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Abstract

Let a system of linear ordinary differential equations
of the first order Y/ = AY be given, where A 1s n X
n matrix over a field F(X), assume that the degree
degx (A) < d and the size of any coefficient occuring
in A is at most M. The system Y’ = AY is called
reducible if it is equivalent (over the field F(X)) to a
system Yy = A;Y; with a matrix A; of the form

Aiqn O
Ay = '
! ( Az Az )
An algorithm is described for testing irreducibility of
the system with the running time exp(M(d2")4%").

Introduction

Let a system of linear ordinary differential equations of
the first order be given

Y' = AY (D
where A = (ai j/a) is a n X n matrix over a field F(X)
and the polynomials a; j, a € F[X], here a field F =
Q(6:,...,6:)[n] where the elements 6;,...,6. are alge-
braically independent over @, the element 7 is algebraic
over the field Q(6y,...,6.) and ¢(Z) € Q[61,...,8.)[Z]
is its minimal polynomial, lastly Y = (y1,...,y.)7 is
the vector of unknowns. For a rational number o/ €
Q, where «, § are reciprocately prime, define its bit-size
as l(a/B) = [log,(|af|+2)]. Define bit-size I(¢) as the
maximal of bit-sizes of all rational coefficients occur-
ring in ¢ (cf. [CG 83], [Gr 86]). Assume that the de-
grees degz(p) < dy, deg;, 4, (¥) < do and I(p) < M,
then we say that ¢ satisfies (dy, dp, M)-bound.
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We suppose furthermore that the elements a;j, a
satisfy (d, dg, M)-bound.

An algebraic closure F is regarded in sequel as a field
of constants. One can deem that the field F' is embed-
ded in the field €. Denote by G = Gal(A/F(X)) the dif-
ferential Galois group of system (1) (see e. g. [Ka 57}).
Let V be a space of all solutions of system (1). It is well
known that V is n-dimensional space over the field F;
moreover if the vectors vy,...,v, € V are linearly in-
dependent over F then vy, ..., v, are also linearly inde-
pendent over an arbitrary field ({CL 55]). The group G
acts on the vectors from V componentwise. A subspace
(here and further all the subspaces are considered over
the field F) W C V is called invariant if W is invariant
under the action of G. We write the vectors from V as
columns.

Lemma 1 A subspace W C V of dimension k s in-
variant iff there exisis (n — k) x n matriz B of the rank
(n — k) with the entries from the field F(X) such that
BW =0 (we call B an annihilating matriz for W ).

ProOF: Assume the existence of the required ma-
trix B. Consider a subspace W' = {w € V|Bw = 0}.
Then W/ C W and W’ is invariant, on the other hand
dim(W’) < k since rk(B) = n — k, therefore W' = W
and W is invariant.

Conversely, suppose that W is invariant. Following
Proposition 1.5 ([BBH 88]) consider n x k matrix
with the columns constituting a certain basis of the
space W. Pick out some nonsingular k£ x k submatrix w
of the matrix Q. For every element ¢ € G there exists
nonsingular k x k matrix C, with the entries from F
such that the action of g on § coincides with the right
multiplyingon Cy, i.e. gxQ = QCy, henceforth g xw =
wCy. Therefore

g x (Qw™t) (9 x (g x w™?)
QCgCg_lw'l

Qu=1

H



_thus all the entries of the matrix Quw~1! belong to
F(X). Henceforth, there exists (n—k) xn matrix B over
the field F(X) of the rank (n— k), such that BQuw~! =
0, q. e. d.

System (1) is said to be equivalent to a system Y7
A7) if there exists a nonsingular n x n matrix B; over
F(X) such that for the space V; of the solutions to
the system Y{ = A;Y7 holds Vi = BV, then A; =
B{B7' + B AB;!. One can show that an invariant k-
dimensional subspace W C V exists iff there is a system
Y = A;Y7 equivalent to (1) such that the matrix A;
has a block-lowertriangular form

e

where A2 is k£ x k matrix. Indeed, if A; has a
form (2) then we can consider k-dimensional space W,
of the solutions of the system Y/ = A 5¥;. Then the
space Wy consisting of all the vectors with n coordi-
nates, obtained from the vectors of the space W, by
padding zeroes as the first (n — k) coordinates, is a
subspace Wi C V;. Furthermore, for (n — k) X n ma-
trix By = (EQ), where E is unit (n — k) x (n — k)
matrix, holds BoW; = 0, whence Lemma 1 implies
that W, is an invariant k-dimensional subspace. Then
W = B7!Wi C V is an invariant k-dimensional sub-
space.

