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Abstract 

Let a system of linear ordinary differential equations 
of the first order Y’ = AY be given, where A is n x 
n matrix over a field F(X), assume that the degree 
degx(A) < d and the size of any coefficient occuring 
in A is at most M. The system Y’ = AY is called 
reducible if it is equivalent (over the field F(X)) to a 
system Y{ = AIYl with a matrix A1 of the form 

Al = ALI 0 
A2,1 A2,2 

An algorithm is described for testing irreducibility of 
the system with the running time exp(M(d2”)d2”). 

Introduction 

Let a system of linear ordinary differential equations of 
the first order be given 

Y’=AY (1) 

where A = (ai,j/a) is a n x n matrix over a field F(X) 
and the polynomials ai,j, a E F[X], here a field F = 
Q@l, + (. , S,)[n] where the elements Sr, . . . , S, are alge- 
braically independent over Q, the element 7~ is algebraic 
over the field Q(61,. , +, be) and ~(2) E Q[[br, . . . , 6e][~] 
is its minimal polynomial, lastly Y = (~1, . . , v,)~ is 
the vector of unknowns. For a rational number (r//3 E 
Q, where Q, p are reciprocately prime, define its bit-size 
as /(a/p) = [log,( ]o/?] + 2)]. Define bit-size I(cp) as the 
maximal of bit-sizes of all rational coefficients occur- 
ring in cp (cf. [CG 831, [Gr 861). Assume that the de- 
grees degz(cp> < 4, deg J,,...,&) < do and W 5 My 
then we say that ‘p satisfies (dl, do, M)-bound. 
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We suppose furthermore that the elements ai,j, a 
satisfy (d, do, M)-bound. 

An algebraic closure F is regarded in sequel as a field 
of constants. One can deem that the field F is embed- 
ded in the field C. Denote by G = Gal(A/F(X)) the dif- 
ferential Galois group of system (1) (see e. g. [Ka 571). 
Let V be a space of all solutions of system (1). It is well 
known that V is n-dimensional space over the field F; 
moreover if the vectors or, . . . , v, E V are linearly in- 
dependent over p then ~1, . + . , v, are also linearly inde- 
pendent over an arbitrary field ([CL 551). The group G 
acts on the vectors from V componentwise. A subspace 
(here and further all the subspaces are considered over 
the field F) W C V is called invariant if W is invariant 
under the action of G. We write the vectors from V a.~ 
columns. 

Lemma 1 A subspace W c V of dimension k is an- 
variant iff there exists (n - k) x n matrix B of the rank 

(n - k> with the entries’from the field p(X) such that 
BW = 0 (we call B an annihilating matrix for W). 

PROOF: Assume the existence of the required ma- 
trix B. Consider a subspace W’ = {w E VlBw = 0). 
Then W’ c W and W’ is invariant, on the other hand 
dim(W’) < k since rk(B) = n - k, therefore W’ = W 
and W is invariant. 

Conversely, suppose that W is invariant. Following 
Proposition 1.5 ([BBH 881) consider n x k matrix R 
with the columns constituting a certain basis of the 
space W. Pick out some nonsingular k x k submatrix w 
of the matrix R. For every element g E G there exists 
nonsingular k x k matrix C, with the entries from F 
such that the action of g on Q coincides with the right 
multiplying on C,, i. e. g x 0 = flC,, henceforth g x w = 
WC,. Therefore 

g x (stw-1) = (g x Q)(g x w-l) 

= !xgcg-lw-l 

= -1 
i-h 7 



thus all the entries of the matrix fizw-l belong to 
F(X). Henceforth, there exists (n-k) xn matrix B over 
the field F(X) of the rank (n- k), such that BRw-l = 
0, q. e. d. 

