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Abstract

We prove a double-exponential upper bound on the degree and on the
complexity of constructing a standard basis of a D-module. This general-
izes a well known bound on the complexity of a Gröbner basis of a module
over the algebra of polynomials. We would like to emphasize that the ob-
tained bound can not be immediately deduced from the commutative case.
To get our result we have elaborated a new technique of constructing all
the solutions of a linear system over a homogeneous version of a Weyl
algebra.

Introduction

Let A be the Weyl algebra F [X1, . . . , Xn,
∂

∂X1
, . . . , ∂

∂Xn
] (or the algebra of

differential operators F (X1, . . . , Xn)[ ∂
∂X1

, . . . , ∂
∂Xn

]). Denote for brevity Di =
∂

∂Xi
, 1 6 i 6 n. Any A–module is called D–module. It is well known that

an A–module which is a submodule of a free finitely generated A-module has a
Janet basis (if A is a Weyl algebra it is called often a standard basis; but in this
paper it is natural and convenient to call it a Janet basis also in the case of the
Weyl algebra). Historically, it was first introduced in [9]. In more recent times
of developing computer algebra Janet bases were studied in [5], [14], [10]. Janet
bases generalize Gröbner bases which were widely elaborated in the algebra of
polynomials (see e. g.[3]). For Gröbner bases a double-exponential complexity
bound was obtained in [12], [6] relying on [1]. Further, more precise results on
the same subject (with an independent and self–contained proofs) were obtained
in [4].

Surprisingly, no complexity bound on Janet bases was established so far.
The reason is unique: the problem is not easy. In the present paper we fill this
very essential gap and prove a double-exponential upper bound for complexity.
On the other hand, a double-exponential complexity lower bound on Gröbner
bases [12], [15] provides by the same token a bound on Janet bases.

Notice also that there has been a folklore opinion that the problem of con-
structing a Janet basis is easily reduced to the commutative case by considering
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the associated graded module, and, on the other hand, in the commutative case
[6], [12], [4] the double–exponential upper bound is well known. But it turns out
to be a fallacy! From a known system of generators of a D-module one can not
obtain immediately any system of generators (even not necessarily a Gröbner
basis) of the associated graded module. The main problem here is to construct
such a system of generators of the graded module. It may have the elements of

degrees (dl)2
O(n)

, see the notation below. Then, indeed, to the last system of
generators of big degrees one can apply the result known in the commutative

case and get the bound ((dl)2
O(n)

)2
O(n)

= (dl)2
O(n)

. So new ideas specific to
non–commutative case are needed.

We are interested in the estimations for Janet bases of A-submodules of Al.
The Janet basis depends on the choice of the linear order on the monomials (we
define them also for l > 1). In this paper we consider the most general linear
orders on the monomials from Al. They satisfy conditions (a) and (b) from Sec-
tion 1 and are called admissible. If additionally a linear order satisfies condition
(c) from Section 1 then it is called degree-compatible. For any admissible linear
order the reduced Janet basis is chosen canonically and it is uniquely defined,
see Section 1. We prove the following result.

THEOREM 1 For any real number d > 2 and any admissible linear order
on the monomials from Al any A-submodule I of Al generated by elements of
degrees at most d (with respect to the filtration in the corresponding algebra, see
Section 1 and Section 9) has a Janet basis with the degrees and the number of
its elements less than

(dl)2
O(n)

. (1)

The same upper bound (1) holds for the number of elements of the reduced
Janet basis of the module I with respect to the considered linear order on the
monomials.

If additionally this linear order is degree-compatible or it is arbitrary admis-
sible but l = 1 then also the degrees of all the elements the reduced Janet basis
of the module I are bounded from above by (1).

We prove in detail this theorem for the case of the Weyl algebra A. The proof
for the case of the algebra of differential operators is similar. It is sketched
in Section 9. From Theorem 1 we get that the Hilbert function H(I,m), see

Section 1, of the A-submodule from this theorem is stable for m > (dl)2
O(n)

and the absolute values of all coefficients of the Hilbert polynomial of I are

bounded from above by (dl)2
O(n)

, cf. e.g., [12]. This fact follows directly from
(11), Lemma 12 from Appendix 1, Lemma 2 and Theorem 2. We mention that
in [7] the similar bound was shown on the leading coefficient of the Hilbert
polynomial.

