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ABSTRACT
We study non-holonomic overideals of a left differential ideal
J ⊂ F [∂x, ∂y ] in two variables where F is a differentially
closed field of characteristic zero. One can treat the problem
of finding non-holonomic overideals as a generalization of the
problem of factoring a linear partial differential operator.
The main result states that a principal ideal J = 〈P 〉 gen-
erated by an operator P with a separable symbol symb(P )
has a finite number of maximal non-holonomic overideals;
the symbol is an algebraic polynomial in two variables. This
statement is extended to non-holonomic ideals J with a sep-
arable symbol. As an application we show that in case of a
second-order operator P the ideal 〈P 〉 has an infinite num-
ber of maximal non-holonomic overideals iff P is essentially
ordinary. In case of a third-order operator P we give suf-
ficient conditions on 〈P 〉 in order to have a finite number
of maximal non-holonomic overideals. In the Appendix we
study the problem of finding non-holonomic overideals of a
principal ideal generated by a second order operator, the lat-
ter being equivalent to the Laplace problem. The possible
application of some of these results for concrete factorization
problems is pointed out.

AMS Subject Classifications: 35A25, 35C05, 35G05

Keywords: differential non-holonomic overideals, Newton
polygon, formal series solutions.

1. FINITENESS OF THE NUMBER OF MAX-
IMAL NON-HOLONOMIC OVER-IDEALS
OF AN IDEAL WITH SEPARABLE SYM-
BOL

Let F be a differentially closed field (or universal differ-
ential field in terms of [8], [9]) with derivatives ∂x and ∂y ;
let P =

∑

i,j
pi,j∂

i
x∂

j
y ∈ F [∂x, ∂y] be a partial differential

operator of order n. Considering e.g. the field of rational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’10, July 20–23, 2010, München.
Copyright 2010 ACM 978-1-59593-904-3/08/07 ...$10.00.

functions Q(x, y) as F is a quite different issue. The symbol
is defined by symb(P ) =

∑

i+j=n
pi,jv

iwj ; it is a homoge-
neous algebraic polynomial of degree n in two variables. The
degree of its Hilbert-Kolchin polynomial ez+ e0 is called its
differential type; its leading coefficient is called the typical
differential dimension [8]. A left ideal I ⊂ F [∂x, ∂y ] is called
non-holonomic if its differential type equals 1. We study
maximal non-holonomic overideals of a principal ideal 〈P 〉 ⊂
F [∂x, ∂y]. Obviously there is an infinite number of maximal
holonomic overideals of 〈P 〉: for any solution u ∈ F of Pu =
0 we get a holonomic overideal 〈∂x−ux/u, ∂y−uy/u〉 ⊃ 〈P 〉.
We assume w.l.o.g. that symb(P ) is not divisible by ∂y; oth-
erwise one can make a suitable transformation of the type
∂x → ∂x, ∂y → ∂y + b∂x, b ∈ F . In fact choosing b from the
subfield of constants of F is possible.

Clearly, factoring an operator P can be viewed as finding
principal overideals of 〈P 〉; we refer to factoring over a uni-
versal field F as absolute factoring. Overideals of an ideal
in connection with Loewy and primary decompositions were
considered in [6].

Following [4] consider a homogeneous polynomial ideal
symb(I) ⊂ F [v, w] and attach a homogeneous polynomial
g = GCD(symb(I)) to I . Lemma 4.1 [4] states that
deg(g) = e. As above one can assume w.l.o.g. that w does
not divide g.

We recall that the Ore ring R = (F [∂y])
−1 F [∂x, ∂y] (see

[1]) consists of fractions of the form β−1r where β ∈ F [∂y],
r ∈ F [∂x, ∂y ], see [3], [4]. We also recall that one can repre-
sent R = F [∂x, ∂y] (F [∂y])

−1, and two fractions are equal,
β−1r = r1β

−1
1 , iff βr1 = rβ1 [3], [4].