System (1) is said to be equivalent to a system Yr’ = 
AIYl if there exists a nonsingular n x n matrix B1 over 
F(X) such that. for the space VI of the solutions to 
the system Yr’ = AlYl holds VI = BlV; then AI = 
B{ B,’ + BIAB;’ . One can show that an invariant k- 
dimensional subspace W c V exists iff there is a system 
Y[ = AlYl equivalent to (1) such that the matrix A1 
has a block-lowertriangular form 

Al = 41 0 
41 A2,2 > 

where A2,2 is k x k matrix. Indeed, if Al has a 
form (2) then we can consider k-dimensional space I@, 
of the solutions of the system Yi’ = A2,aYI. Then the 
space Wr consisting of all the vectors with n coordi- 
nates, obtained from the vectors of the space l@l by 
padding zeroes as the first (n - k) coordinates, is a 
subspace Wi C VI. Furthermore, for (n - k) x n ma- 
trix Bo = (EO), where E is unit (n - k) x (n - k) 
matrix, holds Bo WI = 0, whence Lemma 1 implies 
that Wr is an invariant k-dimensional subspace. Then 
W = Bll Wi C V is an invariant k-dimensional sub- 
space. 

Conversely, let W c V be an invariant k-dimensional 
subspace and B be an annihilating (n - k) x n matrix. 
Consider an arbitrary nonsingular n x n matrix B1 of 

the form B1 = 
B 

( > J32 
with the entries from F(X). 

Then the space BlW c BIV = VI is contained in the 
subspace of the vectors with vanishing first (n-k) coor- 
dinates. Since the derivative (BIW)’ is also contained 
in the latter subspace, the matrix A1 has the form (2) 
that was to be proved. System (I) is called irreducible 
iff V has no proper invariant subspace. 

The main statement of the paper is the following 

Theorem There is an algorithm recognizing irre- 
ducibility of a system (1) and constructing an anni- 
hilating matrix B, provided (1) is reducible, such that 

degx(B) L: N 5 exp((M + doe)(d2”)0(d2”)dp(2”)). 

Moreover, the algorithm produces a field 

being a finite extension of F, by means of specifying 
an irreducible polynomial (pi E Q[6r,. . . 1 6e][2], such 
that every entry of B belongs to El(X). Besides, ‘p1 
and B satisfy (d~(ZVdn)~(~“), de((Ndn)“2cll)o(1), (Mf 

d~e)((N~~n)“‘d~)“(‘)) - b ounds. Furthermore, the run- 
ning time of the algorithm does not exceed a suitable 
polynomial in M, ((N&~)“~d~da)~~+~. 

REMARK: 

1. By virtue of the shown beforehand one can yield a 
system Yf = AlYl equivalent to (1) whose matrix 
Al has the form (2) with the bounds on Al and 
time-bounds as in the theorem. 

2. The theorem generalizes the result [Gr 901 where 
an algorithm for factoring a linear differential op- 
erator is designed, for the case of a system of lin- 
ear differential equations of the first order. Similar 
to [Gr 901 one can produce a system Yd = AaYo 
equivalent to (1) having a block-lowertriangular 
form 

A0 = 
A2,2 0 

' 

. . . A s,s 

where s is the maximal possible, i. e. for each 
1 < i 5 s the system Y( = Ai,iY; of the 
size ki is irreducible. Observe that the set of in- 
tegers { k1, . . . , k3} is uniquely determined, since 
these numbers are the dimensions of the factors of 
Jordan-Golder tower of G-module V ([La 651). 

Notice that if system (I) is irreducible then it sat- 
isfies, in particular, the Siegel normality condition 
([BBH SS]), h h w ic was involved by him for yielding the 
families of algebraically independent numbers. 

Briefly about the further contents of the paper. In 
section 1 the problem of estimating the degree of an an- 
nihilating matrix degx (B) (see Lemma 1) is reduced to 
the same problem in one-dimensional case dim(W) = 1 
involving the construction of the exterior k-th power of 
system (1). In section 2 a bound on degx(B) is ascer- 
tained for one-dimensional case based on the bounds 
for the factors of a linear ordinary differential operator 
achieved in sections 1, 2 ([Gr 901). In the last section 3 
a reduction of recognizing irreducibility of system (1) to 
solving an appropriate system of polynomial equations 
of a special form, regarded in section 3 ([Gr 901) by de- 
signing an algorithm for factoring a linear differential 
operator is made. 

