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Abstract

Let u, v be solutions on an interval I of linear differential equations
(LDE) P = 0,Q = 0, respectively. We obtain a lower bound on the
approximation of v by u in terms of bounds on the coefficients of LDE
S; = 0 (for several i) satisfied by the i-th derivative of v and by the
:-th derivatives of a basis of the LDE P = 0.

One could view this result as a differential analog of the Liouville’s
theorem which states that two different algebraic numbers are well
separated if they satisfy algebraic equations with small enough integer
coefficients. Unlike the algebraic situation, in the differential setting,
in order to bound from below the difference |u — v| we need to involve
not only the coeflicients of P, () themselves, but also those of S;.

Introduction

The well-known Liouville’s theorem states that if f(a) = g(b) = 0 where

f= 2 fX'9= > ¢X €Z[X]
0<i<n 0<i<m
and a # b then one can bound from below the difference |a — b|. For the sake
of simplicity assume that f, g have no common roots. One possible approach
to its proof is to consider the resultant
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R=flgn|l(a; —b;) €Z

where the product is taken over the roots a; of f and b; of g, respectively.
Say, for definiteness a; = a,b; = b. Then

L< IRl = |flgn(ar—b) [ (@ =0y
(L)#(1,1)

and from the upper bounds on the roots |a;| < max{l,|f;/ful|},]b;] <
max{1,|g;/gn|} one obtains a lower bound on |a; — b;|. Note that this argu-
ment provides a lower bound on |a; — b;| for any pair of the roots of f and g.
We recall also that R = g [ f(b;) and alternatively, one could obtain simi-
lar to above a lower bound on |f(b;)|. The proof of the Liouville’s theorem
uses two basic ingredients: a lower bound on |R| and an upper bound on the
roots |a;, |b;].

If one would try to transfer this argument to the solutions P(u) = Q(v) =
0 of linear ordinary differential operators

d' d'
P= > pieQ= D Giyr
0<i<n dX: 0<i<m dX:
one needs a replacement of the resultant.
Informally speaking, the approach can be viewed as follows. We have

> pidc)l;i(u —v)=Plu—v)=—P(v).

0<i<n

In fact, P(v) plays a role of the resultant: it could be represented as the

determinant of an appropriate (n + 1) x (n + 1) matrix with the last column
4t

formed by the derivatives 7% (u —v), 0 < ¢ < n and other entries being the
derivatives of the elements of a basis uy,...,u, of the space of solutions of
LDE P = 0. Assume that a certain lower bound on ||P(v)]| is given where
||, || denotes some norm, this replaces the first of the mentioned ingredients.
We want to derive a contradiction from the supposition that ||u—wv||is small.
For this purpose we have to guarantee that under the supposition the norms
of the derivatives ||-%+(u — v)||,1 < i < n, should be small as well (it is
an extra effort in comparison with the algebraic situation). Together with
the upper bounds on the entries of the matrix which occur in the rate of




approximation (this replaces the second of the mentioned ingredients), that
leads to a contradiction by means of expanding P(v) with respect to its last
column.

This plan is fulfilled in the theorem below which provides a lower bound on
approximations max,es [v — 31 <j<, Aju; ()] of a function v by means of any
linear combination of the form 3=, .;<, Aju;, A; € R, of functions uy, ..., u,
defined on a finite closed interval I C R. The bound depends on n which
could be informally treated as a complexity measure of an approximation,
having in mind that a function v is given and we try to minimize the number
n of functions uy, ..., u, taken from a fixed set of “basic” ones, for example,
monomials, or trigonometric monomials sin(0.X'), or exponential monomials
exp(0X) etc.

Let us underline that unlike the case of algebraic equations where the
bound depends separately on both polynomials f and g, we consider ap-
proximations of a fixed solution of one operator by means of any solution of
another operator, rather than the difference of any pair of solutions which
could be arbitrary small on the interval, and the bound depends on suitable
minors composed of the derivatives of v and of uy,..., u,.

As an application of the theorem we provide a lower bound for ap-
proximations by means of linear combinations of functions of the forms
sin(0.X), cos(6.X).

Observe that it is more difficult to prove analogs of Liouvillean type the-
orems for solutions of linear differential equations on an interval than on the
whole real line. Moreover, one can obtain lower bounds on approximations
on R not only for solutions of LDE, but for their compositions [G 92] making
use of a more general approach involving the Wronskian.

It is an interesting question whether one can prove Liouvillean type the-
orems for approximations on an interval for two classes of functions studied
in [G 92], [G 93], respectively, namely, compositions of solutions of linear dif-
ferential equations and Pfaffian functions [Kh] (or in other terms, for nested
solutions of first-order non-linear differential equations). We mention also
that beyond these two classes of functions one could hardly expect any Liou-
villean type theorem due to the example (see [B]) of a second-order non-linear
differential equation with arbitrarily closeness to zero.