For a non-holonomic ideal I denote ideal I = RI ⊂ R.
Since the ring R is left-euclidean (as well as right-euclidean)
with respect to ∂x over the skew-field (F [∂y])

−1 F [∂y ], we
conclude that the ideal I is principal. Let I = 〈r〉 for suitable
r ∈ F [∂x, ∂y] ⊂ R (cf. [4]). Lemma 4.3 [4] implies that
symb(r) = wmg for a certain integer m ≥ 0 where g is not
divisible by w.

Now we expose a construction introduced in [4]. For a
family of elements f1, . . . , fk ∈ F and rational numbers
si ∈ Q, 1 > s2 > · · · > sk > 0 we consider a D-module
being a vector space over F with a basis {G(s)}s∈Q where
the derivatives of

G(s) = G(s)(f1, . . . , fk; s2, . . . , sk)



are defined as

dxi
G(s) = (dxi

f1)G
(s+1)+(dxi

f2)G
(s+s2)+· · ·+(dxi

fk)G
(s+sk)

for i = 1, 2 using the notations dx1
= ∂x, dx2

= ∂y.
Next we introduce series of the form

∑

0≤i<∞

hiG
(s− i

q
)

(1)

where q is the least common multiple of the denominators
of s2, . . . , sk; one can view (1) as an analogue of Newton-
Puiseux series for non-holonomic D-modules. Theorem 2.5
[4] states that for any linear divisor v+ aw of symb(P ) and
any f1 ∈ F such that (∂x+a∂y)f1 = 0 there exists a solution
of P = 0 of the form (1); conversely, if (1) is a solution of P =
0 then (∂x+ a∂y)f1 = 0 for an appropriate divisor v+ aw of
symb(P ). Furthermore, Proposition 4.4 [4] implies that any
solution of theform (1) of r = 0 such that (∂x+a∂y)f1 = 0 for
suitable a ∈ F (or equivalently ∂yf1 6= 0) is also a solution
of the ideal I ; then the appropriate linear form v + aw is a
divisor of g, and the inverse holds as well.

In [5] we have designed an algorithm for factoring an oper-
ator P in case of symb(P ) is separable. In particular, in this
case there is only a finite number (less than 2n) of different
factorizations of P . Now we show a more general statement
for overideals of 〈P 〉.

Theorem 1.1. Let symb(P ) be separable. Then there ex-
ists at most n = ord(P ) maximal non-holonomic overide-
als of 〈P 〉 ⊂ F [∂x, ∂y]. Moreover, if there exists a non-
holonomic overideal I ⊃ 〈P 〉 with the attached polynomial
g = GCD(symb(I)) then there exists a unique non-holonomic
overideal, maximal among the ones with the attached poly-
nomial equal g.

Proof. Let I be a non-holonomic ideal such that
I ⊃ 〈P 〉. Then βP = r1r for suitable β ∈ F [∂y], r1 ∈
F [∂x, ∂y] and a polynomial g = GCD(symb(I)) attached to
I is a divisor of symb(P ). We claim that for every pair of
non-holonomic ideals I1, I2 ⊃ 〈P 〉 to which a fixed polyno-
mial g is attached, to their sum I1 + I2 also g is attached.
Indeed, any solution of the form (1) of P = 0 such that
(v + aw)|g, is a solution of r = 0 as well due to Lemma 4.2
[4] (cf. Proposition 4.4 [4]) taking into account that symb(P )
is separable, hence it is also a solution of I as it was shown
above and by the same token is a solution of both I1 and I2
(in particular I1 + I2 is also non-holonomic). The claim is
established.

Thus among non-holonomic overideals I ⊃ 〈P 〉 to which
a given polynomial g|symb(P ) is attached, there is a unique
maximal one. Now take two maximal non-holonomic overide-
als I, I ′ ⊃ 〈P 〉 to which polynomials g, g′ are attached,
respectively. Then g, g′ are reciprocately prime. Indeed,
if v + aw divides both g, g′ then arguing as above one can
verify that (1) is a solution of I + I ′, i.e. the latter ideal
is non-holonomic which contradicts to maximality of I, I ′.
Theorem is proved.