1 Reduction of estimating the 
degree of annihilating matrix 
to one-dimensional case 

We describe the construction of p-th exterior power 
AP(A) of system (l), 1 5 p 5 n, namely a system 
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of linear differential equations of the first order, with 
the space of solutions being isomorphic to AP( V). Sys- 
tem AP(A) has a size (z), the vector of unknowns 

2 = ({~I)I=(il,...,i,))T where ZI can be written in a 
form z1.z yil A. ..A 5/i,, 1 < ir < . . . < i, 5 n (recall 
that Y = (yi, . . , Y,)~ is the vector of unknowns of sys- 
tem (1)). Denote by A(‘) i-th row of the matrix A. Cal- 
culate the derivative z; = yl, Ayi,A. . .Ayi,+yi, Ay&A.. . 

Ayi, + . . . +yil A . . Ayip = (A(il)Y) A pi2 A . . . 

A yip + yil A (&)Y) A. . Ay<, + . . . +yil A. . . A(~(‘&‘) 

= CJ CI~I,JZJ. Here in the last equality the usual rule of 
signs alternating by permutation of multipliers in the 
exterior product is applied. Then we set a matrix of 
the system AP(A) to be equal to (~~I,J)I,J. 

One can show that the space of solutions of the sys- 
tem AP(A) coincides with AP(V). Indeed, it suffices to 
check up that any vector from A”(V) satisfies the sys- 
tem AP(A), since dim A”(V) = (i) . Let ui , . . . , up E 
V and consider n x p matrix U whose columns are 
Ul,. * .,Up, denote its rows by u(l), . . .,u(“). Then the 
coordinate of the vector ui A . A up E Ap(V), cor- 
responding to ZI equals to det(u(‘l), . . . , u(~P)). Tak- 
ing into account an equality (det(u(“lj, . . , ucip)))’ = 
det((util))‘, u(~Q), . . . , 
&)) + . . 

dip)) + det(u(“l), (u(~s))‘, . . , 
.+det(u(“l), . , (u(~P))‘) = det(A(‘llU, ~(~21, 

. . . , u(‘P))+det(v(“l), A(‘z)U, . . . , z&~P))+. . .+det(u(‘l), 

- . . , A(ip)U), we deduce the required statement. Ob- 
serve that the matrix (a~,~) satisfies (d, do, Mtlog, p)- 
bound, 

Lemma 2 Let W c V be an invariant subspace for 
system (1). Then A”(W) c AP(V) is also an invariant 

subspace for the system AP(A). 

PROOF: One can assume w. 1.0. g. (permuting col- 
umns and rows in the initial matrix A if necessary) that 
the columns Bk+l, . . . , B,, of the annihilating matrix 
B of the subspa.ce W constitute a basis over the field 
E(X) of the space of all its columns. Then for the rows 
Q(j), k: + 1 5 j 5 n of the matrix R (see the proof of 
Lemma 1) hold 52(j) = Cl<i<k ~j,ifi(~) for the suitable 

pj,i E P(X). Therefore the TOWS of (a) x (i) matrix 

AP(s2), whose columns being the exterior products of 
all possible subsets of p columns among the columns 
of the matrix R, are linear over f(X) combinations of 
the rows of the matrix AP(s2) which correspond to the 
coordinates ZI for all I = (il, . . . , ip) where 1 5 ii < 
. . . < i, 5 k. Henceforth, there exists an annihilating 
((:) - (E)) x (i) matrix B with the entries from F(X) 

with the rank (:) - (i) such that BAp(R) = 0, i. e. 

B/jp(W) = 0. This and Lemma 1 entail that AP(W) 
is invariant, q. e. d. 