Now we outline the plan for the proof of Theorem 1. Below the first oc-
currences of some terms introduced in the paper are italicized. The main tool
in the proof is a homogenized Weyl algebra hA (or respectively, a homogenized
algebra of differential operators hB). It is introduced in Section 3 (respectively,
Section 9). The algebra hA (respectively hB) is generated over the ground
field F by X0, . . . , Xn, D1, . . . , Dn (respectively over the field F (X1, . . . , Xn)
by X0, D1, . . . , Dn). Here X0 is a new homogenizing variable. In the algebra hA
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(respectively hB) relations (13) Section 3 (respectively (54) Section 9) hold for
these generators.

We define the homogenization hI of the module I. It is a hA–submodule of
hAl. The main problem is to estimate the degrees of a system of generators of hI.
These estimations are central in the paper. They are deduced from Theorem 2
Section 7. This theorem is devoted to the problem of solving systems of linear
equations over the ring hA; we discuss it below in more detail.

The system of generators of hI gives a system of generators of the graded
gr(A)–module gr(I) corresponding to I. But gr(A) is a polynomial ring. Hence

using Lemma 12 Appendix 1 we get a double–exponential bound (dl)2
O(n)

on
the stabilization of the Hilbert function of gr(I) and the absolute values of the
coefficients of the Hilbert polynomial of gr(I). Therefore, the similar bound
holds for the stabilization of the Hilbert functions of I and the coefficients of
the Hilbert polynomial of I, see Section 2.

But the Hilbert functions of the modules I and hI coincide, see Section 3.
Hence the last bound holds also for the stabilization of the Hilbert functions of
hI and the coefficients of the Hilbert polynomial of hI. In Section 5 we introduce
the linear order on the monomials from hAl induced by the initial linear order
on the monomials from Al (the homogenizing variable X0 is the least possible
in this ordering). Further, we define the Janet basis of hI with respect to the
induced linear order on the monomials. Such a basis can be obtained by the
homogenization of the elements of a Janet basis of I with respect to the initial
linear order, see Lemma 3 (iii).

For every element f ∈ hA denote by Hdt(f) ∈ hA the greatest monomial
of the element f , i.e., each monomial of f − Hdt(f) is less than Hdt(f) with
respect to the induced linear order on the monomials from hA. Let Hdt(hI) =
{Hdt(f) : f ∈ hI} be the set of all the greatest monomials of the elements of
the module hI, see Section 4. Let cI ⊂ cAl, see Section 4, be the module over the
polynomial ring cA = F [X0, . . . , Xn, D1, . . . , Dn] generated by all the monomials
from Hdt(hI) (they are considered now as elements of cAl). Then the Hilbert
functions of the modules hI and cI coincide. Thus, we have the same as above
double–exponential estimation for the stabilization of the Hilbert function of cI
and the coefficients of the Hilbert polynomial of cI. Now using Lemma 13 we

get the estimation (dl)2
O(n)

on the monomial system of generators of cI. This
gives the bound for the degrees of the elements of the Janet basis of hI and
hence by Lemma 11 also the bound from Theorem 1 for the required Janet
basis (respectively in the case when the initial order is degree-compatible for
the reduced Janet basis) of I. The estimate for degrees of elements the reduced
Janet basis in the case l = 1 requires special considerations, see Section 8.

REMARK 1 The problem wether there is a double–exponential upper bound
for degrees of elements of the reduced Janet basis with respect to an arbitrary
admissible linear order on monomials in the case l > 1 remains open. Notice
that one can get a description of all the admissible linear orders on monomials
from Al: each linear order corresponds to a rooted tree. But we don’t need this
description in the present paper.