Ain O

2
Azq Aap (2)

Conversely, let W C V be an invariant k-dimensional
subspace and B be an annihilating (n — k) x n matrix.
Consider an arbitrary nonsingular n x n matrix B; of

the form B, = ( gz with the entries from F(X).

Then the space ByW C B1V = V; is contained in the
subspace of the vectors with vanishing first (n—k) coor-
dinates. Since the derivative (B; W)’ is also contained
in the latter subspace, the matrix A; has the form (2)
that was to be proved. System (1) is called irreducible
iff V' has no proper invariant subspace.

The main statement of the paper is the following

Theorem  There is an algorithm recognizing irre-
ducibility of a system (1) and constructing an anni-
hilating matriz B, provided (1) is reducible, such that

degy(B) < N < exp((M + doe)(d27)2(2") 0"y,

Moreover, the algorilhm produces a field

Fy ~Q(é1,...,8)[Z)/(p1) D F

being a finite extension of F', by means of specifying
an irreductble polynomial @1 € Q[6y,...,6.][Z], such
that every entry of B belongs to F1(X). Besides, ¢,
and B satisfy (dy(Ndn)2®) do((Ndn)"*dy)0D, (M +
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doe)((Ndn)™ d;)°M)) — bounds. Furthermore, the run-
ning time of the algorithm does not exceed a suitable
polynomial in M, ((Ndn)"dydo)™"+e.

REMARK:

1. By virtue of the shown beforehand one can yield a
system Y{ = AY} equivalent to (1) whose matrix
A; has the form (2) with the bounds on A, and
time-bounds as in the theorem.

2. The theorem generalizes the result [Gr 90] where
an algorithm for factoring a linear differential op-
erator is designed, for the case of a system of lin-
ear differential equations of the first order. Similar
to [Gr 90] one can produce a system YJ = AoYp
equivalent to (1) having a block-lowertriangular
form

A
Az Azz 0

Ap

A,’l As s

]

where s is the maximal possible, i. e. for each
1 € i £ s the system Y/ Ai;Y; of the
size k; is irreducible. Observe that the set of in-
tegers {k1,...,ks} is uniquely determined, since
these numbers are the dimensions of the factors of

Jordan-Golder tower of G-module V' ([La 65]).

Notice that if system (1) is irreducible then it sat-
isfies, in particular, the Siegel normality condition
([BBH 88]), which was involved by him for yielding the
families of algebraically independent numbers.

Briefly about the further contents of the paper. In
section 1 the problem of estimating the degree of an an-
nihilating matrix degy (B) (see Lemma. 1) is reduced to
the same problem in one-dimensional case dim(W) = 1
involving the construction of the exterior k-th power of
system (1). In section 2 a bound on degy (B) is ascer-
tained for one-dimensional case based on the bounds
for the factors of a linear ordinary differential operator
achieved in sections 1, 2 ([Gr 90]). In the last section 3
areduction of recognizing irreducibility of system (1) to
solving an appropriate system of polynomial equations
of a special form, regarded in section 3 ([Gr 90]) by de-
signing an algorithm for factoring a linear differential
operator is made.

1 Reduction of estimating the
degree of annihilating matrix
to one-dimensional case

We describe the construction of p-th exterior power
AP (A) of system (1), 1 < p < n, namely a system



of linear differential equations of the first order, with
the space of solutions being isomorphic to AP(V). Sys-
tem AP(A) has a size (), the vector of unknowns
Z = ({e1}i=qis,..., ,-p))T where zy can be written in a
form zp =y, A Ay, 1 <4 < ... <dp < n(recall
that Y = (y1, ..., ya)T is the vector of unknowns of sys-
tem (1)). Denote by A® i-th row of the matrix A. Cal-
culate the derivative 27 = ¥} Ayi, A. . AYi, +¥i, AYl,A
Ayi, + ... Fu, A /\y§p = (AGDY) Ay, A
AYi, + Ui, A(ACDY )AL Ays, +. .+ AL A(AUDY)
7 o1 727. Here in the last equality the usual rule of
signs alternating by permutation of multipliers in the
exterior product is applied. Then we set a matrix of
the system AP(A) to be equal to {(ar )14