Corollary 1.2. Let symb(P ) be separable. Suppose that
there exist maximal non-holonomic overideals I1, . . . , Il ⊃
〈P 〉 such that for the respective attached polynomials g1, . . . , glthe
sum of their degrees deg(g1)+ · · ·+ deg(gl) ≥ n. The 〈P 〉 =
I1 ∩ · · · ∩ Il.

Proof. As it was shown in the proof of Theorem 1.1,
polynomials gj |symb(P ), 1 ≤ j ≤ l are pairwise recipro-
cately prime, hence g1 · · · gl = symb(P ). Moreover it was

established in the proof of Theorem 1.1 that every solution of
P = 0 of the form (1) such that (∂x+a∂y)f1 = 0, is a solution
of a unique Ij for which (u+ aw)|gj ; thus every solution of
P = 0 of the form (1) is also a solution of I1∩· · ·∩Il. There-
fore the typical differential dimension of ideal the I1∩· · ·∩Il
equals n (cf. Lemma 4.1 [4]). On the other hand, any
overideal of a principal ideal 〈P 〉 of the same typical dif-
ferential dimension coincides with 〈P 〉; one can verify it by
comparing their Janet bases [10]. (We briefly recall that op-
erators P1, . . . , Ps ∈ F [∂x, ∂y ] form a Janet basis of the ideal
〈P1, . . . , Ps〉 if for any element P ∈ 〈P1, . . . , Ps〉 its highest
derivative ld(P ) is divided by one of ld(Pi), 1 ≤ i ≤ s.)

Remark 1.3. One can extend Theorem 1.1 to non-holo-
nomic ideals J such that the homogeneous polynomial
GCD(symb(J)) is separable: namely, there exists a finite
number of maximal non-holonomic overideals I ⊃ J.

2. NON-HOLONOMIC OVERIDEALS OF A
SECOND-ORDER LINEAR PARTIAL DIF-
FERENTIAL OPERATOR

In this Section we study the structure of overideals of 〈P 〉
when n = ord(P ) = 2. The case of separable symb(P ) is
covered by Theorem 1.1.

Proposition 2.1. Any principal ideal 〈P 〉 for a second-
order operator P = ∂2

y +p1∂x+p2∂y+p3 with non-separable
symb(P ) has

i) no proper non-holonomic overideals in case p1 6= 0;
ii) an infinite number of maximal non-holonomic overide-

als in case p1 = 0.

Proof. Let symb(P ) be non-separable. Then applying
a transformation of the type ∂x → b1∂x + b2∂y, ∂y →
b3∂x + b4∂y for suitable b1, b2, b3, b4 ∈ F one can assume
w.l.o.g. that P = ∂2

y + p1∂x + p2∂y + p3; it would be inter-
esting to find out when one can carry out these transforma-
tions algorithmically. First let p1 = 0. Then P is essentially
ordinary, i.e. becomes ordinary after a transformation as
above, and for any solution u ∈ F of the equation P = 0
we get a non-holomonic overideal 〈∂y − uy/u〉 ⊃ 〈P 〉. Now
suppose that p1 6= 0. Then P is irreducible (see e. g. Corol-
lary 7.1 [4]). Moreover we claim that 〈P 〉 has at most one
maximal non-holonomic overideal. Let I ⊃ 〈P 〉 be a non-
holonomic overideal. Choosing arbitrary non-zero elements
b1, b2 ∈ F denote the derivation d = b1∂x + b2∂y. Simi-
lar to the proof of Theorem 1.1 there exists r ∈ F [d, ∂y] =
F [∂x, ∂y] such that 〈r〉 = IR1 ⊂ R1 = (F [d])−1 F [d, ∂y].
Then βP = r1r for suitable β ∈ F [d], r1 ∈ F [d, ∂y ] and
symb(r) = (b1v + b2w)mg for an integer m and g|w2. If
g = 1 then I cannot be non-holonomic because of Proposi-
tion 4.4 [4] (cf. above). If g = w2 then similar to the proof
of Corollary 1.2 one can show that the only non-holonomic
overideal of 〈P 〉 among ones to which polynomial w2 is at-
tached, is just 〈P 〉 itself. It remains to consider the case
g = w. Applying the Newton polygon construction from [4]
to equation r = 0 and a divisor w of symb(r), one obtains a
solution of the form (1) of r = 0 with G = G(x), thereby it is
a solution of P = 0. On the other hand, applying the New-
ton polygon construction from [4] to equation P = 0, one
gets at its first step f1 = x and at the second step f2 which
fulfils equation (∂yf2)

