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D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 11 Introduction.We consider the problem of constructing the shortest path of a given homotopy class be-tween two points in a connected component of the complement of semi-algebraic obstacles.The problem of the shortest path is well known, e. g. see the surveys [SS90, MS95], andin particular has a motivation that arises from robot motion planning [Can88, Lat91]. Itwas considered mainly for the case of polygonal obstacles in the plane, for which case manyalgorithms have been developed. For the case of polyhedral obstacles in 3-dimensional Eu-clidean space it is NP-hard [CR87] in the general case, though admits polytime algorithmsin some particular cases (see the surveys mentioned above). And in any case of polyhedralobstacles a path which length is "-close to the length of the shortest path, can be found intime polynomial in 1" and in the size of the representation of the obstacles that are presumedto be given by their vertices [Pap85, CSY94].The case of semi-algebraic obstacles in the plane had been considered in [HKSS94] whereit was shown that a shortest path can be constructed in polytime by an extended versionof real RAM [BSS89] that is able to calculate in polytime integrals of algebraic functions.Slight development of the construction of [HKSS94] gives an algorithm for a usual RAM (as,e. g. in [Pap94]) that outputs a path whose length is "-close to the shortest path length andwhich time complexity is polynomial in the complexity of representation of obstacles and inlog 1" .Constructing the shortest path in a given homotopy class was considered for polygonal ob-stacles in the plane in [HS94], but within a rather restricted setting. Namely, the spaceadmissible for paths is a boundary-triangulated 2-manifold. Such a manifold is a simplicialcomplex in which all vertices are boundary vertices. Homotopy classes are represented bypaths. This particular triangulation permits to construct straightforwardly a covering spaceand easily �nd the shortest path homotopic to the given one. The e�orts of [HS94] are con-centrated on other kind of problems related to unifying treatments of various metrics andimproving particular data structures.Our result. We show that for the case of semi-algebraic obstacles in the plane and forrather general way of representing classes of homotopy the problem of constructing theshortest path of a given homotopy class is solvable in time polynomial in the size of all inputdata (i. e. in the size of representation of obstacles and of the homotopy class) for bitwisemodels of computation, e. g. for a usual RAM, see the theorem at the end of the paper(section 3.2). A homotopy class may be represented as an arbitrary semi-algebraic path or,and what is more interesting, as a word in a free group describing the homotopy classes withthe same generality as the classical approaches [ST80]. As such a representation we considera set of pairwise disjoint semi-algebraic cuts homeomorphic to rays and emanating from eachcomponent obstacle. This type of representation which is, in a way, dual to the classicalone [ST80], was considered in [GS97]. As a technical notion we introduce one particularsystem of cuts, which we call an extremity basis, that proves to be especially convenient foralgorithmic purposes.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 21.1 Semi-Algebraic Obstacles In the Plane.A semi-algebraic [BCR87] set S in the plane is a set represented by a disjunctive normalform formula which atoms are polynomial equations and inequalities:_1�i�N1 ^1�j�N2 fi;j!i;j0 (1)where fi;j 2 Z[x; y] and !i;j 2 f�; <;=g.We treat the set as representing obstacles in a natural way, some precisions being givenbelow. The set S may consist of many connected components that can be found in poly-time [Gri88, HRS90, GV92, Ren92]. Zero-dimensional componets, i. e. isolated points, canhardly be treated as obstacles, so we exclude them from the set in polytime. These pointscan be easily described by a formula of Tarski algebra with small number of quanti�ers andcontaining polynomials of small number of variables.As we consider the complexity on a qualitative level, namely, polynomial versus non polyno-mial, we do not need to go into details of descriptions of the sets under consideration. Ourstarting set is S of the form (1), and the complexity of its representations is measured bythe following parameters: d, the maximum of degrees of the polynomials fij, and M , theleast integer such that 2M is greater or equal to the absolute values of the coe�cients of fij.Related sets such as the closure S, the interior S�, the boundary S�, the complement coS ofS, the set of isolated points of S etc. can be represented by formulas of Tarski algebra whichnumber of quanti�ers and number of variables are bounded by a constant, and which size isbounded by a polynomial in the size of the formula (1). We need a procedure which, givensuch a set, constructs its connected components and a procedure that recognizes whethertwo points are in the same connected component. Within the mentioned context such poly-time procedures are known (see [GHR+90, GV88, HRS94, CGV92], for 2-dimensional casesee also [AM88]).To avoid trivialities and assure the existence of the shortest paths we make some polytimetransformations of the initial set S. We suppose that the set is inside some square whichcomplement is an obstacle. We eliminate isolated points of the set S. Furthermore, we wishto leave only one connected