The problem of solving systems of linear equations over the homogenized
Weyl algebra is central in this paper, see Theorem 2. It is studied in Sections 5–
7. A similar problem over the Weyl algebra (without a homogenization) was
considered in [7]. The principal idea is to try to extend the well known method
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from [8] which was elaborated for the algebra of polynomials, to the homogenized
Weyl algebra. There are two principal difficulties on this way. The first one is
that in the method from [8] the use of determinants is essential which one has to
avoid dealing with non-commutative algebras. The second is that one needs a
kind of the Noether normalization theorem in the situation under consideration.
So it is necessary to choose the leading elements in the analog of the method from
[8] with the least possible order ordX0 , where X0 is a homogenizing variable,
see Section 3.

The obtained bound on the degree of a Janet basis implies a similar bound on
the complexity of its constructing. Indeed, by Corollary 1 (it is formulated for
the case of Weyl algebra but the analogous corollary holds for the case of algebra
of differential operators) one can compute the linear space of all the elements

z ∈ I of degrees bounded from above by (dl)2
O(n)

. Hence by Theorem 1 one can
compute a Janet basis of I solving linear systems over F of size bounded from

above (dl)2
O(n)

(just by the enumeration of all monomials of degrees at most

(dl)2
O(n)

which are possible elements of Hdt(I)). After that one can compute

within the time polynomial in (dl)2
O(n)

and the size of the input solving linear
systems over F also the reduced Janet basis of I provided that the upper bound

(dl)2
O(n)

for the degrees of its elements is known, see Theorem 1.
For the sake of self–containedness in Appendix 1, see Lemma 12, we give a

short proof of the double–exponential estimation for stabilization of the Hilbert
function of a graded module over a graded polynomial ring. A conversion of
Lemma 12 also holds, see Appendix 1 Lemma 13. It is essential for us. The
proof of Lemma 13 uses the classic description of the Hilbert function of a
homogeneous ideal in F [X0, . . . , Xn] via Macaulay constants bn+2, . . . , b1 and
the constant b0 introduced in [4]. In Appendix 2 we give an independent and
instructive proof of Proposition 1 which is similar to Lemma 13. In some sense
Proposition 1 is even more strong than Lemma 13 since to apply it one does
not need a bound for the stabilization of the Hilbert function. Of course, the
reference to Proposition 1 can be used in place of Lemma 13 in our paper.

1 Definition of the Janet basis

Let A = F [X1, . . . , Xn, D1, . . . , Dn], n > 1, be a Weyl algebra over a field F .
So A is defined by the following relations

XvXw = XwXv, DvDw = DwDv, DvXv−XvDv = 1, XvDw = DwXv, v 6= w.
(2)

By (2) any element f ∈ A can be uniquely represented in the form

f =
∑

i1,...,in,j1,...,jn>0

fi1,...,in,j1,...,jn
X i1

1 . . .X in
n Dj1

1 . . .Djn
n , (3)

where all fi1,...,in,j1,...,jn
∈ F and only a finite number of fi1,...,in,j1,...,jn

are
nonzero. Denote for brevity Z+ = {z ∈ Z : z > 0} to the set of all nonnegative
integers and

i = (i1, . . . , in), j = (j1, . . . , jn), fi,j = fi1,...,in,j1,...,jn

X i = X i1
1 . . . X in

n , Dj = Dj1
1 . . . Djn

n , f =
∑

i,j fi,jX
iDj ,

|i| = i1 + . . .+ in, i+ j = (i1 + j1, . . . , in + jn).

(4)
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So i, j ∈ Zn
+ are multiindices. By definition the degree of f

deg f = degX1,...,Xn,D1,...,Dn
f = max{|i| + |j| : fi,j 6= 0}.

LetM be a left A-module given by its generatorsm1, . . . ,ml, l > 0, and relations
∑

16w6l

av,wmw, 1 6 v 6 k. (5)

where k > 0 and all av,w ∈ A. We assume that deg av,w 6 d for all v, w. By (5)
we have the exact sequence

Ak ι
→ Al π

→M → 0 (6)

of left A-modules. Denote I = ι(Ak) ⊂ Al. If l = 1 then I is a left ideal of A
and M = A/I. In the general case I is generated by the elements

(av,1, . . . , av,l) ∈ Al, 1 6 v 6 k.