REMARK: In the case p = /z ((;) - 1) x (1)) ma- 
trix B has the rank (;) - 1, therefore for each pair 

1 < i i-k, k + 1 5 j 5 n one can find a iin- 
ear over F(X) combination of the rows of B which 
equals to a vector with exactly two nonlinear coordi- 
nates, corresponding to the multiindices (1,. . . , k) and 

Cl,..., i- 1,is 1,. . . , k, j). Then the quotient of these 
two coordinates equals to pj,i. Henceforth, for estimat- 
ing degx(pj,i) it suffices to estimate degx(B). On the 
other hand as an annihilating matrix for W one can 
take (n - k) x n-matrix ((Pj,i)k+l<iSn,l~iSkE) where 

E is the unit (r~ - k) x (n - k) matrix. Thus, we have 
reduced the problem of estimating the degree (with re- 
spect to X) of an annihilating matrix to the problem 
of estimating degx(B) f or annihilating matrix of one- 
dimensional subspace AL (IV). 

2 A bound on the degree of an 
annihilating matrix in one-di- 
mensional case 

Assume in this section that dim W = 1 and 0 # 

(Wl, . . . , wy E W. For any g E G holds g x w = 
COW for an appropriate cg E F, therefore w:/wi E 
F(X), 1 < i < n (see [Si 811, also [Gr 901). On the 
other hand for each 1 5 i 5 n one can easily yield 
a linear ordinary differential operator Rj E F[X, &], 
such that Riwi = 0 (cf. [Gr 901). Indeed, it is possible 
to express successively the derivatives 

w: = A(‘& w:, = (A(i))‘w + ,di)Aw, . . . . 

So the s-th derivative 

WC”) = dtJ)w, s 2 1 t 

for the suitable vectors A(“) E (F(X))n and A(“) 
satisfies (sd, sdo, (M+e&+log n)(sddl)o(l))-bound (cf. 
[CG 831). Henceforth, there exists a vector 

0 # f = (T-0,. . . , r,) E (F[x])“+‘, 

for which Co<J,n r,d(“) = 0 and T satisfies 

(dn2, dcn2, (A4 + iddo) (ddin)“(l))-bound. Then we set 

Ri = C r,L. 
O<s<n dX* - - 

Whence in force of Lemma 6 ([Gr 901) for the ra- 
tional function w$/wi the following bounds are ful- 
filled: degx(w:/wi), &F exp(I(res7(w~/wi))) 5 No 5 

exp((M + edo)((dn)dn’d~)o’l)), where I(res-,(wj/wi)) 
denotes the bit-size (see beginning of the introduction) 
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of the residue in the point y E P of the rational func- 
tion tui/wi, herewith the bit-size is considered in a rel- 
evant field p, produced in Lemma 6 ([Gr 90]), being a 
finite extension of F, such that res,(w:/w;) E F for all 
1 < i 5 n, y E F; finally, the summation ranges over 
all the points 7 E F. 

Moreover, for a decomposition in a sum of partial 
fractions 

Wl/Wi = qi + c rni,j(X - /f3&-’ + si, 

where qi E FIX] and in Si occur only the pow- 
ers (X - /?)-K with K > 2, hold the bounds deg(qi), 
Cj exp(l(mi,j)) 5 No (see [Si $11, [Gr 901). Lemma 1 
implies that wi, /wdl E P(X) for all 1 5 il, iz 5 12. 
Therefore wil/wal = expJ(Cj, mi,,j,(X - /?il,j,)-l 

- Cj, mi2,i2 (X - Pi,,j,)-‘) = nj,(x - PiI,j,)milsil 

nj3(X - ~~~,j~)-m13’J~. 

If /3i,,j, = /3in,ja for some ji, jz then the number 

mi~,i~ -mi2,j2 is an integer. Henceforth, degx(wi,/wi,) 
5 2Nc. Thus, the following Lemma is proved. 

Lemma 3 Let W c V be one-dimensional invariant 
subspace for system (1). There exists an annihilating 

(n - 1) x n matrix B of the rank n - 1 over the field 
p(X) such that 

degx(B) 5 exp((A4 + edo)((dn)d”z,~)o(l)). 

Corollary Let W c V be t-dimensional invariant 
subspace for system (1). There exists an annihilating 
(n - k) x n matrix B of the rank n - k over F(X) such 

that degx(B) _< exp((M + ed~)((d2”)dz”“df”)o(1)). 

The corollary follows from Lemmas 2, 3 with the help 
of the remark after Lemma 2, taking into account the 
inequality (;) < 2”. 