One can show that the space of solutions of the sys-
tem A”(A) coincides with AP(V). Indeed, it suffices to
check up that any vector from AP(V') satisfies the sys-
tem AP(A), since dim AP(V) = (") Let ug,...,up €
V and consider n x p matrix U whose columns are
u1,...,Up, denote its rows by uD . u(™). Then the
coordinate of the vector uy A ... A u,, € N'(V), cor-
responding to 2; equals to det(u(*v), ...,u(‘v)). Tak-
ing into account an equality (det(u(1),... ul»)y =
det((u(il))”u(iﬁ)’ , u('p)) + det(u(’l) (u(”))’
ula)) 4. det(ul) | (ul))) = det(ACDU, u(‘ﬂ)

oy ulie)ypdet(uliv), A(”)U , ulie)) 4. +det(u(“)

, AU»)U), we deduce the required statement. Ob-

serve that the matrix (a; sy satisfies (d, do, M +log, p)-
bound.

Lemma 2 Let W C V be an invariant subspace for
system (1). Then AP(W) C AP(V) is also an invariant
subspace for the system AP(A).

ProoF: One can assume w. |. o. g. (permuting col-
umns and rows in the initial matrix A if necessary) that
the columns Bj4i,..., B, of the annihilating matrix
B of the subspace W constitute a basis over the field
F(X) of the space of all its columns. Then for the rows
QW) k41 < j < n of the matrix Q (see the proof of
Lemma 1) hold QW) = Y i<igh P32 for the suitable
pji € F(X). Therefore the rows of (;) x (’;) matrix
AP(82), whose columns being the exterior products of
all possible subsets of p columns among the columns
of the matrix Q, are linear over F(X) combinations of
the rows of the matrix AP(Q2) which correspond to the
coordinates z; for all I = (41,...,4,) where 1 < 41 <
... < ip < k. Henceforth, there exists an annihilating
((3) - (:)) x (7) matrix B with the entries from F(X)
with the rank (7) — (%) such that BAP(Q) = 0, i. e.
BAN(W) = 0. ThlS and Lemma 1 entail that AP(W)
is invariant, q. e. d.

REMARK: In the case p =k ((}) — 1) x (})) ma-
trix B has the rank (}) ~ 1, therefore for each pair
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1 < i< k,k+1 < j < n one can find a lin-
ear over f(X) combination of the rows of B which
equals to a vector with exactly two nonlinear coordi-
nates, corresponding to the multiindices (1, ..., k) and
(1,...,5~1,2+1,...,k, ). Then the quotient of these
two coordinates equals to p; ;. Henceforth, for estimat-
ing degx(pj,i) it suffices to estimate degy(B). On the
other hand as an annihilating matrix for W one can
take (n — k) x n-matrix ((pji)k+1<j<n, 1<i<k ) where
E is the unit (n — k) x (n — k) matrix. Thus, we have
reduced the problem of estimating the degree (with re-
spect to X) of an annihilating matrix to the problem
of estimating degx (B) for annihilating matrix of one-
dimensional subspace A*(W).

2 A bound on the degree of an
annihilating matrix in one-di-
mensional case

Assume in this section that dim W 1 and 0 #
(wy,...,w,)T € W. For any ¢ € G holds g x w =
cqw for an appropriate ¢, € F, therefore w)/w; €
F(X),1 < i < n (see [Si81], also [Gr 90]). On the
other hand for each 1 < i < n one can easily yield
a linear ordinary differential operator R; € F[X, 4 ix
such that R;w; = 0 (cf. [Gr 90]). Indeed, it is posmble
to express successively the derivatives

w) = Ay, vl = (ADYw+ ADAw, . ...
So the s-th derivative
() — Ay s >1
for the suitable vectors A(*) € (F(X))* and A(®)

satisfies (sd, sdo, (M +edo+log n)(sdd; )9(1))-bound (cf.
[CG 83]). Henceforth, there exists a vector

0#r=(rg,...,

for which 7, .,<, reA®) = 0 and r satisfies
(dn?,don?, (M + edp) (ddin)®V))-bound. Then we set

R,~:Zr

0<s<n

rn) € (FIX])**,

dS
TdXe

Whence in force of Lemma 6 ([Gr 90]) for the ra-
tional function w!)/w; the following bounds are ful-

filled: deg x (w}/wi), 3, e p exp(I(resy(w}/wi))) < No £
exp((M + edo){(dn)®"*d?)OM)), where I(res,(w}/w;))
denotes the bit-size (see beginning of the introduction)



of the residue in the point ¥ € F of the rational func-
tion w}/wy, herewith the bit-size is considered in a rel-
evant field ', produced in Lemma 6 ([Gr 90)), being a
finite extension of F, such that res. (w!/w;) € F for all
1 < i < n, vy € F; finally, the summation ranges over
all the points v € F'.