component for the trajectories. To do it we �nd the connectedcomponents of the complement of S and append to the obstacles all components of the com-plement except the one we are interested in and which is determined by the given end pointsof the paths under consideration. Thus, we have a set S without isolated points and whichcomplement is 1-connected. Consider its boundary S�.To make the treatment of obstacles technically simpler we slightly transform them. To de-scribe the transformations and other notions, introduce some notations:� B(X; r) is an open ball centered at X and of radius r, and B(X; r) is its closure;� "-neighborhood of a set U is B(U; ")=df SX2U B(X; ");� �� and �+ denote respectively the left and right end of an ordered simple path �, inparticular, of a segment.Now we wish to "slightly inate" 1-dimensional pieces of S� to make them 2-dimensionalwith some interior. For this purpose we use extensions of reals by in�nitesimals as in [GV88]where one can �nd necessary algorithmic technique. Remind that such an extension of a realclosed �eld K starts by introducing a formal variable, say �, with the property: 0 < � < �for all positive elements � from K. This element � is called in�nitesimal over K. It is,



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 3clearly, transcendental over K. Then we consider the real closure of the �eld K(�) that willbe denoted by gK(�). For an element � of gK(�) its standard part belonging to K can bede�ned, see [GV88], and will be denoted by stK(�) (it is not de�ned if � is in�nitely largebut in our case � will always lie in a ball centered in the origin and with a radius from R,therefore stK(�) will be always de�ned). In algorithmic constructions we actually deal withQ, fQ, fQ(�), gQ(�) etc. A �eld K being �xed, we say that �0 is in�nitesimal with respect to�, and write �0 << �, if �0 is in�nitesimal for gK(�).Summarize the notations related to in�nitesimals:� � > 0 will be an element in�nitesimal relatively to R, and two more in�nitesimals0 < �2 << �1 << � will be needed.� R0=df gR(�), R1=df gR0(�1) and R2=df gR1(�2).Below we consider the formulas de�ning obstacles, balls etc. over one of the mentioned Ri.We will identify a set in Rn de�ned by a formula of Tarski algebra over R with the (semi-algebraic) set in Rni de�ned by the same formula over Ri if it does not lead to ambiguity.To "inate" the 1-dimensional isolated pieces of the boundary, replace the obstacles, or onlythose points of them that do not contain points of S� in its small enough neighborhood, bytheir �-neighborhoods. This can be described in Tarski Algebra over the �eld extended by�, and thus the appropriate algorithms must be used to �nd the connected components, see[GHR+90, GV92, CGV92, HRS94].Finally, let � be the closure of the set of obstacles obtained after the transformations de-scribed above, and � be its boundary (remind that we consider the onstacles over R0). Thespace co� will be called the free space and e�=df � [ co� will be the space admissible fortrajectories we are going to consider. The trajectories can go anywhere in the free space,they are forbidden to go through boundaries though allowed to border them alongside. Inthe admissible space a shortest path between two points always exists and is semi-algebraic[HKSS94], and it is not unique in the general case (but it is unique in a given homotopy class,see below). We will denote the chosen ends of trajectories by s and t (from respectively"source" and "target", a usual notation in robot motion planning), and for technical reasonswill assume them to lie in the free space (otherwise replace them by in�nitely close ones inthe free space).To summarize the resulting properties of the situation note that e� (assumed to be nonempty) consists of only one connected component and that all the connected components ofthe obstacles are closed semi-algebraic sets with non empty 1-connected interior (i. e. suchthat any loop in the interior is contractible [ST80]) and without non degenerated boundarythat means, in particular, that from any point of the boundary one can make a small de-placement into the interior of the component. A connected component of the obstacles willbe called a component obstacle or simply an obstacle.1.2 The Shortest Path ProblemA path or curve is a continuous piecewise smooth image of a closed segment. A simple pathor a quasi-segment is a path without self-intersections. We consider only paths lying in e�and not intersecting �.A path  intersects the boundary � at its point X 2 � if for all small enough " > 0 thereis a closed quasi-segment  � �\B(X; ") such that (B(X; "2) n ) consists of two connected



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 4components each containing points of  . A path intersects the obstacles if it either intersectsthe boundary or contains interior points of the obstacles.A path in e� is admissible if it does not intersect the obstacles. By default we consider onlyadmissible paths between two �xed points s and t in the free space, and when construct-ing an admissible path by joining admissible quasi-segments by their end points we tacitlypresume verifying the non intersecting obstacles by the path obtained by such a linking.When speaking about an order of points on a path  between s and t we mean later orafter in the sense of a continous, `length increasing' parametrisation  = f (t)g0�t�1 of  such that s =  (0), t =  (1) (if again to appeal to the motivation from robot motionplanning  can be viewed as a trajectory of a robot with t playing the role