3 Recognizing irreducibility of 
a linear system 

Fix a certain 1 5 k < n and find out, whether there 
exists an invariant subspace W c V of the dimension 
Ic. One can deem w. 1. o. g. that a corresponding anni- 
hilating matrix B (after an appropriate columns per- 
mutating) has a trapezium form 

’ (bi,j) 
0 b-k I 

(3) 

where bi,bi,j E F’[X] and degx(bi), degx(bi,j) 5 N, 
where N satisfies a bound of the same type as in the 

corollary to Lemma 3. Then in n x k matrix 52 = (wi,j) 
of the rank k its k x k submatrix, consisting of the last 
k rows, is nonsingular (see the introduction). Thus, the 
existence of the subspace W c V is equivalent to the 
existence of an annihilating matrix B of the form (3). 
Later on we reformulate the latter condition in terms of 
solvability of a suitable system of polynomial equations 
and inequalities. 

We assume for conveniency of notations that 
degx(bi) = N, degx(bi,j) 5 2N, 1 5 i < n - k, 
n - k + 1 5 j 5 R and that the leading coefficients 
Icx (bi) = 1, 1 5 i 5 n - k multiplying if necessary the 
rows of the matrix B by appropriate monomials in the 
variable X. Write down b; = XN + CO<J<N b$“)X”, 

bi,j = C ,,<-<PNb$~~XS, 1 5 i < n - k < j 5 n 

where bi”‘, ;;I!“i’ are some indeterminates. Introduce one 
more indeterminate c and impose on it the require- 
ment a(c) # 0 ( see (1)). Then (considering c as an 
element of the field F, we’ll do it sometimes and some- 
times we consider c as an indeterminate, it would not 
confuse us) the point c is regular for system (l), and 
one write a regular solution y = &o y(‘)(X - c)‘, 

where y(“) E Fn and the vector y(O) # 0 can be chosen 
in an arbitrary way ([CL 551). Represent the matrix 
A = ci>o A(i)(X - c)i where the entries of Ati) belong 

to the field F(c) and satisfy (di, dcid~(‘)(M + ede + d+ 

n)idp(‘))-bounds. Furthermore 

yw = i-1 c A(dy(‘-i-l) = p(i)y(o) 

O<j<i-1 

where Pci) is a matrix over F(c) with the entries sat- 

isfying (di, d,id, O(l), (M+edc+d+n)(idl)O(l))-bounds, 
this can easily be proved by induction on i. 

Introduce, lastly more kn indeterminates y{l, . ., 

Y!O) Yg YP’ ,nr .f., , 7 .-a, ,n for the coordinates of the vec- 

tors yy) 

$!“j ’ 
> YP’ respectively, and for each of these 

vectors J the algorithm yields n first terms of ex- 

panding in series of a solution zj = J7i,o yi”(X - c)~ 
of system (1). Impose the condition of &rear indepen- 
dency over E of the vectors ~1,. . , yk. This is equiva- 
lent (taking into account that c is a regular point for 
system (l), see [CL 551) to the condition that n x k ma- 

trix, constituted from the vectors yio), . . . , yp’, has the 
rank k (the algorithm tests the latter condition looking 
over all k x k submatrices of this matrix). Let ~1, . . . , & 
span over F a subspace W. 

Finally, we have to impose the condition BW = 0. 
For the time being fix some row Bcm), 1 < m 5 
n - k of the matrix B. The algorithm produces a lin- 
ear ordinary differential operator 0 # Q,,, E F[b?), 
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..., 
&J-l), ($0) 

m,n-k-+1, . . ’ 
b(2’v) 

m,n-k+ly * * * 1 
b(O) 

m,n, “‘, 

&$‘][X, $1 of the order at most n, such that for 
any solution y = (~1,. . . , Y,)~ of system (1) holds 
Q,,,(B(“)y) = 0. Indeed, expressing successively the 
derivatives (B(“)y)’ = (B(“))‘y+B(“‘)Ay, (B(“‘)y)” = 
((B(m))‘+B(m)A)‘y +((B(m))‘+B(m)A)Ay, . we con- 
clude that s-th derivative (B(m)y)(S) = tcS)y, s 2 1 for a 