One could also view the result of the paper as a trade-off between ap-
proximations and complexity. It would be interesting to understand more on
this trade-off. We mention that in this direction a lower bound was proved



in [CG] on the complexity of approximating algebraic computation trees.

Another motivation for this trade-off arises from neural networks (see
[MSS] and the references there) where one considers sigmoids (circuits with
certain transcendental functions as gates), and the problem of approximating
a sigmoid by another of small complexity.

[t is worthwhile also to mention that in [K] a version of a differential ana-
log of the Liouville’s theorem was proposed in terms of bounds on valuations,
while we consider approximations in L.,-norm.

The author would like to take this opportunity to thank Georg Schnitger
for stimulating discussions. Also the author is indebted to the anonymous
referees whose remarks have conduced to improve the exposition.

Approximations of solutions of linear differen-
tial equations

Let I C R be a finite interval of length |I| and wy,...,u,,v be 2n + 2-
differentiable functions on I. We study the question of how well linear com-
binations of the form >7,.;, Aju; for A; € R can approximate v, i.e. the
problem of bounding from below the norm

lo— > Nujllr = max|(v— > Ajuy)(a)]
1<5<n 1<5<n
where the maximum of absolute values is taken over the points = from the
closure of the interval [I.

Consider (2n+3) x (n+1) matrix A with the rows (respectively, columns)
numbered from 0 to 2n + 2 (respectively, from 1 to n + 1) defined as follows.
For 1 < k < n its k-th column is formed by the derivatives uy, uy, . .. ,u§§2n+2)
and (n + 1)-th column is formed by the derivatives v, v, ..., 02 For
0<i<n+4+1l,1<j3<i4+n+1let Z(i,j) denote the (n +1) x (n + 1)
subdeterminant of A formed by the rows 7, 4+1,...,5—1,54+1,....i4+n,i+
n+ 1.

We assume the following bounds for any point = € [I:

A0 J) )] < M, K47+ 1)) 2 6> 0 (1)



forall0 <i:<n+1,i2<j<i+n+1 and for certain fixed M, . Then the
space of solutions of the LDE S; = 0 where

J

o~ d
Si= Y (-1YA@,j+1)——.0<i<n+1

0<y<n+1 dX/ 7
has a basis u(li), oould vl due to the condition on § in (1).

A

For 0 < j < nlet A(y) be the n x n subdeterminant of the first n columns
of A and the rows 0,1,...,7— 1,5 +1,...,n. Then uy,...,u, is a basis of
the space of solutions of the LDE S = 0 where
S 1)YA(; i
S DN NG s

0<j<n

Assume that for any point @ € [ we have

AG) ()] < Mo0 < j < n )

Theorem

o= > Adusllr =

1<j<n

5 (min{lllﬁ/?M})n (3)

(n+1)My (n+1)3

Remark. There exists a closed subinterval [,, C I (which depends on

Aly..oy Ay) of length

min{|/|,6/2M }
(n+1)°
such that |(v—301<;<, Aju;)(x)| is greater than the right-hand side of (3) for

any point = € [,.
The following lemma was proved as lemma 2 [G 92].

1| >

Lemma 1 For each 0 < ¢ < n 41 the number of roots on I of the deriva-

tive w® = () — Yi<j<n )\juy), does not exceed [2M|I|/5]n; moreover any

subinterval of I of length less or equal to 6/2M contains at most n roots of
(®)

w',

Proof. Suppose that a certain closed subinterval I' C I of length |I'] <
§/2M contains more than n roots of w(¥. Then each of the derivatives
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w® w0 wlF) has a root in I, Let MU = [Jw™+D|],,0 < j <n+1,
Then

MU > M(j)/|]'| > QMM(j)/(S,O <j<n

by the Mean Value Theorem.
On the other hand according to the Cramer’s rule we have the identity

w VARG 1) = Y (=1 eWAG, )
i<j<itn

taking into the account that the minors Z(i,j) do not change if to replace
the (74 1)-th column of the matrix A by the derivatives w,w(", ... w72,
that corresponds to a linear elementary transformation of the columns of A.
Substituting in this identity a point @ € I' at which the derivative [w(+7+1)]
attains its maximum M*Y we bound from below the absolute value of the
left-hand side by M*tV§, and on the other hand, bound from above the
absolute value of the right-hand side by M(M(O) 4+ 4 M(”)) due to (1), i.e.
MO < MM 4. 4 M©)/§ . Hence

M ) ) )
M(n—l—l) < _M(n—l—l) s Y L. Y \n+l
< My Sy (o () <
My ey 0 2M )
) 2M2M — 6 — ’

this contradiction proving the lemma. O
In view of lemma 1, there exists a closed subinterval Iy C I of length

min{|/|,6/2M }
(n +1)?

without roots of any w(i),() < ¢ < n+ 1. Under these conditions on [ we

| Io] >

estimate the norms of the derivatives |[[w™M||f,,...,|[w™]|;, via the norm
||wl]y, for a suitable closed subinterval I,, C I.