of time).A shortest path between s and t in a homotopy class is a path having the minimum lengthamong all the paths in this homotopy class.The problem we consider is to �nd any shortest path in a given homotopy class.We consider below only semi-algebraic curves. When speaking about occurrences of pointswe will not distinguish points and its occurrences in notations, provided that no ambiguitywould happen. The following notations concerning paths between s and t will de used: fora path  and occurrences of points X; Y on this path�  X denotes the pre�x of  from s to the occurrence of X on this path;�  XY will denote the piece of  between speci�ed occurrences of X and Y on this path,usually the occurrence of X will be before the occurence of Y .To estimate the complexity of our algorithms wemay consider, without loss of generality, onlypaths given by a piecewise simple semi-algebraic representation which will be for briefnesscalled piecewise representation. As such a representation one may take a list (X;�1; : : : ;�m)constituted of a starting point X and semi-algebraic sets �i, each such set being a simplecurve with end points Xi and Yi satisfying the obvious condition: one of the points fX1; Y1gis equal to X, the other coincides with one of the end point of �2, the other end point of �2coinsides with an end point of �3 and so on.One can assume also more e�cient mode of piecewise representation of a curve. Namely,such a curve is represented as a list of systems of algebraic inequalities 	i, each having theform h0 = 0; h1 � 0; : : : ; hk � 0, where hj 2 Q(x; y; �), � 2 [0; 1],and such that for every � 2 [0; 1] the system has a unique solution in x; y. In this case �plays the role of the time via the curve.1.3 Locally Shortest Paths amidst Semi-Algebraic Obstacles in thePlane.An admissible path ' between s and t is locally shortest if for all small enough " > 0 it hasminimum length among the paths connecting the same points and lying in B('; "). Locallyshortest path can be also described as locally non-contractible. It is intuitively clear thatlocally shortest paths have some canonical form [HKSS94]: in the free space it is a rectilinearsegment and if its end meets an obstacle the segment must be locally supporting at the pointof contact with the obstacle. De�ne this observation more precisely.Locally supporting topologically means that no small enough extension of the segment be-



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 5yond the point of contact intersects the boundary. One can also de�ne this property inTarski algebra. A rectilinear segment (or a straight line de�ned by a vector) � is (locally)supporting to a set U at a point X 2 U \ � if for every small enough " > 0 either to the leftof or to the right of the intersection of the segment �" = [X � "(�+� ��);X + "(�+� ��)]with the ball B(X; "2) there are no points of U in this ball B(X; "2). "To the left" and"to the right" can be easiliy described in algebraic terms (e. g. in terms of the sign of anappropriate linear function).A path is locally supporting to a set U at a point X 2 U if every its locally supporting lineat X is also locally supporting to U at this point.When speaking about local support without mentioning the set U we mean by default theset e� (or the boundary � which will be equivalent).The (tangent) angle function of a smooth piece of a parametrized path is a function of itsparameter, giving for any point of this piece the (oriented) angle between the tangent vectorat this point and some �xed direction. For a junction point of two smooth pieces one cantake as the value of the angle function the corresponding one-side limit (the side is to be�xed to make the value de�nite) of this function for any of these pieces.A quasi-segment is locally convex if its angle function is monotone (not necessarily strictlymonotone). A quasi-segment touching the boundary � will be called locally convex withrespect to the boundary if it is locally convex and for any two of its close enough pointsbelonging to � the convex hull of the quasi-segment between these points does not containpoints of the free space. From now on by locally convex we mean it with respect to theboundary.We call a quasi-segment of a path monotone (on the path) if for some its small extension (onthe path) its angle function is monotone.A path is globally convex if it is a part of the boundary of its convex hull. Clearly, whena quasi-segment of a shortest path touches the obstacles and goes along the boundary, thispiece of boundary must be locally convex, as well as the quasi-segment on the whole.In the general case a shortest or locally shortest path is not globally convex, even its locallyconvex quasi-segment can be not convex because of a too big rotation (imagine a spiral cor-ridor turning several times around some point). Such a path can change its convexity (i. e.the type of monotonicity of its angle function), but only via an inection segment, i. e. amaximum rectilinear piece of the path such that small enough preceeding and subsequentpieces of the path are separated by the straight line determined by the segment.The closure of pieces of the path between two consecutive inection segments are locallyconvex (with respect to the boundary) and monotone on the path.A path is canonical if it is locally supporting to the obsctacles at all its points (touching �),and its intersection with the free space consists of disjoint straight-line open segments, andits intersection with the obstacles consists of locally convex quasi-segments of the boundary�.Note that the property of being locally supporting to the obsctacles in the de�nition ofcanonical path is used only locally, namely, it is essential only for points of linking of thementioned quasi-segments, as each of them has this property in its non end points.Proposition 1 ([HKSS94]) A path is locally shortest i� it is canonical.As it was remarked in [HKSS94] every shortest path ' consists of a polynomial number ofsemi-algebraic quasi-segments such that each of them is either an inection segment of '



