given g ∈ ker(f)
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there exist uniquely determined elements gϕ ∈ ker(ϕ) and rϕ ∈ Rϕ such that g = gϕrϕ.
Since

1H = f(g) = ψ(ϕ(gϕrϕ)) = ψ(ϕ(rϕ)) = f(rϕ),

we see that rϕ ∈ Aψ (see (16)). Besides, from statement (i2) of Lemma 3.3 below it follows
that there exists a ∈ Aϕ for which Pϕ(a) = gϕ. Therefore, due to (17) we have

P (a, rϕ) = Pϕ(a)Pψ(rϕ) = gϕrϕ = g

which proves the claim.
Let us describe the presentations of the groups A, G, K and H . Given 1 ≤ i ≤ n the

elements a ∈ Ai and g ∈ Gi being the elements of Z∗
ni

will be represented by the “letters”
]a, i[ and [g, i] respectively. To multiply two elements g, h ∈ G one has to find the word
gh of WX . It is easy to see that this can be done by means of the recursive procedure
(7) in time ((|g| + |h|)k)O(1) (here [x, i] · [y, i] = [xy, i] for all x, y ∈ Z

∗
ni

where xy is the

product modulo ni of the numbers x and y, and ni ≤ expO(k) because ni ∈ Dk,mi). Since
taking the inverse of g ∈ G can be easily implemented in time (|g|k)O(1), we will estimate
further the running time of the algorithms via the number of performed group operations
in G and via the sizes of the involved operands. The similar arguments work for the group
A. Moreover, relying on (14), (15) and (16) one can randomly generate elements of A.
Finally, the group H as well as the groups Ki, 1 ≤ i ≤ n, are given by their multiplication
tables, and the group K is given by the presentation (10). So the group operations in K
can be performed in time polynomial in the lengths of the input words belonging toWH# .
Thus for the data we described the following statements hold:

(H1) the elements of the group A are represented by words in the alphabet Xϕ ∪ Rϕ; one
can get randomly an element of A of size k within probabilistic time kO(1),

(H2) the elements of the group G are represented by words in the alphabet X; one can test
the equality of elements in G and perform group operations in G (taking the inverse
and computing the product) in time kO(1), provided that the sizes of corresponding
words are at most k,

(H3) the set R, the group H and the bijection R → H induced by f , are given by the
list of elements, the multiplication table and the list of pairs (r, f(r)), respectively;
|R| = |H| = O(1),

(H4) given a word a ∈ A of the length |a| an element P (a) can be computed within
probabilistic time |a|O(1), whereas the problem INVERSE(P ) can be solved by means
of the collection of the secret keys of cryptosystems Si, 1 ≤ i ≤ n.
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Statement (H4) needs to be explained more precisely. First, the epimorphism P is
polynomial time computable because of statement (i1) of Lemma 3.3 and by Lemma 3.5
below the mappings Pϕ and Pψ are polynomial time computable. Second, the problem
INVERSE(P ) can be efficiently solved by means of using the trapdoor information for the
homomorphic cryptosystems Si, i.e. the factoring of integers ni ∈ Dk,mi. Indeed, suppose
that for each 1 ≤ i ≤ n there is an oracle for the problem INVERSE(Pi). Then given
gi ∈ Gi one can find the element fi(gi) in time kO(1). So given g ∈ G the element l = ϕ(g)
can be found in time (|g|k)O(1) (see (9)). Since f(g) = ψ(ϕ(g)) = ψ(l) and |l| ≤ |g|, one
can find ψ(l) by Lemma 3.5 and then to test whether g ∈ ker(f) within the same time.
Moreover, due to condition (H3) for cryptosystems Si one can efficiently find an element
r belonging to the right transversal Rϕ of ker(ϕ) in G such that ϕ(r) = l and |r| ≤ |l|.
Now if g ∈ ker(f) then ψ(l) = 1H and so r ∈ Aψ. Furthermore,

ϕ(gr−1) = ϕ(g)ϕ(r−1) = ll−1 = 1K .