Lemma 2 Assume that the derivatives w(©® ... w1 have no roots in an
interval Iy. Then there exists a closed subinterval 1, C Iy of length |1,| = %

such that



n-+1

J .
—),0< 7 <n.
RN

@11, < ool (

Proof. Assume that one has already produced (by recursion on j) closed

subintervals Iy D Iy D --- D I; with the lengths |[}| = [Io|™! ”"'1 L such that
O, < floll (3) 0 < 1< j <.

Denote by a; = [wUt)(zy)|,aq = [wUH)(zy)| the values of the function
[+ at the endpoints of the interval I; = [x1,22]. If a1 < ay then set g =
Ty — % and the subinterval [, = [#1,20]. Otherwise, if a; > ay then zo =

T4 |I° and the subinterval I;;; = [2o, 23] . Then |[w+1)]|

and wa+1 ()] = [|wt D]
J+1)

Iy = |w(j+1)(:1;0)|
1,4, for any point z from the subinterval I; — I;1,
is monotone and has no roots in the subinterval I; C Iy (whence
w7+ is also monotone on the same interval). Observe that a; # as, indeed,

otherwise w(*?) would vanish identically on the interval I;. Hence

since !

w10 2 0D (1] = [ L))

because wl¥) has no roots in the subinterval I; C Iy. Thus,

ol
J+1 _I_ 1
which proves the recursion hypothesis. Taking j = n and [ = j, and noting
that I, C I;, we get lemma 2. O

To complete the proof of the theorem consider the (n+1) x (n+41) subde-
terminant formed by the first n + 1 derivatives of the functions uy, ..., u,, w.

1], = [+

Since this subdeterminant is equal to Z(O,n/—l—\l), we get (using lemma 2)
from its expansion with respect to the last column (taking into account (2)
and the bound on the length |Iy| following lemma 1) that

5suzmm?1mu_«n+mmemx|ﬂ

The theorem is proved. O

Now we give an application of the theorem in the case of the functions
Uzj—1 = sin(0;X), uy; = cos(0;X) for pairwise distinct squares §7. Since we
deal with 2n functions wuy, ..., us, the role of n in the bounds from theorem



1 will be played by 2n. About the function v we assume that the deriva-
tives 00, 0@ @ 92 of even orders all have the same sign at each
point of I, the same holds for all odd order derivatives v(1) v®) . plntl)
furthermore the derivatives are bounded above, and away from zero, with
A> |v(l)(:1;)| >a>0forxel,0<[<4n+ 2. In particular, one one could
take v = exp.

Denote by o; the i-th elementary symmetric function of #7,...,02 0 <
1 < n, in particular, o9 = 1. Denote by By, By, ... the rows of the matrix
A, respectively. Then Bany; = Yocicn_1(—1)""F o, ;Boy; for 3 > 0 (in
fact, this holds for every j > 0, but j < 2n + 2 in the matrix A). Therefore,
|A(O,j)| equals |an_j/2A(0,2/7\1)| when j is even, and equals zero when j is
odd. Hence My < maxo<i<,{oi}.

Furthermore, § > a Y o<;<, ;| A(0, 2/7\1)| and

M < Amaxo<i<n {0} >o<i<n |A(O, 2/7\1)|

Let R = max{l,@?}, then mazo<i<n{oi} < (2R)". The theorem implies
that

) ) )

(n—l—2)”+1MO| 0| n”(n—|—2)2”+1MO mm{| | 7(2M) }

o= D Nullr >

1<j<2n

Thus, we obtain the following corollary.

Corollary.
) ) |[|na an—l—l
||U - 1<JZ;n()‘] SIH(GJX) + )‘j+n COS(GJX))HI > mln{ nO0m) A’ An90(n?) Rn? }
References

[B] R.Bellman. Stability theory of differential equations, McGraw-Hill, 1953.

[CG] F.Cucker, D.Grigoriev. Complexity lower bounds for approximation
algebraic computation trees, J. Complexity, 1999, 15, 4, p. 499-512.

[G 92] D.Grigoriev. Deviation theorems for solutions of linear ordinary
differential equations and applications to parallel complexity of sigmoids,

St.Petersburg Math. J., 1995, 6, 1, p. 89-106.

8



[G 93] D.Grigoriev, Deviation theorems for Pfaffian sigmoids, St.Petersburg
Math. J., 1995, 6, 1, p. 107-112.

[H] P.Hartman. Ordinary differential equations, Birkhauser, 1982.
[Kh] A.Khovanskii. Fewnomials. AMS Transl. Math. Monogr., 1991.
[

K] E.R.Kolchin. Rational approximations to solutions of algebraic differen-

tial equations. Proc. AMS, 1959, 10, p. 238-244.

[MSS] W.Maass, G.Schnitger, E.Sontag. On the computational power of
sigmoid versus boolean threshold circuits. Proc. IEEE FOCS, 1991, p. 767—
776.