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 6locally supporting to � at its both ends, or a semi-algebraic locally convex quasi-segmentmonotone on the path which, in its turn, is constituted of pieces of � or of rectilinearsegments between such pieces, the latter being locally supporting to the boundary at bothits ends (imagine going around a circular saw blade as obstacle).The �rst and the last segments of the shortest paths under consideration will be treated asinection segments.Let ' be a shortest path. Its standard alternating representation (or decomposition) is thefollowing (�nite) sequence D' of quasi-segments: the quasi-segments D'(2k� 1), k � 1, arethe consecutive inection segments of '; each quasi-segment D'(2k), k � 1, is the monotonequasi-segment of ' constituted by the right end of D'(2k � 1), left end of D'(2k + 1) andby the piece of ' between these ends (this piece may be empty).The alternating representation of canonical path can be, obviously, found in polytime.1.4 Graph of Locally Shortest Paths.Locally convex quasi-segments su�cient to compose all shortest paths of all homotopy classescan be represented as a graph G, as it was done in [HKSS94] or in a dual form as follows.As vertices V of the graph we take s , t and all points that are endpoints of rectilinearsegments that are locally supporting to the obstacles at these endpoints, and which interiorlies in the free space. Denote �e=df � n V . Two vertices X and Y of V are connected byan edge if they are either two endpoints of a locally supporting segment mentioned aboveor consitute two endpoints of a locally convex connected component of �e. The pointcorresponding to a vertex as well as the quasi-segment corresponding to an edge will becalled its realization. We will not distinguish an element of the graph and its realization ifthe context permits to identify the meaning.Thus obtained graph has one shortcoming. Imagine that we have arrived at some vertex Xof this graph following a locally shortest path with the last quasi-segment corresponding toan edge eZX from some vertex Z. Now we wish to extend the path in all possible admissibleways by one next quasi-segment represented in the graph. But not all such extensions areadmissible because of a particular linking may loose local convexity. Sure, this property isveri�able in polytime. But one can make this veri�cation just once and do not think about itlater. Let k be the degree of a vertexX, and Z1X; : : : ; ZkX be all edges incident to X. Makek copies of X, denote them X1; : : : ;Xk, and replace the edges Z1X; : : : ; ZkX respectively byZ1X1; : : : ; ZkXk, thus the edges incident to the former X have been disconnected, but therealizations of the edges have not changed. Now we connect by zero-edges, i. e. constitutedby segments [Xi;Xj], only those vertices which give an admissible canonical linking.The resulting graph will be denoted by G = Ge�;s ;t = (V;E) and will be called the graphof canonical quasi-segments or, more briey, the canonical graph.As we do not use lengths of the involved edges the graph can de found in polytime by ausual RAM [HKSS94].Lemma 1 The graph of canonical quasi-segments can be constructed in time polynomial inthe size of representation of obstacles.Obviously, every path between s and t in G is canonical and thus, locally shortest due toproposition 1. And inversely, every canonical path between s and t is represented in G.Thus we have



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 7Lemma 2 A path between s and t is canonical (locally shortest) i� it is a path betweenvertices s and t in the graph of canonical paths.2 Paths in Homotopy ClassesIn this section we consider homotopy class representation used in our algorithmic treatmentof homotopy classes.2.1 Representation of Homotopy Classes.We speak about paths between s and t that are homotopic in the free space. And to representhomotopy classes we use ray cuts of the plane [GS97] that is, in a way, dual to the classicalrepresentation [ST80] which is hard to treat algorithmically. (We do not know whether thistype of representation was explicitly mentioned elsewhere although it appears to be quiteconvenient for algorithmic purposes.)Generators. The plane is supposed to be oriented.As generators of the fundamental group of co� we take semi-algebraic cuts of the plane bypairwise disjoint homeomorphic images of rays as described below. Such a ray will be alsocalled a cut. If not to mention the complexity of representation of cuts we can assume thateach cut has polynomial complexity with respect to the complexity of the obstacles.Choose in every component obstacle one or more points (using, say [GV88]), and launchfrom every point one cut such that all the cuts are pairwise disjoint and go to in�nity. (Infact it su�ces to demand that cuts are pairwise non intersecting, but such a generality isnot really needed. Another possible generalizaation is to launch several rays from one point,though being treatable, seems to be useless.) Attribute to each cut an