
Approximation and complexity: Liouvilleantype theorems for linear di�erential equationson an intervalDima Grigoriev�AbstractLet u; v be solutions on an interval I of linear di�erential equations(LDE) P = 0; Q = 0, respectively. We obtain a lower bound on theapproximation of v by u in terms of bounds on the coe�cients of LDESi = 0 (for several i) satis�ed by the i-th derivative of v and by thei-th derivatives of a basis of the LDE P = 0.One could view this result as a di�erential analog of the Liouville'stheorem which states that two di�erent algebraic numbers are wellseparated if they satisfy algebraic equations with small enough integercoe�cients. Unlike the algebraic situation, in the di�erential setting,in order to bound from below the di�erence ju� vj we need to involvenot only the coe�cients of P;Q themselves, but also those of Si.IntroductionThe well-known Liouville's theorem states that if f(a) = g(b) = 0 wheref = X0�i�n fiX i; g = X0�i�m giX i 2 Z[X]and a 6= b then one can bound from below the di�erence ja� bj. For the sakeof simplicity assume that f; g have no common roots. One possible approachto its proof is to consider the resultant�IRMAR, Universit�e de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France1



R = fmn gnmY(ai � bj) 2 Zwhere the product is taken over the roots ai of f and bj of g, respectively.Say, for de�niteness a1 = a; b1 = b. Then1 � jRj = jfmn gnm(a1 � b1) Y(l;j) 6=(1;1)(al � bj)jand from the upper bounds on the roots jalj � maxf1; jfi=fnjg; jbjj �maxf1; jgi=gmjg one obtains a lower bound on ja1� b1j. Note that this argu-ment provides a lower bound on jal� bjj for any pair of the roots of f and g.We recall also that R = gnmQ f(bj) and alternatively, one could obtain simi-lar to above a lower bound on jf(b1)j. The proof of the Liouville's theoremuses two basic ingredients: a lower bound on jRj and an upper bound on theroots jaij; jbjj.If one would try to transfer this argument to the solutions P (u) = Q(v) =0 of linear ordinary di�erential operatorsP = X0�i�n pi didX i ; Q = X0�i�m qi didX ione needs a replacement of the resultant.Informally speaking, the approach can be viewed as follows. We haveX0�i�n pi didX i (u� v) = P (u� v) = �P (v):In fact, P (v) plays a role of the resultant: it could be represented as thedeterminant of an appropriate (n+1)� (n+1) matrix with the last columnformed by the derivatives didXi (u � v); 0 � i � n and other entries being thederivatives of the elements of a basis u1; : : : ; un of the space of solutions ofLDE P = 0. Assume that a certain lower bound on jjP (v)jj is given wherejj; jj denotes some norm, this replaces the �rst of the mentioned ingredients.We want to derive a contradiction from the supposition that jju�vjj is small.For this purpose we have to guarantee that under the supposition the normsof the derivatives jj didXi (u � v)jj; 1 � i � n, should be small as well (it isan extra e�ort in comparison with the algebraic situation). Together withthe upper bounds on the entries of the matrix which occur in the rate of2



approximation (this replaces the second of the mentioned ingredients), thatleads to a contradiction by means of expanding P (v) with respect to its lastcolumn.This plan is ful�lled in the theorem below which provides a lower bound onapproximations maxx2I jv�P1�j�n �juj(x)j of a function v by means of anylinear combination of the form P1�j�n �juj; �j 2 R, of functions u1; : : : ; unde�ned on a �nite closed interval I � R. The bound depends on n whichcould be informally treated as a complexity measure of an approximation,having in mind that a function v is given and we try to minimize the numbern of functions u1; : : : ; un taken from a �xed set of \basic" ones, for example,monomials, or trigonometric monomials sin(�X), or exponential monomialsexp(�X) etc.Let us underline that unlike the case of algebraic equations where thebound depends separately on both polynomials f and g, we consider ap-proximations of a �xed solution of one operator by means of any solution ofanother operator, rather than the di�erence of any pair of solutions whichcould be arbitrary small on the interval, and the bound depends on suitableminors composed of the derivatives of v and of u1; : : : ; un.As an application of the theorem we provide a lower bound for ap-proximations by means of linear combinations of functions of the formssin(�X); cos(�X).Observe that it is more di�cult to prove analogs of Liouvillean type the-orems for solutions of linear di�erential equations on an interval than on thewhole real line. Moreover, one can obtain lower bounds on approximationson R not only for solutions of LDE, but for their compositions [G 92] makinguse of a more general approach involving the Wronskian.It is an interesting question whether one can prove Liouvillean type the-orems for approximations on an interval for two classes of functions studiedin [G 92], [G 93], respectively, namely, compositions of solutions of linear dif-ferential equations and Pfa�an functions [Kh] (or in other terms, for nestedsolutions of �rst-order non-linear di�erential equations). We mention alsothat beyond these two classes of functions one could hardly expect any Liou-villean type theorem due to the example (see [B]) of a second-order non-lineardi�erential equation with arbitrarily closeness to zero.One could also view the result of the paper as a trade-o� between ap-proximations and complexity. It would be interesting to understand more onthis trade-o�. We mention that in this direction a lower bound was proved3