For an integer m > 0 put

Am = {a : deg a 6 m}, Mm = π(Al
m), Im = I ∩Al

m. (7)

So now A, M , I are filtered modules with filtrations Am, Mm, Im, m > 0,
respectively and the sequence of homomorphisms of vector spaces

0 → Im → Al
m →Mm → 0

induced by (6) is exact for every m > 0. The Hilbert function H(M,m) of the
module M is defined by the equality

H(M,m) = dimF Mm, m > 0.

Each element ofAl can be uniquely represented as an F -linear combination of
elements ev,i,j = (0, . . . , 0, X iDj , 0, . . . , 0), herewith i, j ∈ Zn

+ are multiindices,
see (4), and the nonzero monomial X iDj is at the position v, 1 6 v 6 l. So
every element f ∈ Al can be represented in the form

f =
∑

v,i,j

fv,i,jev,i,j , fv,i,j ∈ F. (8)

The elements ev,i,j will be called monomials.
Consider a linear order < on the set of all the monomials ev,i,j or which is

the same on the set of triples (v, i, j), 1 6 v 6 l, i, j ∈ Zn
+. If f 6= 0 put

o(f) = max{(v, i, j) : fv,i,j 6= 0}, (9)

see (8). Set
o(0) = −∞ < o(f)

for every 0 6= f ∈ A. Let us define the leading monomial of the element
0 6= f ∈ Al by the formula

Hdt(f) = fv,i,jev,i,j ,

where o(f) = (v, i, j). Put Hdt(0) = 0. Hence o(f−Hdt(f)) < o(f) if f 6= 0. For
f1, f2 ∈ Al if o(f1) < o(f2) we shall write f1 < f2. We shall require additionally
that
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(a) for all multiindices i, j, i′, j′ for all 1 6 v 6 l if i1 6 i′1, . . . , in 6 i′n and
j1 6 j′1, . . . , jn 6 j′n then (v, i, j) 6 (v, i′, j′).

(b) for all multiindices i, j, i′, j′, i′′, j′′ for all 1 6 v, v′ 6 l if (v, i, j) < (v′, i′, j′)
then (v, i+ i′′, j + j′′) < (v′, i′ + i′′, j′ + j′′).

Conditions (a) and (b) imply that for all f1, f2 ∈ Al for every nonzero a ∈ A
if f1 < f2 then af1 < af2, i.e., the considered linear order is compatible with
the products. Any linear order on monomials ev,i,j satisfying (a) and (b) will
be called admissible. Consider additionally condition

(c) for all multiindices i, j, i′, j′ for all 1 6 v, v′ 6 l if |i|+ |j| < |i′|+ |j′| then
(v, i, j) < (v′, i′, j′).

Any linear order on monomials ev,i,j satisfying (a), (b) and (c) will be called
degree-compatible.

For every subset E ⊂ Al put Hdt(E) = {Hdt(f) : f ∈ E}. In particular,

Hdt(I) = {Hdt(f) : f ∈ I}.

So Hdt(I) is a subset of Al. By definition the family f1, . . . , fm of elements of
I is a Janet basis of the module I if and only if

1) Hdt(I) = Hdt(Af1) ∪ . . . ∪ Hdt(Afm).

Further, the Janet basis f1, . . . , fm of I is reduced if and only if the following
conditions hold.

2) f1, . . . , fm does not contain a smaller Janet basis of I,

3) Hdt(f1) > . . . > Hdt(fm).

4) The coefficient from F of every monomial Hdt(fv), 1 6 α 6 m, is 1.

5) Let fα =
∑

v,i,j fα,v,i,jev,i,j be representation (3) for fα, 1 6 α 6 m.
Then for all 1 6 α < β 6 m for all 1 6 v 6 l and multiindices i, j the
monomial fα,v,i,jev,i,j 6∈ Hdt(Afβ \ {0}).