2 + p1 = 0 and f2 corresponds to the
edge of the Newton polygon with endpoints (0, 2) and (1, 0),



so with the slope 1/2. This provides a solution of equation
P = 0 of the form (1) with G = G(x, f2; 1/2), therefore
the equation P = 0 has no solutions of the form (1) with
G = G(x). The achieved contradiction shows that there are
no non-holonomic overideals I with attached polynomial w,
this completes the proof of the claim.

3. ON NON-HOLONOMIC OVERIDEALS OF
A THIRD-ORDER OPERATOR

Now we study overideals of 〈P 〉 where the order n =
ord(P ) = 3. Due to Theorem 1.1 it remains to consider non-
separable symb(P ). In [4] an algorithm has been designed
for factoring P ; a few explicit calculations for factoring P
are provided in [7].

Proposition 3.1. Let P be a third-order operator with a
non-separable symb(P ).

i) When symb(P ) has two different linear divisors, one of
which of multiplicity 2, then we can assume w.l.o.g. that

P = ∂x∂
2
y + p0∂

2
x + p1∂x∂y + p2∂

2
y + p3∂x + p4∂y + p5.

If p0 6= 0 then 〈P 〉 has at most two maximal non-holonomic
overideals. Moreover if there exist two different maximal
non-holonomic overideals I1, I2 ⊃ 〈P 〉 then 〈P 〉 = I1 ∩ I2;

ii) When symb(P ) has a single linear divisor of multiplic-
ity 3 we can assume w.l.o.g. that

P = ∂3
y + p0∂

2
x + p1∂x∂y + p2∂

2
y + p3∂x + p4∂y + p5.

If either p0 6= 0, either p2 6= 0 or p3 6= 0 then 〈P 〉 has at
most two maximal non-holonomic overideals. Moreover if
there exist two different maximal non-holonomic overideals
I1, I2 ⊃ 〈P 〉 then 〈P 〉 = I1∩I2. Otherwise 〈P = ∂3

y+p2∂
2
y+

p4∂y+p5〉 has an infinite number of maximal non-holonomic
overideals.

Proof. Case i) First let symb(P ) have two linear divi-
sors; therefore one can assume w.l.o.g. (see above) that w is
its divisor of multiplicity 2 and v is its divisor of multiplicity
1. One can write

P = ∂x∂
2
y + p0∂

2
x + p1∂x∂y + p2∂

2
y + p3∂x + p4∂y + p5.

Suppose that p0 6= 0. The Newton polygon construction
from [4] applied to equation P = 0 and to divisor w of
symb(P ), yields a solution of the form (1) of P = 0 with
f1 = x at its first step. At its second step the construc-
tion yields f2 which fulfils equation (∂yf2)

2 + p0 = 0 and
which corresponds to the edge of the Newton polygon with
endpoints (1, 2), (2, 0), so with the slope 1/2. This provides
G = G(x, f2; 1/2) in (1).