in [CG] on the complexity of approximating algebraic computation trees.Another motivation for this trade-o� arises from neural networks (see[MSS] and the references there) where one considers sigmoids (circuits withcertain transcendental functions as gates), and the problem of approximatinga sigmoid by another of small complexity.It is worthwhile also to mention that in [K] a version of a di�erential ana-log of the Liouville's theorem was proposed in terms of bounds on valuations,while we consider approximations in L1-norm.The author would like to take this opportunity to thank Georg Schnitgerfor stimulating discussions. Also the author is indebted to the anonymousreferees whose remarks have conduced to improve the exposition.Approximations of solutions of linear di�eren-tial equationsLet I � R be a �nite interval of length jIj and u1; : : : ; un; v be 2n + 2-di�erentiable functions on I. We study the question of how well linear com-binations of the form P1�j�n �juj for �j 2 R can approximate v, i.e. theproblem of bounding from below the normjjv � X1�j�n �jujjjI = max j(v � X1�j�n �juj)(x)jwhere the maximum of absolute values is taken over the points x from theclosure of the interval I.Consider (2n+3)�(n+1) matrix � with the rows (respectively, columns)numbered from 0 to 2n+2 (respectively, from 1 to n+1) de�ned as follows.For 1 � k � n its k-th column is formed by the derivatives uk; u0k; : : : ; u(2n+2)kand (n + 1)-th column is formed by the derivatives v; v0; : : : ; v(2n+2). For0 � i � n + 1; i � j � i + n + 1 let �(i; ĵ) denote the (n + 1) � (n + 1)subdeterminant of � formed by the rows i; i+1; : : : ; j�1; j+1; : : : ; i+n; i+n+ 1.We assume the following bounds for any point x 2 I:j�(i; ĵ)(x)j �M; j�(i; di+ n + 1)(x)j � � > 0 (1)4



for all 0 � i � n + 1; i � j � i+ n + 1 and for certain �xed M; �. Then thespace of solutions of the LDE Si = 0 whereSi = X0�j�n+1(�1)j�(i; dj + i) djdXj ; 0 � i � n+ 1has a basis u(i)1 ; : : : ; u(i)n ; v(i) due to the condition on � in (1).For 0 � j � n let �(ĵ) be the n�n subdeterminant of the �rst n columnsof � and the rows 0; 1; : : : ; j � 1; j + 1; : : : ; n. Then u1; : : : ; un is a basis ofthe space of solutions of the LDE S = 0 whereS = X0�j�n(�1)j�(ĵ) djdXj :Assume that for any point x 2 I we havej�(ĵ)(x)j �M0; 0 � j � n (2)Theoremjjv � X1�j�n �jujjjI � �(n+ 1)M0 minfjIj; �=2Mg(n+ 1)3 !n (3)Remark. There exists a closed subinterval In � I (which depends on�1; : : : ; �n) of length jInj � minfjIj; �=2Mg(n + 1)3such that j(v�P1�j�n �juj)(x)j is greater than the right-hand side of (3) forany point x 2 In.The following lemma was proved as lemma 2 [G 92].Lemma 1 For each 0 � i � n + 1 the number of roots on I of the deriva-tive w(i) = v(i) �P1�j�n �ju(i)j , does not exceed d2M jIj=�en; moreover anysubinterval of I of length less or equal to �=2M contains at most n roots ofw(i).Proof. Suppose that a certain closed subinterval I 0 � I of length jI 0j ��=2M contains more than n roots of w(i). Then each of the derivatives5



w(i); w(i+1); : : : ; w(i+n) has a root in I 0. Let M (j) = jjw(i+j)jjI 0 ; 0 � j � n+1.Then M (j+1) �M (j)=jI 0j � 2MM (j)=�; 0 � j � nby the Mean Value Theorem.On the other hand according to the Cramer's rule we have the identityw(i+n+1)�(i; di+ n+ 1) = Xi�j�i+n(�1)j�i�nw(j)�(i; ĵ)taking into the account that the minors �(i; ĵ) do not change if to replacethe (n+1)-th column of the matrix � by the derivatives w;w(1); : : : ; w(2n+2),that corresponds to a linear elementary transformation of the columns of �.Substituting in this identity a point x 2 I 0 at which the derivative jw(i+n+1)jattains its maximumM (n+1), we bound from below the absolute value of theleft-hand side by M (n+1)�, and on the other hand, bound from above theabsolute value of the right-hand side byM(M (0)+ � � �+M (n)) due to (1), i.e.M (n+1) �M(M (n) + � � �+M (0))=� . HenceM (n+1) � M� M (n+1)(( �2M ) + ( �2M )2 + � � �+ ( �2M )n+1) <M� M (n+1) �2M 2M2M � � �M (n+1);this contradiction proving the lemma. 2In view of lemma 1, there exists a closed subinterval I0 � I of lengthjI0j � minfjIj; �=2Mg(n + 1)2without roots of any w(i); 0 � i � n + 1. Under these conditions on I0 weestimate the norms of the derivatives jjw(1)jjIn; : : : ; jjw(n)jjIn via the normjjwjjIn for a suitable closed subinterval In � I0.Lemma 2 Assume that the derivatives w(0); : : : ; w(n+1) have no roots in aninterval I0. Then there exists a closed subinterval In � I0 of length jInj = jI0jn+1such that 6