Denote by C the ring of polynomials in X1, . . . , Xn, D1, . . . , Dn with coefficients
from F (one can take C = gr(A), see the next section). For every f ∈ Al the
monomial Hdt(f) can be considered as an element of Cl. To avoid an ambiguity
denote it by Hdtc(f) ∈ Cl. Now f1, . . . , fm is a Janet basis of the module I
if and only if the C-submodule of Cl generated by Hdtc(fα), 1 6 α 6 m,
contains all the elements Hdtc(f), f ∈ A. Since the ring C is Noetherian for
the considered I there exists a Janet basis. Further the reduced Janet basis of
I is uniquely defined.

2 The graded module corresponding to a D–mo-

dule

Put Av = Iv = Mv = 0 for v < 0 and

gr(A) = ⊕m>0Am/Am−1, gr(I) = ⊕m>0Im/Im−1, gr(M) = ⊕m>0Mm/Mm−1.
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The structure of the algebra on A induces the structure of a graded algebra on
gr(A). So gr(A) = F [X1, . . . , Xn, D1, . . . , Dn] is an algebra of polynomials with
respect to the variables X1, . . . , Xn, D1, . . . , Dn. Further, gr(I) and gr(M) are
graded gr(A)-modules. From (7) we get the exact sequences

0 → Im/Im−1 → (Am/Am−1)
l →Mm/Mm−1 → 0, m > 0. (10)

The Hilbert function of the module gr(M) is defined as follows

H(gr(M),m) = dimF Mm/Mm−1, m > 0.

Obviously

H(M,m) =
∑

06v6m

H(gr(M), v), H(gr(M),m) = H(M,m) −H(M,m− 1).

(11)
for every m > 0.

Denote for an arbitrary a ∈M by gr(a) ∈ gr(M) the image of a in gr(M).

LEMMA 1 Assume that b1, . . . , bs is a system of generators of I. Let νi =
deg bi, 1 6 i 6 s. Suppose that for every m > 0

Im =
{ ∑

16v6µ

cvbv : cv ∈ A, deg cv 6 m− νv, 1 6 i 6 s
}
. (12)

Then gr(b1), . . . , gr(bs) is a system of generators of the gr(A)-module gr(I).

PROOF This is straightforward.

3 Homogenization of the Weyl algebra

Let X0 be a new variable. Consider the algebra hA = F [X0, X1, . . . , Xn, D1,
. . . , Dn] given by the relations

XvXw = XwXv, DvDw = DwDv, for all v, w,
DvXv −XvDv = X2

0 , 1 6 v 6 n, XvDw = DwXv for all v 6= w.
(13)

The algebra hA is Noetherian similarly to the Weyl algebra A. By (13) an
element f ∈ hA can be uniquely represented in the form

f =
∑

i0,i1,...,in,j1,...,jn>0

fi0,...,in,j1,...,jn
X i0

0 . . . X in
n Dj1

1 . . .Djn
n , (14)

where all fi0,...,in,j1,...,jn
∈ F and only a finite number of fi0,...,in,j1,...,jn

are
nonzero. Let i, j be multiindices, see (4). Denote for brevity

i = (i1, . . . , in), j = (j1, . . . , jn), fi0,i,j = fi0,...,in,j1,...,jn

f =
∑

i0,i,j fi0,i,jX
i0
0 X

iDj .
(15)

By definition the degrees of f

deg f = degX0,...,Xn,D1,...,Dn
f = max{i0 + |i| + |j| : fi0,i,j 6= 0},

degD1,...,Dn
f = max{|j| : fi0,i,j 6= 0},

degDα
f = max{jα : fi0,i,j 6= 0}, 1 6 α 6 n,

degXα
f = max{iα : fi0,i,j 6= 0}, 1 6 α 6 n.
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Set ord 0 = ordX0 0 = +∞. If 0 6= f ∈ hA then put

ord f = ordX0 f = µ⇐⇒ f ∈ Xµ
0 (hA) \Xµ+1

0 (hA), µ > 0. (16)

For every z = (z1, . . . , zl) ∈ hAl put

ord z = min
16i6l

{ord zi}, deg z = max
16i6l

{deg zi}.

Similarly one defines ord b and deg b for an arbitrary (k × l)-matrix b with
coefficients from hA. More precisely, one consider here b as a vector with kl
entries.