Let a non-holonomic ideal I ⊃ 〈P 〉. Choose d = b1∂x +
b2∂y for non-zero b1, b2 ∈ F . As in the previous Section
there exists r ∈ F [d, ∂y] such that 〈r〉 = R1I ⊂ R1 =
(F [d])−1 F [d, ∂y]. Then βP = r1r for suitable β ∈ F [d], r1 ∈
F [d, ∂y]. Rewrite symb(r) = (b1v + b2w)mg where g|(vw2).
If either g = w2 or g = v, one can argue as in the proof of
Theorem 1.1 and deduce that there can exist at most one
maximal non-holonomic overideal of 〈P 〉 with the property
that the polynomial attached to the overideal is either w2 or
v. Similar to the proof of Corollary 1.2 one can verify that if
there exist maximal non-holonomic overideals I2, I1 ⊃ 〈P 〉
with attached polynomials w2 and v, then 〈P 〉 = I1∩ I2. As
in Theorem 1.1 the existence of a maximal overideal with the
attached polynomial w2 or v follows from the existence of

any non-holonomic overideal with the attached polynomial
w2 or v.

If either g = w or g = vw then applying the Newton
polygon construction from [4] to equation r = 0 and divisor
w of symb(r), one obtains a solution of r = 0 (and thereby, of
P = 0 due to Lemma 4.2 [4]) of the form (1) with G = G(x)
which contradicts to the supposition p0 6= 0 (see above).
Thus, in case p0 6= 0 the ideal 〈P 〉 has a finite number,
less or equal than 2, of maximal non-holonomic overideals
(similar to Theorem 1.1).

When p0 = 0 this is not always true, say for P = (∂x +
b)(∂2

y+b3∂y+b4) (cf. case n = 2 in the previous Section). It
would be interesting to clarify for which P this is still true.

Case ii) Now we consider the last case when symb(P ) has
a unique linear divisor with multiplicity 3. As above one can
assume w.l.o.g. that symb(P ) = w3, so

P = ∂3
y + p0∂

2
x + p1∂x∂y + p2∂

2
y + p3∂x + p4∂y + p5.

Keeping the notations we get 〈r〉 = R1I and βP = r1r.
Then symb(r) = (b1v+ b2w)mg where g|w3. If g = w3 then
arguing as in the proof of Corollary 1.2 we deduce that the
only non-holonomic overideal of 〈P 〉 to which polynomial w3

is attached, is just 〈P 〉 itself.
Let g|w2. Applying the Newton polygon construction

from [4] to equation r = 0 and linear divisor w of symb(r)
one gets a solution of r = 0 (and thereby of P = 0) with
either G = G(x) or G = G(x, f2; 1/2) where ∂yf2 6= 0 (cf.
above).

Application of the Newton polygon construction from [4]
to equation P = 0 (and unique linear divisor w of symb(P ))
at its first step provides f1 = x. The second step requires a
trial of cases. First let p0 6= 0. Then the second step yields
f2 which fulfils equation (∂yf2)

3 + p0 = 0 and which corre-
sponds to the edge of the Newton polygon with endpoints
(0, 3), (2.0), so with the slope 2/3. Thus we obtain a solu-
tion of the form (1) with G = G(x, f2, . . . ; 2/3, . . . ), hence
〈P 〉 in case p0 6= 0 has no non-holonomic overideals with
attached polynomial g being a divisor of w2 (see above).

Now assume that p0 = 0 and p1 6= 0. Then the second
step provides solutions of P = 0 of the form (1) with two
different possibilities. Either the Newton polygon construc-
tion chooses the vertical edge with endpoints (1, 1), (1, 0)
as a leading edge at the second step, then it terminates
at the second step yielding a solution of the form (1) with
G = G(x); we recall that in the construction from Section 2
[4] only edges with non-negative slopes are taken as leading
ones and the construction terminates while taking a vertical
edge, so with the slope 0, as a leading one, in particular the
edge with endpoints (1, 1), (1, 0) is taken as a leading one
regardless of whether the coefficient at point (1, 0) vanishes.
As the second possibility the construction yields a solution
of the form (1) with G = G(x, f2, . . . ; 1/2, . . . ) where f2 6= 0
fulfils equation (∂yf2)

3 + p1∂yf2 = 0 corresponding to the
edge of the Newton polygon with endpoints (0, 3), (1, 1),
so with the slope 1/2. One can suppose w.l.o.g. that the
Newton polygon construction terminates at its third step
(thereby G = G(x, f2; 1/2)), otherwise 〈P 〉 cannot have a
non-holonomic overideal to which a divisor g of w2 is at-
tached (see above).