Moreover, for a decomposition in a sum of partial
fractions

wi/wi =g+ > mi (X —Bi;)7 + S,
J

where ¢; € F[{X] and in S; occur only the pow-
ers (X — f)7* with k > 2, hold the bounds deg(g;),
Y exp(l(mi ;) < No (see [Si 81], [Gr 90]). Lemma 1
implies that w;, /w;, € F(X) for all 1 < ¢, i3 < n.
Therefore wi, /wi, = exp [(3_;, mi, 5, (X — B, 5,)7
—Ej,mi;,jg(X - ﬁiz,ja)_l) = Hj1(X - :Bfl,jx)m"’j‘
njo(x - ﬁi:.h)—m'?'h'

If Bi,,j, = Pi,,j, for some j;, j» then the number
mi, j, —Mi, j, is an integer. Henceforth, degy (w;, /w;,)
< 2Ng. Thus, the following Lemma is proved.

Lemma 3 Let W C V be one-dimensional invariant
subspace for system (1). There exists an annihilating
(n = 1) x n matriz B of the rank n — 1 over the field
F(X) such that

degx (B) < exp((M + edo)((dn)?"’ d})O)).

Corollary Let W C V be k-dimensional invariant
subspace for system (1). There exists an annihilating
(n — k) x n matrix B of the rank n — k over F(X) such
that degy (B) < exp((M + edg)((d27)42°" d2")0(D)).

The corollary follows from Lemmas 2, 3 with the help
of the remark after Lemma 2, taking into account the
inequality (}) < 2”.

3 Recognizing irreducibility of
a linear system

Fix a certain 1 € k¥ < n and find out, whether there
exists an invariant subspace W C V of the dimension
k. One can deem w. |. 0. g. that a corresponding anni-
hilating matrix B (after an appropriate columns per-
mutating) has a trapezium form

by 0

where b;,b; ; € F{X] and degy(b;), degx(i;) < N,
where N satisfies a bound of the same type as in the
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corollary to Lemma 3. Then in n x k matrix Q = (w; ;)
of the rank k its k x k submatrix, consisting of the last
k rows, is nonsingular (see the introduction). Thus, the
existence of the subspace W C V is equivalent to the
existence of an annihilating matrix B of the form (3).
Later on we reformulate the latter condition in terms of
solvability of a suitable system of polynomial equations
and inequalities.

We assume for conveniency of notations that
degx(bi) = N, degx(bij) < 2N, 1 < i < n—k,
n—k+ 1< j < n and that the leading coeflicients
lex(bi) =1, 1 < i < n— k multiplying if necessary the
rows of the matrix B by appropriate monomials in the
variable X. Write down b; = X% + E(KKNbS’)X’,
bij = YogscanbdX, 1 < i<n—k<j<n
where b,(-"), b,(:’j) are some indeterminates. Introduce one
more indeterminate ¢ and impose on it the require-
ment a(c) # 0 (see (1)). Then (considering ¢ as an
element of the field F', we’ll do it sometimes and some-
times we consider ¢ as an indeterminate, 1t would not
confuse us) the point ¢ is regular for system (1), and
one write a regular solution y = 3,5, ¥®(X — ¢)f,
where y(*) € F™ and the vector y(®) # 0 can be chosen

in an arbitrary way ([CL 55]). Represent the matrix
A =350 A0(X — c)* where the entries of A(¥) belong

to the field F(c) and satisfy (di, doid>") (M +edo + d+
n)idlo(l))—bounds. Furthermore

y(') - i‘l E A(]’)y(“]'—l) - P(')y(o)
0<i<i-1

where P(®) is a matrix over F(c) with the entries sat-
isfying (di, doid"), (M +edo+d+n)(id; )°())-bounds,
this can easily be proved by induction on .