Finally, from statement (i3) of Lemma 3.3 it follows that one can find in time (|g|k)O(1)

an element a ∈ Aϕ such that Pϕ(a) = gr−1. Thus we obtain

P (a, r) = Pϕ(a)Pψ(r) = gr−1r = g = g,

which proves our claim.
We observe that given an element g ∈ G there exists the uniquely determined element

r ∈ R such that f(g) = f(r) or, equivalently, f(gr−1) = 1H . Since |R| = O(1), this implies
that the problem of the computation of the epimorphism f is polynomial time equivalent
to the problem of recognizing elements of ker(f) in G, i. e. in our setting equivalent to
the problem TEST(P ). The latter together with conditions (H1)-(H4) enable us to define
a homomorphic cryptosystem S(H) over the group H in which the elements of G playing
the role of the alphabet of ciphertext messages, all the computations are performed in G
and the result is decrypted to H . More precisely:

Encryption: given a plaintext h ∈ H encrypt as follows: take r ∈ R such that f(r) = h
(invoking (H3)) and a random element a ∈ A (using (H1)); the ciphertext of h is the
element P (a)r of G (computed by means of (H2) and (H4)).

Decryption: given a ciphertext g ∈ G decrypt as follows: find the elements r ∈ R and
a ∈ A such that gr−1 = P (a) (using (H4)); the plaintext of g is the element f(r) of H
(computed by means of (H3)).

Now, the main result of the paper can be formulated as follows.

Theorem 3.2 Let H be a finite nontrivial group. Then under Assumption 1.1 the ho-
momorphic cryptosystem S(H) is semantically secure against a passive adversary. In

12



addition, given a number k the problem INVERSE(Pk) is probabilistic polynomial time
equivalent to the family of problems FACTOR(n,m) for appropriate n = exp(O(k)) and
m ranging over the set of the orders of all the elements of H.

We complete the subsection by making a remark concerning the construction of the
cryptosystem S(H). In fact, the group K and the epimorphism ψ defined by (10) and
(11) can be constructed without using all elements of the group H . To do this it suffices
to define K to be the free product of cyclic groups generated by the elements of a set of
generators ofH . In this case all we need is that any element ofH has a short representation
in terms of this set of generators and that this representation can be found efficiently.

3.3. Security of S(H). Proof of Theorem 3.2.

First we observe that if H is a cyclic group, then the required statement follows from
Theorem 2.1. Suppose from now on that the group H is not cyclic. Again the first part
of the theorem is straightforward (cf. [8, 7]). To prove the second part we consider the
following sequence of the homomorphisms:

Aϕ × Aψ
P

−→ G1 ∗ · · · ∗Gn
ϕ

−→ K1 ∗ · · · ∗Kn
ψ

−→ H.

In the following two lemmas we study the homomorphisms ϕ and ψ from the algorithmic
point of view.

Lemma 3.3 For the homomorphism Pϕ defined in (15) the following statements hold:

(i1) given a ∈ Aϕ the element Pϕ(a) can be found in time |a|O(1),

(i2) im(Pϕ) = ker(ϕ),

(i3) given an oracle Qi for the problem INVERSE(Pi) for all 1 ≤ i ≤ n, the problem
INVERSE(Pϕ) for g ∈ G can be solved by means of at most |g|2 calls of oracles Qi,
1 ≤ i ≤ n,

(i4) for each 1 ≤ i ≤ n the problem INVERSE(Pi) is polynomial time reducible to the
problem INVERSE(Pϕ).

Proof. Let us prove statement (i1). Let a = a1 · · ·al be an element of Aϕ. To find Pϕ(a)
according to (15) we need to compute the words Pϕ(aj), 1 ≤ j ≤ l, and then to compute
the word w where w = Pϕ(a1) · · ·Pϕ(al). The first stage can be done in time |a|O(1) because
each mapping Pi, 1 ≤ i ≤ n, is polynomial time computable due to Section 2. Since the
size of w equals |a|, the element Pϕ(a) can be found within the similar time bound (one
should take into account that in the recursive procedure (7) applied to computing w from
w the length of a current word decreases at each step of the procedure).
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To prove statements (i2) and (i3) we note first that the inclusion im(Pϕ) ⊂ ker(ϕ)
was proved after the definition of Aϕ and Pϕ in (15). The converse inclusion as well as
statement (i3) will be proved by means of the following recursive procedure which for
a given element g = x1 · · ·xl of G with xj ∈ Gij for 1 ≤ j ≤ l, produces a certain
pair (ag, tg) ∈ Aϕ × G. Below we show that this procedure actually solves the problem
INVERSE(Pϕ).