individual letter. Theset F 1 of these letters constitutes a set of generators of a free group. The set of inverses ofletters of F 1 will be denoted by F�1, and the their union by F=df F 1 [ F�1.For w 2 F we denote by cut(w) the cut corresponding to w, i. e. cut(�) = cut(��1) = � for� 2 F 1, and by start(w) denote the point from where the cut(w) emanates.If we choose in every component obstacle exactly one point and launch from it exactly onecut then we speak about a minimal basis, otherwise we speak about an arbitrary basis.Now one can de�ne the homotopy type of a path in the plane as follows. Consider theconsecutive intersections of the path with the cuts. An intersection via a non degeneratedquasi-segment is considered as one intersection (such "pathological" intersection can be easilyavoided by a small displacement of cuts, but we can easily treat the general situation), andthe direction of each intersection in determined by the orientation of the plane. Anotherdegenerated case is the case of a touch of a cut by the path without intersecting it; in thiscase there is no intersection though the touch may constitute a segment. This sequence ofintersections de�nes the following word b
F ( ): if the ith intersection is with a cut � andgoes in the clockwise direction then the ith letter of the word is �, otherwise ��1. Reduce theword as an element of the free group to the incontractible (irreducible) one and denote theresulting word 
F ( ) that can be considered as a representation of the homotopy class of  .If F is �xed and clear from the context we will omit the subscript F in the just introducednotations. The empty word over F will be denoted here by 1.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 8Lemma 3 For any basis F two paths '0 and '0 with the same ends are homotopic i� theirreducible words over F corresponding them are equal: 
F ('0) = 
F ('1).For every minimal basis F the mapping 
F is a bijection between homotopy classes andwords over F .Lemma 3 is obvious as the free group de�ned by a minimal basis is isomorphic to thefundamental group of the plane with deleted obstacles, and groups over larger bases areepimorphic to the fundamental group (all cuts except one in every component obstacle aremapped into 1).Lemma 4 For any piecewise semi-algebraic path given as a piecewise simple representation' the word b
F ('), and thus the word 
F ('), can be found in time polynomial in the size ofrepresentation of obstacles and in the sizes of representation of the basis and that of the path.In particular, the edges of the canonical graph can be labeled by the corresponding words inpolytime.Proof. Let ' be represented by a list (X;�1; : : : ;�m) of non degenerated simple semi-algebraic paths. One can determine in polytime the consecutive end pointsX1 = X;X2; : : : ;Xm;Xm+1 of the simple paths �i, i. e. such that the pair Xi;Xi+1 con-stitutes the end points of �i, 1 � i � m; passed in this order if to start from X and togo along '. Indeed, for each �i �nd the connected components of its intersection with cutsand the connected components of the di�erence of �i and the set of all cuts. The orderamong fXigi permits to determine the order of the found components on the path and thusto de�ne the word over F . Some special attention is demanded by the points Xi if they areon the cuts.For the second type of representation of curves, with parameter � (mentioned at the end ofthe subsection 1.2), it is even easier to construct b
F (') in polytime.22.2 Extremity BasisOne type of generators proves to be especially e�cient to construct shortest paths. To de�neit we choose some particular coordinate system (x; y).Firstly note that there is a direction for y for which every straight lines parallel to the y-axishas at most one point of � where this line is supporting to �. All such directions can bedescribed in Tarski algebra, and clearly, this set is not empty, as the number of directionsfor which � contains a straight-line segment parallel to y-axis, is �nite (even bounded by apolynomial of N1, N2 and d, see (1), as the number of connected components of some setdescribed by a formula in Tarski algebra of bounded complexity, see subsection 1.1), and thenumber of other directions with straight lines having two points supporting to the boundarydoes not exceed the square of the number of maximal locally convex quasi-segments of theboundary ("maximal" means that the segment cannot be extended along the boundaryresting locally convex to the boundary). The number of such maximal locally convex quasi-segments is also bounded by a polynomial (though �niteness su�ces).Thus we can choose a coordinate system (x; y) in the plane in such a way that each straightline parallel to the y-axis contains at most one point of � where it is supporting to theboundary.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 9Find all such points of the boundary, let they be �01; : : : ; �0k. Construct points �1; : : : ; �k 2(R21 \ �� in the interior of the obstacles that are in�nitely close to �01; : : : ; �0k and such thatstR0(�i) = �0i, 1 � i � k. Take rectilinear cuts starting from �i in the positive or northerndirection of y-axis (to give a clear geometric arguing we abuse the geographic notions forcardinal points). Such a set of cuts will be called an extremity basis of the fundamentalgroup. Obviously,Lemma 5 An extremity basis can be found in time polynomial in the size of representationof obstacles.The crucial property of extremity bases is the following one.Proposition 2 The word W = b