suitable vector t(“) E (F[bg), . ., bc-‘), 62),,-,+,, . . ., 
b( 2N) 

m,n-k+l’ . . *I 
b(O) 

m.n,. . ., b::)](X))” satisfying the fol- 
lowing bounds: 

degx(t(“)) < N + ds, 

deg,c_o,,,..,b~~~(t(J)) i 1, 

deg6, ,..., e 6 (i”‘) < dosd$“(‘)), 

l(t(‘)) 5 (M -I- edo f log N + d + n)(cll~)~(‘) 
which one can ascertain by induction on s. There ex- 

ist polynomials &I, . . . , &’ E F[b:), . . ., bc-‘I, 
b(O) b@N) b(O) 
m,n-k+l> . . . ! m,n-k+lr . . . j m,n, . . . ) bf?$‘?][X] such 

that CO<~<~ qm (‘)tfs) = 0, then set an operator Qm = -- 

c O<s<nqk)& and applying the well known bounds 
on &Gsize of the determinant (see e. g. [CG 831) we 
get the following bounds: 

degx(Qm) I (N + dn)njdegb~),...,b,,, w)(Qm) < n, 

deg6, ,._., 6,(&m) I don2@“, 
1(&m) I (M + edo + log N -I- d)(ndl) )(l), 

Impose also the requirement that the point c is a regu- 
lar for the operators &I,. . . ,Q,,-k, namely write down 
the inequalities lca.+(Qm)(c) # 0, 1 5 m 5 n - k. 

Thereupon the algorithm yields the first n terms of 
the expansions of each of regular functions 

B(m)y~=CS3!n”)(X-C)‘,l<min-~,l~j~k, 
i>O 

where Qy’ E F[b$?), . , b?-‘), bEj,-,+,, . . . , 
b(2“? 

m,n-k+l, . . . y 
b(O) 

m,n, . . . . b$,$)][yjp,), . . . , yang] for 
i < R satisfy the following bounds: 

deg,C’,,.,,*f~)(~~~)) 5 1, 

de4jpj,. .,yjp! (<j,i ’ ‘“‘)<l, 

deg e ($“) 5 N + dn, 3,’ 

deg61 ,...,&j~‘) I d0ndY 

I(@)) < (M + edo + d + N)(dl?p(l) 
takini’:nto account obtained beforehand bounds for 
the entries of the matrices Pci). Observe that if the 
equalities <cm) = 0 are fulfilled for all 0 5 i < n then 

Btrn)yj = O:‘iince the point c is regular for the operator 
Qm (see [CL 551 and also the corollary to Lemma 7 in 
[Gr 90]>. Thus th e o f 11 owing Lemma is proved similar 
to Lemma 8 in [Gr 901). 

Lemma 4 System (1) h as an invariant k-dimensional 
subspace W c V of solutions i$ there exists an an- 
nihilating matrix B of the form (3) (after a suitable 
columns permutation) over the ring F[X] of the de- 
gree at most 2N, besides that there exists R x k matrix 

(Y$O) , YP))~ over the field F with the rank k and 
last& ‘there exists a point c E F, such that a(c) # 0, 
lc;ik(Q”)(c) # 0, 1 < m < n - k for which the follow- 
ing equalities are valid: 

~~~)=O,l<m~n-k,l~jI:k,O~i<~ (4) 

To the system (4) we apply the same procedure as 
in [Gr 901 was applied to system 6, taking into account 
that system (4) is linear with respect to the family of 

all the indeterminates bg), b$l, and considering the in- 

determinates ~$9’ , , c as the parameters. The procedure 
from [Gr 901 allows to solve system (4) in a paramet- 
rical form, and after that to find out, whether among 
its solutions there is one satisfying the inequalities con- 
tained in the formulation of Lemma 4. One can com- 
plete the proof of the Theorem (see the introduction) 
by the same complexity analysis of the algorithm as in 
[Gr 901. 
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