The element f ∈ hA is homogeneous if and only if fi0,i,j 6= 0 implies i0 + |i|+
|j| = deg f , i.e., if and only if f is a sum of monomials of the same degree deg f .
The homogeneous degree of a nonzero homogeneous element f is its degree.
The homogeneous degree of 0 is not defined (0 belongs to all the homogeneous
components of hA, see below).

Further, the m-th homogeneous component of hA is the F -linear space

(hA)m =
{
z ∈ hA : z is homogeneous & deg z = m or z = 0

}

for every integer m. Now hA is a graded ring with respect to the homogeneous
degree. By definition the ring hA is a homogenization of the Weyl algebra A.

We shall consider the category of finitely generated graded modules G over
the ring hA. Such a module G = ⊕m>m0Gm is a direct sum of its homogeneous
components Gm, where m,m0 are integers. Every Gm is a finite dimensional
F -linear space and (hA)pGm ⊂ Gp+m for all integers p,m. If G and G′ are
two finitely generated graded hA-modules then ϕ : G → G′ is a morphism (of
degree 0) of the graded modules if and only if ϕ is a morphism of hA-modules
and ϕ(Gm) ⊂ G′

m for every integer m.
The element z ∈ hA (respectively z ∈ A) is called to be the term if and

only if z = λz1 · . . . · zν for some 0 6= λ ∈ F , integer ν > 0 and zw ∈
{X0, . . . , Xn, D1, . . . , Dn} (respectively zw ∈ {X1, . . . , Xn, D1, . . . , Dn}), 1 6

w 6 ν.
Let z =

∑
j zj ∈ A be an arbitrary element of the Weyl algebraA represented

as a sum of terms zj and deg z = maxj deg zj. One can take here, for example,
representation (3) for z. Then we define the homogenization hz ∈ hA by the
formula

hz =
∑

j

zjX
deg z−deg zj

0 .

By (2), (13) the right part of the last equality does not depend on the chosen
representation of z as a sum of terms. Hence hz is defined correctly. If z ∈ hA
then az ∈ A is obtained by substituting X0 = 1 in z. Hence for every z ∈ A we
have ahz = z, and for every z ∈ hA the element z = hazXµ

0 , where µ = ord z.
For an element z = (z1, . . . , zl) ∈ Al put deg z = max16i6l{deg zi} and

hz =
(

hz1X
deg z−deg z1

0 , . . . , hzlX
deg z−deg zl

0

)
∈ hAl.

Similarly one defines deg a and the homogenization ha for an arbitrary (k × l)-
matrix a = (av,w)16v6k, 16w6l with coefficients from A. More precisely, one
consider here a as a vector with kl entries. Hence if b = (bv,w)16v6k, 16w6l = ha

then bv,w = hav,wX
deg a−deg av,w

0 for all v, w.
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Further, the m-th homogeneous component of hAl is

(hAl)m =
{

hz : z ∈ Al & deg z = m or z = 0
}

For an F -linear subspace X ⊂ Al put hX to be the least linear subspace of hAl

containing the set {hz : z ∈ X}. If X is a A-submodule of Al then hX is a
graded submodule of hAl. The graduation on hX is induced by the one of hAl.

For an element z = (z1, . . . , zl) ∈ hAl put az = (az1, . . . ,
azl) ∈ Al. For a

subset X ⊂ hAl put aX = {az : z ∈ X} ⊂ Al. If X is a F -linear space then
aX is also a F -linear space. If X is a graded submodule of hAl then aX is a
submodule of Al.

Now hI is a graded submodule of hAl. Further, ahI = I. Let (hI)m be the
m-th homogeneous component of hI. Then

h(Im) = ⊕06j6m(hI)j , m > 0, (17)
a((hI)m) = Im, m > 0. (18)

and (18) induces the isomorphism ι : (hI)m → Im of linear spaces over F . Set
hM = hAl/hI. Hence hM is a graded hA-module and we have the exact sequence

0 → hI → hAl → hM → 0. (19)

Now the m-th homogeneous component (hM)m of hM

(hM)m = (hAl)m/(
hI)m ≃ Al

m/Im (20)

by the isomorphism ι. We have the exact sequences

0 → (hI)m → (hAl)m → (hM)m → 0, m > 0. (21)

By definition the Hilbert function of the module hM is

H(hM,m) = dimF (hM)m, m > 0.