F (') over an extremity basis F corresponding to a locallyshortest (or canonical) path ' is irreducible.Proof. Suppose that W is reducible. Take any occurrence of a pair of reducible letters, let itbe ���1, hence the path enters the cut � from the West. Consider the part of ' determiningthis occurrence. Denote by [X 0;X] the segment of clockwise entering/leaving the cut � (i. e.' comes into the cut � at X 0 goes along up to X and goes out of the cut at X, normally,X = X 0) and by [Y; Y 0] the segment of counterclockwise entering/leaving the cut �. Now weare interested in the part 'XY of ' between these occurrences X and Y . Take any point Zamong the most eastern points of 'XY . This point is on the boundary, otherwise 'XY couldbe shortened. Moreover, 'XY is locally supporting to the boundary at this point because 'is canonical. Hence, Z is locally supporting for some vertical straight line. This point canbe described by a system of algebraic equations with coe�cients over R0 with �nite numberof solutions, and consequently, Z is de�ned over R0. Thus, it is unique due to our choice ofcoordinates. That means that Z = stR0(�) for some � 2 F . But the cut � which goes to thenorth must intersect 'XY , and hence append some letter before the mentioned occurrenceof ��1. A contradiction.22.3 Constructing a Path in a Homotopy Class Given by a Word inthe Fundamental GroupIf we are given an arbitrary set of cuts it is not so simple to construct in polytime the shortestpath in a given homotopy class represented as a word over this set. Extremity basis is muchsimpler to treat (see below section 3). But how to transform e�ciently a representation overone basis into the representation over another basis? A natural way is to construct any pathin the corresponding homotopy class. We show here how to do it in polytime.Lemma 6 Let a homotopy class be given by a word over an arbitrary basis of cuts, eachbeing piecewisely represented semi-algebraic curve. A path in this homotopy class be foundin time polynomial in the size of representation of obstacles, in the size of the word and inthe size of representation of the basis.Proof. Let F be the alphabet of generators determined by an arbitrary system of cuts. LetW = w1 : : : wn, wi 2 F , be an irreducible word over F determining a homotopy class. Weconstruct a path ' with 
(') = W by the procedure described below. Roughly speaking,



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 10we contract the obstacle components to points, build a path corresponding to W and theninate the obstacles back homotopically transforming the just built path. To realize this ideain polytime, the procedure �rstly builds a new, auxiliary system of obstacles representingthis contraction, constructs a path in the homotopy classW by a known polytime procedure,and then seeks an appropriate homotopy to come back to the initial obstacles.We take two more in�nitesimals �2 << �1 << � and consider the plane over the �eld R2.The in�nitesimal �1 will be used to "move" the starting ends of cuts into the interior of theobstacles, and �2 will be used to build an auxiliary system of obstacles.For each cut �0 such that start(�0) is on the boundary �, choose a point X in �� at adistance �1 from � and append to � the segment [X;�0]. It is possible as �1 << �. Afterthat replace every cut � by the band B(�) of width �2 centered at �. More precisely, theband B(�) is a union of all segments s of length �2 with centers on � and having the property:if the center X of s is start(�) then s is orthogonal to �, otherwise it is orthogonal to astraight line locally supporting to � at X (the latter line is not unique in a �nite number ofpoints). Denote by c�� the segment centered at start(�) that is the "bottom" of B(�), it isorthogonal to � at start(�). Take the segment �� of length 2 � �2 parallel to c�� and crossingB(�) at distance �2 from start(�). The segment �� lies in ��. Denote by dB(�) the bandB(�) together with ��, and by bB the union of dB(�) over all cuts �.The set bB is the mentioned auxiliary system of obstacles.Denote by �i the segment �cut(wi) if wi = cut(wi),and the inversed segment [�+cut(wi); ��cut(wi)] if wi = cut(wi)�1.Construct the path � = �(W ) in the following way. Build a path from s to ��1 amidstthe obstacles eB, append to this path the segment �1, build a path from �+1 to ��2 amidsteB, append to it the segment �2, and so on up to t . Such a path � can be constructed inpolytime using appropriate graphs of canonical quasi-segments.Now consider the original obstacles e� and original cuts. Going from s to t transformthe path �, which in the general case intersects the obstacles, into a semi-algebraic path 'which does not intersect them and such that 
(') = W . One can imagine that we inatethe auxiliary obstacles back to the original obstacles and modify � making it to go alongthe boundary of component obstacles in a proper direction. We will use notations for piecesof curves introduced in subsection 1.2. Speaking about points here we mean occurrences ofpoints that can be indicated by a reference to the list de�ning the piecewisely representedsemi-algebraic curve under consideration.Suppose that 'Z is constructed up to some occurrence of Z 2 �, 
('Z) = 
(�Z) =w1 : : :wk�1, k � 1. If k � 1 < n then wk is de�ned, and we denote by S the componentobstacle containing start(wk). Having left Z but before reaching S, or t in the case when