Step 1. If g = 1G, then output (1Aϕ, 1G).

Step 2. If the set J = {1 ≤ j ≤ l : xj ∈ ker(fij )} is empty, then output (1Aϕ , g).

Step 3. Set h = xj+1 · · ·xlx1 · · ·xj−1 where j is the smallest element of the set J .

Step 4. Recursively find the pair (ah, th). If th 6= 1G, then output (ah, th).

Step 5. If th = 1G, then output (ag, 1G) where ag = x1 · · ·xj−1ajahx
−1
j−1 · · ·x

−1
1 with

aj being an arbitrary element of Aij such that Pij (aj) = xj .

Since each recursive call at Step 4 is applied to the word h ∈ G of size at most
|g|−1, the number of recursive calls is at most |g|. So the total number of oracle Qi calls,
1 ≤ i ≤ n, at Step 2 does not exceed |g|2. Thus the running time of the algorithm is
(|g|)O(1) and statements (i2), (i3) are consequences of the following lemma.

Lemma 3.4 g ∈ ker(ϕ) iff tg = 1G. Moreover, if tg = 1G, then ag ∈ Aϕ and Pϕ(ag) = g.

Proof. We will prove the both statements by induction on l = |g|. If l = 0, then the
procedure terminates at Step 1 and we are done. Suppose that l > 0. If the procedure
terminates at Step 2, then tg 6= 1G. In this case we have |ϕ(g)| = |g| = l > 0, whence
g 6∈ ker(ϕ). Let the procedure terminate at Step 4 or at Step 5. Then |h| ≤ |g| − 1 (see
Step 3). So by the induction hypothesis we can assume that h ∈ ker(ϕ) iff th = 1G. On
the other hand, taking into account that xj ∈ ker(fij ) (see the definition of j at Step 3)

we get that h ∈ ker(ϕ) iff uxjhu−1 ∈ ker(ϕ) where u = x1 . . . , xj−1. Since

uxjhu−1 = x1 · · ·xj−1xjhx
−1
j−1 · · ·x

−1
1 = x1 · · ·xl = g = g, (18)

this means that g ∈ ker(ϕ) iff h ∈ ker(ϕ) iff th = 1G. This proves the first statement of
the lemma because th = tg due to Steps 4 and 5.

To prove the second statement, suppose that tg = 1G. Then the above argument shows
that h ∈ ker(ϕ) and so ah ∈ Aϕ and Pϕ(ah) = h by the induction hypothesis. This implies
that 1Aϕ → ah. On the other hand, from the definition of ag at Step 5 it follows that
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ah → ag (see (14)). Thus 1Aϕ → ag, i.e. ag ∈ Aϕ (see (15)). Besides, from the minimality
of j it follows that xj′ ∈ X (see (13)) and hence Pϕ(xj′) = xj′ and Pϕ(x

−1
j′ ) = x−1

j′ for

all 1 ≤ j′ ≤ j − 1 (see (15)). Since Pϕ(aj) = xj and h = h = xj+1 · · ·xlx1 · · ·xj−1 (see
Step 3), we obtain by (18) that

Pϕ(ag) = uxjPϕ(ah)u−1 = uxjhu−1 = g

which completes the proof of the Lemma 3.4.

To prove statement (i4) let 1 ≤ i ≤ n and g ∈ Gi. Then since obviously g ∈ ker(fi)
iff g ∈ ker(ϕ), one can test whether g ∈ ker(fi) by means of an algorithm solving the
problem INVERSE(Pϕ). Moreover, if g ∈ ker(fi), then this algorithm yields an element
a ∈ Aϕ such that Pϕ(a) = g. Then assuming a = a1 · · ·al with aj ∈ Xϕ, the set
Ja = {1 ≤ j ≤ l : aj =]a∗j , i[} can be found in time O(|a|) (we recall that due to our
presentation any element aj is of the form either ]a∗j , ij [ or [a

∗
j , ij ] where 1 ≤ ij ≤ n and

a∗j ∈ Z
∗
nij

, and Pij (aj) ∈ ker(fij ) iff aj ∈ A0 iff aj =]a∗j , ij[). Now the element

a∗ =]
∏

j∈Ja

a∗j , i[

obviously belongs to the set Ai ⊂ A0. On the other hand, since g ∈ Gi, we get by (8) that

g = Pϕ(a1) · · ·Pϕ(al) =
∏

j∈J

Pϕ(aj) (19)

where J = {1 ≤ j ≤ k : Pϕ(aj) ∈ Gi}. Taking into account that Gi is an Abelian group
and the mapping Pi : Ai → Gi is a homomorphism, we have