By (20) we have H(M,m) = H(hM,m) for every m > 0, i.e., the Hilbert
functions of M and hM coincide.

LEMMA 2 Let b1, . . . , bs be a system of homogeneous generators of the hA-
module hI. Then

gr(ab1), . . . , gr(abs) ∈ gr(A)l

is a system of generators of gr(A)-module gr(I).

PROOF By (18) a((hI)m) = Im. Now the required assertion follows from
Lemma 1. The lemma is proved.

4 The Janet bases of a module and of its ho-

mogenization

Each element of hAl can be uniquely represented as an F -linear combination of
elements ev,i0,i,j = (0, . . . , 0, X i0

0 X
iDj , 0, . . . , 0), herewith 0 6 i0 ∈ Z, i, j ∈ Zn

+
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are multiindices, see (4), and the nonzero monomial X i0
0 X

iDj is at the position
v, 1 6 v 6 l. So every element f ∈ hAl can be represented in the form

f =
∑

v,i0,i,j

fv,i0,i,jev,i0,i,j , fv,i0,i,j ∈ F. (22)

and only a finite number of fv,i0,i,j are nonzero. The elements ev,i0,i,j will be
called monomials.

Let us replace everywhere in Section 1 after the definition of the Hilbert
function the ring A, the monomials ev,i,j , the multiindices i, i′, i′′, triples
(v, i, j), (v, i′, j′), the module I and so on by the ring hA, monomials ev,i0,i,j ,
the pairs (i0, i), (i′0, i

′), (i′′0 , i
′′) (they are used without parentheses), quadruples

(v, i0, i, j), (v, i′0, i
′, j′), the homogenization hI and so on respectively. Thus, we

get the definitions of o(f), Hdt(f) for f ∈ hAl, new conditions (a) and (b) which
define admissible linear order on the monomials of hAl, new condition (c) and
the definition of the degree-compatible linear order, new conditions 1)–5), the
definitions of the set Hdt(hI), Janet basis and reduced Janet basis of hI. For
example, o(0) = +∞, Hdt(0) = 0, and if 0 6= f ∈ hAl then

o(f) = max{(v, i0, i, j) : fv,i0,i,j 6= 0},

Hdt(f) = fv,i0,i,jev,i0,i,j , where o(f) = (v, i0, i, j),

Hdt(hI) = {Hdt(f) : f ∈ hI}.

the new conditions (a) and (b) are the following:

(a) for all indices i0, i
′
0, all multiindices i, j, i′, j′ for all 1 6 v 6 l if i0 6 i′0,

i1 6 i′1, . . . , in 6 i′n and j1 6 j′1, . . . , jn 6 j′n then (v, i0, i, j) 6 (v, i′0, i
′, j′).

(b) for all indices i0, i
′
0, i

′′
0 , all multiindices i, j, i′, j′, i′′, j′′ for all 1 6 v, v′ 6 l

if (v, i0, i, j) < (v′, i′0, i
′, j′) then (v, i0 + i′′0 , i+ i′′, j+ j′′) < (v′, i′0 + i′′0 , i

′ +
i′′, j′ + j′′).

The existence of a Janet basis of hI and the uniqueness of the reduced Janet
basis with respect to an admissible linear order are proved similarly to the
existence of a Janet basis of I and the uniqueness of the reduced Janet basis I,
see Section 1. The Janet basis of hI is homogeneous if and only if it consists
of homogeneous elements from hAl. Since the module hI is homogeneous, the
family of homogeneous components of any Janet basis of hI is a homogeneous
Janet basis of hI. Hence the reduced Janet basis of hI is homogeneous (here we
leave the details to the reader).