If g = w2 then any solution H2 of P = 0 of the form
(1) with G = G(x, f2; 1/2) is a solution of r = 0 be-
cause otherwise rH2 6= 0, being also of the form (1) with
G = G(x, f2; 1/2), cannot be a solution of r1 = 0 tak-



ing into account that symb(r1) does not divide on w2 (cf.
Lemma 4.2 [4]). Else if g = w then rH2 6= 0 (again taking
into account that symb(r) does not divide on w2) and there-
fore r1(rH2) = 0. Hence for a solution H1 of P = 0 of the
form (1) with G = G(x) (see above) we have rH1 = 0 since
otherwise rH1 being also of the form (1) with G = G(x)
cannot be a solution of r1 = 0 (again cf. Lemma 4.2 [4]).
Then arguing as in the proof of Theorem 1.1 one concludes
that in case p0 = 0 and p1 6= 0 ideal 〈P 〉 can have at most
two maximal non-holonomic overideals with attached poly-
nomials w and w2. Similar to the proof of Corollary 1.2
(cf. the preceding Subsection) one can verify that if there
exist maximal non-holonomic overideals I1, I2 ⊃ 〈P 〉 with
attached polynomials w and w2, then 〈P 〉 = I1 ∩ I2. As in
Theorem 1.1 the existence of a maximal overideal with the
attached polynomial w (or respectively, w2) follows from the
existence of any non-holonomic overideal with the attached
polynomial w or w2.

Furthermore, let p0 = p1 = 0, p3 6= 0. Then as in
case p0 6= 0 we argue that the second step of the New-
ton polygon construction applied to equation P = 0 yields
f2 which fulfils equation (∂yf2)

3 + p4 = 0 and which cor-
responds to the leading edge of the Newton polygon with
endpoints (0, 3), (1, 0), so with the slope 1/3. Thus the
Newton polygon construction yields a solution of P = 0 of
the form (1) with G = G(x, f2, . . . ; 1/3, . . . ) and again 〈P 〉
in case p0 = p1 = 0, p3 6= 0 under consideration has no non-
holonomic overideals with an attached polynomial being a
divisor of w2.

Finally, when p0 = p1 = p3 = 0 the ideal 〈P = ∂3
y +

p1∂
2
y + p3∂y + p5〉 has an infinite number of maximal non-

holonomic overideals; this is similar to the second-order case
P = ∂2

y + p4∂y + p5, see above.

A few examples applying the preceding result are given
next.

Example 1. The operator

L ≡ ∂yy + x∂x + ∂y + y

is immediately recognized as absolutely irreducible by case i)
of Proposition 2.1 because p1 6= 0.

Example 2. Consider the operator

L ≡ ∂xyy + ∂xx + y∂yy + (y + 1)∂x + 2∂y + y.

Due to p0 = 1, case i) of the above proposition applies. In
fact, there is only a single first-order right factor as may be
seen from

L = (∂yy + ∂x + 1)(∂x + y);

this decomposition may be obtained by using the function
FirstOrderRightFactors provided on the website
www.alltypes.de [11].

Example 3. Case ii) of Proposition 3.1 applies to the
operator

L ≡ ∂yyy+
x

y2 ∂xy+
(

1+
2

y

)

∂yy+
x(y − 2)

y3 ∂x+
2y − 3

y2 ∂y−
y − 2

y3 ;

although p0 = 0, due to p2 6= 0 and p3 6= 0 the operator can
have at most two different right factors. It turns out that
there are no first-order right factors at all.

It is a challenge to design an algorithm which produces
non-holonomic overideals of a given differential ideal J ⊂
F [∂x, ∂y] in general. If the goal is solving linear pde’s at-
tached to these operators, F = Q(x, y) is of particular in-
terest. Some of the results reported in this article may be
applied for obtaining a partial answer; e.g. by case i) of
Proposition 2.1 it may be possible to exclude the existence
of any factor very efficiently.