∏

j∈J

Pϕ(aj) =
∏

j∈Ja

Pi(aj)
∏

j∈J\Ja

Pϕ(aj) = Pi(a∗)
∏

j∈J\Ja

Pϕ(aj). (20)

Moreover, since 1Aϕ → a, from (14) it follows that there exists involution j → j′ on the
set J \ Ja such that aj = [a∗j , i] iff aj′ = [(a∗j )

−1, i] (we recall that aj =]a∗j , i[ for j ∈ Ja and
aj = [a∗j , i] for j ∈ J \ Ja). This implies that

∏
j∈J\Ja

Pϕ(aj) = 1G. Thus from (19) and

(20) we conclude that:
g = Pi(a∗) = Pϕ(a∗) = Pϕ(a

∗).

This shows that the element a∗ ∈ Ai with Pϕ(a
∗) = g can be constructed from a in

time O(|a|). Generating random elements of the groups Ai, one can efficiently trans-
form the element a∗ to a random element ã so that Pϕ(ã) = Pϕ(a

∗) = g. Thus the
problem INVERSE(Pi) is polynomial time reducible to the problem INVERSE(Pϕ). The
Lemma 3.3 is proved.
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Lemma 3.5 Let K be the group given by presentation (10) and the epimorphism ψ is
defined by (11). Then given v ∈ K one can find the element ψ(v) in time (|v||H|)O(1).

Proof. It is easy to see that the group K can be identified with the subset of the set WH#

so that w ∈ K iff the length of any subword of w of the form h · · ·h (i.e. the repetition of
a letter h) is at most mh − 1. Having this in mind we claim that the following recursive
procedure computes ψ(v) for all v = x1 · · ·xt ∈ K.

Step 1. If t ≤ 1, then output ψ(v) = v.

Step 2. Choose h ∈ H such that x1x2h ∈ R(1) ∪ R(2).

Step 3. Output ψ(v) = ψ(h−1x3 · · ·xt).

The correctness of the procedure follows from the definitions of sets R(1), R(2), and the
fact that recursion at Step 3 is always applied to a word the length of which is smaller than
the length of the current word. In fact, the above procedure produces the representation
of v in the form v = w1 · · ·wt−1ψ(v) where wj ∈ R(1) ∪ R(2) for all 1 ≤ j ≤ t − 1 and
ψ(v) ∈ H . Since obviously w1 · · ·wt−1 ∈ ker(ψ), we conclude that ψ(v) = hv (see (11)).
To complete the proof it suffices to note that the running time of the above procedure is
O(|v|(|R(1)|+ |R(2)|)).

Finally, let us complete the proof of Theorem 3.2. We have to show only that for any
1 ≤ i ≤ n the problem INVERSE(Pi) (to which the factoring of integers ni is reduced)
is polynomial time reducible to the problem INVERSE(P ). To do this let g ∈ G. If
g 6∈ ker(f), then obviously g 6∈ ker(ϕ). Now let g ∈ ker(f) and (a, b) ∈ A be such that
Pϕ(a)Pψ(b) = g. Since Pψ(b) belongs to the right transversal Rϕ of ker(ϕ) in G, it follows
that g ∈ ker(ϕ) iff Pψ(b) = 1G. Moreover, if Pψ(b) = 1G, then obviously Pϕ(a) = g.
Taking into account that the element Pψ(b) can be found in time |b|O(1) (see (16)), we
conclude that the problem INVERSE(Pϕ) is polynomial time reducible to the problem
INVERSE(P ). Thus our claim follows from statement (i4) of Lemma 3.3. Theorem 3.2
is proved.

4 Encrypted simulating of boolean circuits

Let B = B(X1, . . . , Xn) be a boolean circuit and H be a group. Following [1] we say that
a word

h1
Xl1 · · ·hm

Xlm , h1, . . . , hm ∈ H, l1, . . . , lm ∈ {1, . . . , n}, (21)

is a simulation of size m of B in H if there exists a certain element h ∈ H# = H \ {1}
such that the equality

h1
xl1 · · ·hm

xlm = hB(x1,...,xn)
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holds for any boolean vector (x1, . . . , xn) ∈ {0, 1}n. It is proved in [1] that given an
arbitrary unsolvable group H and a boolean circuit B there exists a simulation of B in H ,
the size of this simulation is exponential in the depth of B ( in particular, when the depth
of B is logarithmic O(logn), then the size of the simulation is nO(1)).