jjw(j)jjIn � jjwjjI0�n + 1jI0j �j; 0 � j � n:Proof. Assume that one has already produced (by recursion on j) closedsubintervals I0 � I1 � � � � � Ij with the lengths jIlj = jI0jn+1�ln+1 such thatjjw(l)jjIl � jjwjjI0�n+1jI0j �l; 0 � l � j < n.Denote by a1 = jw(j+1)(x1)j; a2 = jw(j+1)(x2)j the values of the functionjw(j+1)j at the endpoints of the interval Ij = [x1; x2]. If a1 < a2 then set x0 =x2� jI0jn+1 and the subinterval Ij+1 = [x1; x0]. Otherwise, if a1 > a2 then x0 =x1+ jI0jn+1 and the subinterval Ij+1 = [x0; x2] . Then jjw(j+1)jjIj+1 = jw(j+1)(x0)jand jw(j+1)(x)j � jjw(j+1)jjIj+1 for any point x from the subinterval Ij � Ij+1since w(j+1) is monotone and has no roots in the subinterval Ij � I0 (whencejw(j+1)j is also monotone on the same interval). Observe that a1 6= a2, indeed,otherwise w(j+2) would vanish identically on the interval Ij. Hencejjw(j)jjIj�Ij+1 � jjw(j+1)jjIj+1(jIjj � jIj+1j)because w(j) has no roots in the subinterval Ij � I0. Thus,jjw(j)jjIj � jjw(j+1)jjIj+1 jI0jn+ 1which proves the recursion hypothesis. Taking j = n and l = j, and notingthat In � Ij, we get lemma 2. 2To complete the proof of the theorem consider the (n+1)�(n+1) subde-terminant formed by the �rst n+1 derivatives of the functions u1; : : : ; un; w.Since this subdeterminant is equal to �(0; dn+ 1), we get (using lemma 2)from its expansion with respect to the last column (taking into account (2)and the bound on the length jI0j following lemma 1) that� � jj�(0; dn+ 1)jjIn � (n + 1)M0jjwjjI0�n+ 1jI0j �n:The theorem is proved. 2Now we give an application of the theorem in the case of the functionsu2j�1 = sin(�jX); u2j = cos(�jX) for pairwise distinct squares �2j . Since wedeal with 2n functions u1; : : : ; u2n the role of n in the bounds from theorem7



1 will be played by 2n. About the function v we assume that the deriva-tives v(0); v(2); v(4); : : : ; v(4n+2) of even orders all have the same sign at eachpoint of I, the same holds for all odd order derivatives v(1); v(3); : : : ; v(4n+1),furthermore the derivatives are bounded above, and away from zero, withA � jv(l)(x)j � a > 0 for x 2 I; 0 � l � 4n + 2. In particular, one one couldtake v = exp.Denote by �i the i-th elementary symmetric function of �21; : : : ; �2n; 0 �i � n, in particular, �0 = 1. Denote by B0; B1; : : : the rows of the matrix�, respectively. Then B2n+j = P0�i�n�1(�1)n�i+1�n�iB2i+j for j � 0 (infact, this holds for every j � 0, but j � 2n+ 2 in the matrix �). Therefore,j�(0; ĵ)j equals j�n�j=2�(0; c2n)j when j is even, and equals zero when j isodd. Hence M0 � max0�l�nf�lg.Furthermore, � � aP0�j�n �jj�(0; c2n)j andM � Amax0�l�nf�lgP0�l�n j�(0; c2n)j.Let R = maxf1; �2jg, then max0�l�nf�lg � (2R)n. The theorem impliesthatjjv� X1�j�2n�jujjjI � �(n+ 2)n+1M0 jI0jn = �nn(n+ 2)2n+1M0 minfjIjn; ( �2M )ngThus, we obtain the following corollary.Corollary.jjv � X1�j�n(�j sin(�jX) + �j+n cos(�jX))jjI � minf jIjnanO(n)A; an+1An2O(n2)Rn2 g.References[B] R.Bellman. Stability theory of di�erential equations, McGraw-Hill, 1953.[CG] F.Cucker, D.Grigoriev. Complexity lower bounds for approximationalgebraic computation trees, J. Complexity, 1999, 15, 4, p. 499{512.[G 92] D.Grigoriev. Deviation theorems for solutions of linear ordinarydi�erential equations and applications to parallel complexity of sigmoids,St.Petersburg Math. J., 1995, 6, 1, p. 89{106.8
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