('Z) = W , the path � may cross some component obstacles without intersecting anycut. Let S1 be the �rst such an obstacle, see Figure 1. Denote by X1 the �rst point of itsintersection with S1. Then look for the consecutive points of � of its entering and leaving S1without intersecting other component obstacles. Denote by Y1 the last point of leaving S1among these points. Note that the piece �X1Y1 does not intersect any cut. The two pointsX1 and Y1 divise the boundary of S1 into two quasi-segments. At least one of them, denote itby q has 
(q) = 1 otherwise W does not de�ne any homotopy class because cut(wk) (or thepoint t ) will lie in the domain between two other cuts emanating from S1, and the entrancein this domain will be blocked by S1. Note that q may intersect also cuts emanating from
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S1 Figure 1: Going around obstacles.sources not in S1. But no such a cut intersects �X1Y1 and having once entered S1 such a cutmust leave it and all these cuts intersecting S1 are pairwise disjoint.Replace the piece of � between X1 and Y1 by q. That will give 'Y1. Clearly, 
(�ZY1) = 1 =
('ZY1).Now consider the case of S, i. e. the case when the �rst component obstacle intersectedby � after Z is S. Denote by X the �rst point of intersection of �Zt with S and by Ythe last such point which precedes points of intersection of this path with other componentobstacles. Again consider two quasi-segments of the boundary S� determined by X and Y .One and only one of this quasi-segments has the property: when going from X along thisquasi-segment the path � meets the �rst intersection of cut(wk) with the boundary S� incorrespondence with wk (that is in the direction of �k). Denote this quasi-segment by q.Now extend 'Z by the segment �ZX and then by q. This gives 'Y . One can show that
('Y ) = 
(�Y ) = w1 : : :wk.Indeed, the �rst intersection of �Y with cut(wk) is in the direction wk. Other cuts mayintervene between intersection with cut(wk) only as words equal to 1, otherwise the initialW would not de�ne any homotopy class.To estimate the complexity notice that the number of perfomed modi�cations of the pathdoes not exceed the number of points of intersection of the path with the obstacles that canbe bounded by a polynomial as required in lemma 6 (e. g. see [GV88]).23 Algorithm for the Shortest Path in a Given HomotopyClass.Before describing an algorithm for constructing the shortest path of a given homotopy classwe show that such a path is unique. Moreover, even locally shortest path is unique, and dueto proposition 1 the canonical path is unique.3.1 Uniqueness of Locally Shortest (Canonical) Path.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 12Proposition 3 There is a unique locally shortest (or canonical) path in a homotopy class.Thus, the unique shortest path of a homotopy class is the unique canonical path in this class.Proof. Suppose that there are two di�erent homotopic locally shortest paths '0 and '1between s and t . The both are canonical (Lemma 1) and hence, piecewise semi-algebraic.Let Z be the last point of their longest common pre�x 'Z=df ('i)Z. Denote by R the rayemanating from Z along the one-sided tangent to 'Z at Z in the direction from s to t , seeFigure 2. In a neighborhood of Z the curves '0 and '1 lie on the same side of R, the ray
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(ϕ0 )Figure 2: Uniqueness of locally shortest (canonical) path.itself not excluded. This observation is implied by the canonicity of the both curves. Indeed,the fact that one of the paths deviates from R means that there is an obctacle at Z, denoteit by S. Suppose without loss of generality that S is to the right of 'Z and, hence to theright of R. Then no canonical extension of 'Z may go above R because that would meana presence of an obstacle also to the left of R at Z. But then 'Z intersects obstacles at Z.Thus, the both curves '0 and '1 lie on the same side of R.Let '0 be the �rst curve that we meet (locally at Z) going in the clockwise direction from Raround Z, and '1 be the second one. Then '0 must be a rectilinear segment in the free spacein some neighborhood of Z, otherwise the both curves have at Z to the right of them someobstacle, and thus '1 intersects the obstacles. Denote such maximal rectilinear segment of'0 by [Z;Z0]. Take (x; y)-coordinates centered at Z which x-axis goes along [Z;Z0].Take two in�nitesimals �2 << �1 << � and consider the corresponding real closed extensionsof R0. Choose a cut �1 centered at some point in�nitely close to Z with y-coordinate equalto �"1 and launch from it the ray parallel to x-axis in the positive direction of this axis, seeFigure 2. Add �1 to the alphabet of cuts.If Z0 6= t then '0 goes from Z0 either below x-axis or above it. Add to the cuts a cut�2 in�nitely close to Z0 with y-coordinate equal to �"2 in the �rst case, and to +"2 in thesecond case. If Z0 = t add nothing. In any case 
('Z)�1 will be a pre�x of 
('1), where
 is considered over the extended alphabet.In the case Z0 = t the word 
('0) contain neither �1 nor ��11 , and, hence, di�ers from
('1).In the case when '0 goes from Z0 below x-axis the letter �2 appears in 
('0) just before�1, and thus, 
('0) 6= 
('1). Similar in the case when '0 goes from Z0 above x-axis. Acontradiction.2