We say that for the circuit B we have an encrypted simulation over a homomor-
phic cryptosystem with respect to epimorphisms fk : Gk → H if for each k there exist
g1, . . . , gm ∈ Gk, and a certain element h ∈ H# (depending on k) such that

fk(g1
xl1 · · · gm

xlm ) = hB(x1,...,xn) (22)

for any boolean vector (x1, . . . , xn) ∈ {0, 1}n. Thus having a simulation (21) of the
circuit B in H one can produce an encrypted simulation of B by choosing randomly
gi ∈ Gk such that fk(gi) = hi, 1 ≤ i ≤ m (in this case, equality (22) is obvious). Now
combining the homomorphic cryptosystem of Section 3 with the above mentioned result
from [1] we get the following statement.

Corollary 4.1 For an arbitrary finite unsolvable group H, a homomorphic cryptosystem
S over H, the security parameter k and any boolean circuit of the logarithmic depth
O(log k) one can design in time kO(1) an encrypted simulation of this circuit over S.

The meaning of an encrypted simulation is that given (publically) the elements
g1, . . . , gm ∈ Gk and h ∈ H# from (22) it should be supposedly difficult to evaluate
B(x1, . . . , xn) since for this purpose one has to verify whether an element g

xl1
1 · · · g

xlm
m

belongs to ker(fk). On the other hand, the latter can be performed using the trapdoor
information. In conclusion let us mention the following two known protocols of interaction
(cf. e.g. [2, 24, 21, 22]) based on encrypted simulations.

The first protocol is called evaluating an encrypted circuit. Assume that Alice knows
a trapdoor in a homomorphic cryptosystem over a group H with respect to epimorphisms
fk : Gk → H and possesses a boolean circuit B which she prefers to keep secret, and Bob
wants to evaluate B(x) at an input x = (x1, . . . , xn) (without knowing B and without
disclosing x). To accomplish this Alice transmits to Bob an encrypted simulation (22)
of B, then Bob calculates the element g = g

xl1
1 · · · g

xlm
m and sends it back to Alice, who

computes and communicates the value fk(g) to Bob. If the depth of the boolean circuit B
is O(log k) and the homomorphic cryptosystem is as in Subsection 3.2, then due to Corol-
lary 4.1 the protocol can be realized in time kO(1) (here we make use of that the size of a
product of two elements in Gk does not exceed the sum of their sizes).

In a different setting one could consider in a similar way evaluating an encrypted
circuit BH(y1, . . . , yn) over a group H (rather than a boolean one), being a sequence of
group operations in H with inputs y1, . . . , yn ∈ H . The second (dual) protocol is called
evaluating at an encrypted input. Now Alice has an input y = (y1, . . . , yn) (desiring to
conceal it) which she encrypts randomly by the tuple z = (z1, . . . , zn) belonging to Gn

k
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such that fk(zi) = yi, 1 ≤ i ≤ n, and transmits z to Bob. In his turn, Bob who knows a
circuit BH (which he wants to keep secret) yields its “lifting” f−1

k (BH) to Gk by means of
replacing every constant h ∈ H occurring in BH by a random g ∈ Gk such that fk(g) = h
and replacing the group operations inH by the group operations in Gk, respectively. Then
Bob evaluates the element (f−1

k (BH))(z) ∈ Gk and sends it back to Alice, finally Alice
applies fk and obtains fk((f

−1
k (BH))(z)) = BH(y) (even without revealing it to Bob).

Again if the depth of the circuit BH is O(log k) and the homomorphic cryptosystem is as
in Subsection 3.2, then the protocol can be realized in time kO(1). Note that the protocol
of evaluating at an encrypted input for a boolean circuit was also accomplished in [24] in
a way different from the above (in [24] Alice encrypts bits by means of pertinent boolean
vectors). However, the approach of [24] unlike our construction is not applicable directly
to the protocol of evaluating an encrypted circuit.

It would be interesting to design homomorphic cryptosystems over rings rather than
groups (see [10]).
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