Appendix. Explicit formulas for Laplace trans-
formation
We exhibit a short exposition and explicit formulas for the
Laplace transformation [2]. Let Q = ∂xy + a∂x + b∂y + c be
a second-order operator which has its Laplace divisor Ln =
∑

0≤i≤n
li∂

i
x of order n, i. e. Q, Ln form a Janet basis of

ideal 〈Q, Ln〉. Hence

PQ = (∂y + a)Ln (2)

for a suitable P =
∑

0≤i≤n−1 pi∂
i
x. (This form of P is ob-

tained by comparing the highest terms which divide on ∂n
x

in (2).)
If a Laplace divisor exists then 〈Q,Ln〉 is a proper non-

holonomic overideal of 〈Q〉. Conversely, one can show (cf.
[2]) that if 〈Q〉 has a proper non-holonomic overideal then
there exists either a Laplace divisor Ln (for a suitable n) or
a Laplace divisor of the form

∑

0≤i≤n
ti∂

i
y with respect to

∂y. That is why the problem of searching for a Laplace divi-
sor is equivalent to finding non-holonomic proper overideals
of 〈Q〉.

Open question: is there an algorithm which decides for
a given Q whether it has a Laplace divisor? In particular,
an upper bound on n would suffice for an algorithm.

Comparing the highest terms in (2) which divide on ∂y,
we get that Ln = P (∂x + b). Thus

PQ = (∂y + a)P (∂x + b). (3)

We have Q 6= (∂y + a)(∂x + b) iff 0 6= ab+ by − c ≡ K0.

Lemma 3.2. If K0 6= 0 then there are unique B, C such
that

(∂x +B)Q = (dxy + a∂x +B∂y +C)(∂x + b) (4)

Proof. (4) is equivalent to an algebraic linear system in
B,C,

aB − C = by + ab− ax − c, (5)

(c− by)B − bC = bxy + abx − cx (6)

Therefore (3) holds iff P = P1(∂x + B) by means of di-
viding P by ∂x +B with remainder. Substituting the latter
equality to (3) and making use of (4) we obtain the equality

P1(∂xy + a∂x +B∂y +C) = (∂y + a)P1(∂x +B). (7)

Now (7) is similar to (3) but with the order ord(P1) =
ord(P ) − 1 = n − 1 and a new second-order operator
Q1 = ∂xy + a∂x + B∂y + C. Continuing this way we get
the Laplace transformation with K1 = aB +By − C etc.

More uniformly denote b0 ≡ b, c0 ≡ c, then b1 ≡ B,
c1 ≡ C, b2, c2 etc. obtained from Lemma 3.2. Denote

Ki ≡ abi + (bi)y − ci, Qi ≡ ∂xy + a∂x + bi∂y + ci.



Corollary 3.3. There exists Ln satisfying (2) iff for the
minimal m such that Km = 0 we have m ≤ n. In this case

Ln = Pn−m(∂x + bm−1) · · · (∂x + b0) (8)

where Pn−m =
∑

0≤i≤n−m
pi∂

i
x is an arbitrary operator of

the order n−m which fulfils

Pn−m(∂y + a) = (∂y + a)Pn−m. (9)

For any order n−m ≥ 0 such an operator Pn−m exists. The
pair Q, Ln constitutes a Janet basis of the ideal 〈Q, Ln〉.
The ideal 〈Q, Lm〉 is the unique maximal non-holonomic
overideal of 〈Q〉 which corresponds to a divisor y of symb(Q) =
xy (see Theorem 1.1).

Proof. Applying Laplace transformations as above, if
m > n we don’t get a solution of (2) after n steps since
(3) with PQn = (∂y + a)P (∂x + bn) would not have a so-
lution with P of the order 0. If m ≤ n then successively
following Laplace transformations we arrive to (8) in which
(9) is obtained from equality PQm = (∂y + a)P (∂x + bm)
(see (3)) and taking into account that Km = 0.
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