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 133.2 Algorithm for Canonical Path.Thus, in order to �nd the shortest path of a given homotopy class it su�ces to �nd thecanonical path of this class.We describe an algorithm that constructs such a path when the homotopy class is repre-sented as the word in an extremity basis. This supposition does not diminish the generality.Indeed, if the class is represented by a piecewise semi-algebraic path, we can compute itsrepresentation over an extremity basis in polytime (Lemma 4), and an extremity basis itselfcan be found in polytime (Lemma 5). If the class is represented as a word over an arbitrarybasis of cuts then one can found in polytime a piecewise semi-algebraic path in this class(Lemma 6) and again reduce the problem to the case when the class is given as a word overan extremity basis.The algorithm ShPthHomCl that constructs the shortest path is given by Figure 3. Thisalgorithm transforms a word over an extremity basis into the canonical path correspondingto it, is to gradually build all paths corresponding to pre�xes of the word advancing viathe graph of canonical paths. The uniqueness of the canonical path and the irreducibilityof words (see proposition 2) appearing while advancing assures that the number of pathsunder treatment will not go beyond the product of the number of vertices of the graph ofcanonical paths and the length of the word. Indeed, if two di�erent canonical paths meet atthe same vertex their words must be di�erent otherwise the uniqueness would be violated(see proposition 3).In the description of the algorithm the following notations for paths p and q are used:� p� and p+ are respectively the �rst and the last vertex (and the corresponding points) ofthe path p;� conc(p; q) is the concatenation of the paths p and q if p+ = q�;� LastQSeg(q) is the last edge and the corresponding quasi-segment of the path q.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 14ShPthHomCl(F; H):commentH is an irreducible word over an extremity basis F . Thealgorithm uses the graph G = (V;E) of canonical quasi-segments.The end points s and t of paths are �xed. end comment;Initialisation:forall � 2 E compute 
F (�); Paths = fs g;comment Paths is a set of canonical paths under constructionthat will �nally contain the resulting shortest path if it exists.end comment;1: while0 Paths is non empty and does not contain a path betweens and t doWordExtension:2: forall0 p 2 Paths do3: Extp := fpg;4: Paths := Paths n fpg;5: while1 Extp 6= ; do6: forall1 q 2 Extp do7: Extp := Extp n fqg;8: forall2 quasi-segment � 6= LastSeg(q) of G incident to q+ do9: if0 q0=df conc(q; �) is canonical and b
(q0) is a pre�x of H10: thenif1 
(p) = 
(q0) then Extp := Extp [ fq0gelse Paths := Paths [ fq0gend if1end if0end forall2end forall1end while1end forall0end while0;11: if Paths = ; then return "no path for H"else return any path between s and t from the set Paths end ifFigure 3: Algorithm: Shortest Path in a Homotopy Class.



D. Grigoriev, A. Slissenko. Shortest Paths in a Homotopy Class... Version of November 27, 1997 15Lemma 7 Given an extremity basis, for every irreducible word H over this basis the algo-rithm ShPthHomCl veri�es whether H de�nes a homotopy class and if so, �nds the shortestpath in this homotopy class in time polynomial in the size of representation of obstacles andin the length of H.Proof. If H de�nes some homotopy class then the shortest path with 
(') = H exists and isunique due to proposition 3. And it is canonical (proposition 1). All the canonical paths arerepresented in G, and inversely, every path in G is canonical (Lemma 2). Thus, H de�nessome homotopy class i� there is a path ' in G between s and t with 
(') = H. Hence,the algorithm is correct as it looks for all paths in G starting at s and corresponding topre�xes of H (it su�ces to consider just pre�xes of H due to proposition 2).So it rests to estimate the complexity of the algorithm. The algorithm analyzes all canonicalpaths emanating from s and corresponding to pre�xes of H. If 2 such paths come to asame vertex their words must be di�erent due to proposition 3 and lemma 3. Hence thenumber of paths neither in the set Paths nor in the set Extp does not exceed the productof the number of the vertices of G and the length of H. And the same bound is valid for thenumber of possibles sets Extp as p originates from Paths.At any step of the algorithm the length of a current pre�x either augments or does notchange, if the added edge of G represents the empty word, see proposition 2 (note that inline 9 the algorithms veri�es that b
(q0) is a pre�x of H, and thus, veri�es that the augmentedword has no contractions). The latter happens consecutively at most jEj times (where Eis the set of edges of canonical graph, see Figure 3), since otherwise we get a loop in thecanonical path which provides the empty word, hence it is contractible (cf. Lemma 3), andwe can delete the loop, that condradicts proposition 3. Therefore the number of steps of thealgorithm does not exceed jHj � jEj.2We summarize the proved above in the following main result of the paper.Theorem The problem of constructing the shortest path in a given homotopy class rep-resented either as a word over a piecewise semi-algebraic basis of cuts or as a piecewisesemi-algebraic path is solvable in time polynomial in the size of representation of obstaclesand in the size of representation of the homotopy class.Acknowledgements. The second auther is thankful to the Departments of Computer Sci-ence and of Mathematics of Pennsylvania State University for the hospitability during hisstay there in February 1997.References[AM88] M. E. Alonso and Raimondo M. The computation of the topology of a planarsemialgebraic set. Rend. Sem. Mat. Univers. Politecn. Torino, 46(3):327{342,1988.[BCR87] J. Bochnak, M. Coste, and M.-F. Roy. G�eom�etrie alg�ebrique r�eelle. Springer-Verlag, 1987.
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