Introduce, lastly more kn indeterminates yg?l),...,
(0) (0) (0)
Vi oo Ypir o1 Ypon
tors ygo)’ RN ygco)

vectors y(-o) the algorithm yields n first terms of ex-

for the coordinates of the vec-

respectively, and for each of these

panding in series of a solution z; = 3 ;5q yj')(X —c)
of system (1). Impose the condition of linear indepen-
dency over F of the vectors v1, ..., yx. This is equiva-
lent (taking into account that c is a regular point for
system (1), see [CL 55]) to the condition that n x k ma-

trix, constituted from the vectors ygo), .. .,y}co), has the
rank k (the algorithm tests the latter condition looking
over all £ x k submatrices of this matrix). Let y1,..., 5
span over F' a subspace W.

Finally, we have to impose the condition BW = 0.
For the time being fix some row B, 1 < m <
n — k of the matrix B. The algorithm produces a lin-
ear ordinary differential operator 0 # Q. € F[bgg),



N-—
B 4 M) Q)

mn-k+1 ° m,n-k+1’ """ mRs -y
b(2N)][X, dx] of the order at most n, such that for
any solution y = (y1,...,yn)7 of system (1) holds
Qm(B(™)y) = 0. Indeed, expressing successively the
derivatives (B(™)y) = (B(m))’y+B("‘)Ay (Bm)y)' =
((BMm)Y +B™ Ay y +((BM)Y 4+ B(M) 4) Ay, ... we con-
clude that s-th derivative (Bm)y)(®) = t(¢)y, s > 1 for a
suitable vector t(*) € (F[b{D, ..., b\ =1, p(®

' Ymon-k+10 0
B 80 BV satisying the fol

lowing bounds:

degx (t(*)) < N + ds,

degyo) ,@m () <1,

degy, 5. (1)) < dosdi®™),

I(#*)) < (M + edo + log N + d + n)(dys)°()
which one can ascertain by induction on s. There ex-
ist polynomials q( ) . qg,?) € F[bg,?), , bS,f:"‘),

0 N

SR bf,f,n)_,m, oy B, BERNIX) such
that Eo<s<n g = 0, then set an operator Qm =

Y o<scn q(’) 4 and applying the well known bounds
on the size of the determinant (see e. g. {CG 83]) we
get the following bounds:

degx (Qm) < (N + dn)n, degy o

degs,,s.(Qm) < don?d{",
I(@m) < (M + edo + log N + d)(nd; ).
Impose also the requirement that the point c is a regu-
lar for the operators Q;, ..., @n—%, namely write down
the inequalities Icagx(Qm)(c) Z0,1<m<n—k.
Thereupon the algorithm yields the first n terms of
the expansions of each of regular functions

bﬁf",’,)(Qm) <n,

,,,,,

By =S e(X — ) 1<m<n—k1<j<k,

i>0

where f;m) € F[bgr?), , oY bfg)n k411 0
2N

LI R b&%ﬁ’l[yg‘?, <o Y(e) for

t < n satisfy the following bounds:
,,,,,, um(sﬁ"?’) <1,
degy(o) _ (o) f_g,)) <
degc(s‘"”) < N +dn,
degs, 5. (67) < dond{(),
UETN < (M + edo + d + N)(dyn) (OO
takmg into account obtained beforehand bounds for

the entries of the matrices P(f). Observe that if the
equalities £7) = 0 are fulfilled for all 0 < i < n then

B("‘)yj = 0, since the point ¢ is regular for the operator
Qm (see [CL 55] and also the corollary to Lemma 7 in
[Gr 90]). Thus the following Lemma is proved similar
to Lemma 8 in [Gr 90]).

Lemma 4 System (1) has an invariant k-dimensional
subspace W C V of solutions iff there exists an an-
nihilating matriz B of the form (3) (after a suitable
columns permulation) over the ring F[X] of the de-
gree al most 2N, besides that there exisis n X k matriz
(ygo),...,y( NT over the field F' with the rank k and
lastly there ezists a point ¢ € F, such that a(c) # 0,
le ¢ (Qm)(c) # 0,1 <m < n—k for which the follow-

ing equalities are valid:

€M =01<m<n—k1<j<k0<i<n (4)

To the system (4) we apply the same procedure as
in [Gr 90] was applied to system 6, taking into account
that system (4) is linear with respect to the family of

all the indeterminates b%), bm ; and considering the in-

determinates y( ) , ¢ as the parameters. The procedure
from {Gr 90] a.llows to solve system (4) in a paramet-
rical form, and after that to find out, whether among
its solutions there is one satisfying the inequalities con-
tained in the formulation of Lemma 4. One can com-
plete the proof of the Theorem (see the introduction)
by the same complexity analysis of the algorithm as in

[Gr 90].
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