Let< be an admissible linear order on the monomials fromAl, or which is the
same, on the triples (v, i, j), see Section 1. So < satisfies conditions (a) and (b).
Let us define the linear order on the monomials ev,i0,i,j or, which is the same,
on the quadruples (v, i0, i, j). This linear order is induced by < on the triples
(v, i, j) and will be denoted again by <. Namely, for two quadruples (v, i0, i, j)
and (v′, i′0, i

′, j′) put (v, i0, i, j) < (v′, i′0, i
′, j′) if and only if (v, i, j) < (v′, i′, j′),

or (v, i, j) = (v′, i′, j′) but i0 < i′0. Notice that this induced linear order satisfies
conditions (a) and (b) (in the new sense).

REMARK 2 If f1, . . . , fm is a Janet basis of I (respectively homogeneous Janet
basis of hI) satisfying 1)–4) then there are the unique cα,β ∈ A (respectively
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homogeneous cα,β ∈ hA), 1 6 α < β 6 m, such that

fα +
∑

α<β6m

cα,βfβ , 1 6 α 6 m,

is a reduced Janet basis of I (respectively reduced homogeneous Janet basis of
hI), cf. [3].

Obviously a linear order < on monomials from Al (respectively hAl) is degree
compatible if and only if for any two monomials z1, z2 the inequality deg z1 <
deg z2 implies z1 < z2.

LEMMA 3 The following assertions hold.

(i) Let f1, . . . , fm be a (reduced) Janet basis of I with respect to the lin-
ear order < and additionally the order < is degree-compartible. Then
hf1, . . . ,

hfm is a (reduced) homogeneous Janet basis of the module hI with
respect to the induced linear order <.

(ii) Conversely, suppose that the initial order < is degree-compartible, and
g1, . . . , gm be a (reduced) homogeneous Janet basis of the module hI with
respect to the induced linear order <. Then ag1, . . . ,

agm is a (reduced)
Janet basis of I with respect to the linear order <.

(iii) Suppose that the initial order < is arbitrary admissible. Let g1, . . . , gm be
a homogeneous Janet basis of the module hI with respect to the induced
linear order <. Then ag1, . . . ,

agm is a Janet basis of I with respect to the
linear order <. Moreover, hagw = gw for all 1 6 w 6 m.

PROOF This follows immediately from the definitions.

Let f ∈ hAl and the module hI be as above. Let us show that there is the
unique element g ∈ hAl such that

g =
∑

v,i0,i,j

gv,i0,i,jev,i0,i,j , gv,i0,i,j ∈ F, (23)

f − g ∈ hI and if gv,i0,i,j 6= 0 then ev,i0,i,j 6∈ Hdt(hI). Indeed, if there are two
such elements g 6= g′ then 0 6= g − g′ ∈ hI but Hdt(g − g′) 6∈ Hdt(hI) and we
get a contradiction. To prove the existence of g we shall suppose without loss
of generality that f is homogeneous and show additionally that the sum in the
left part if (23) is taken over (v, i0, i, j) such that i0 + |i|+ |j| = deg f . One can
represent

f =
∑

v,i0,i,j

fv,i0,i,jev,i0,i,j , fv,i0,i,j ∈ F, i0 + |i| + |j| = deg f.

We use the induction on the number ν(f) of (v, i0, i, j) in the last sum such
that ev,i0,i,j ∈ Hdt(hI) and ev,i0,i,j 6 Hdt(f). If ν(f) > 0 then there is a
homogeneous z ∈ hI such that Hdt(z) = Hdt(f), deg z = deg f . Then ν(f−z) <
ν(f). The required assertion is proved.

11



The element g from (23) is called the normal form of f with respect to the
module hI. We shall denote g = nf(hI, f). Obviously nf(hI, (hAl)m) ⊂ (hAl)m is
a linear subspace and

dimF nf(hI, (hAl)m) = l

(
m+ 2n

2n

)
−H(hI,m) = H(hAl/hI,m).

Let cA = F [X0, . . . , Xn, D1, . . . , Dn] be the polynomial ring in the variables
X0, . . . , Xn, D1, . . . , Dn. Each monomial ev,i0,i,j can be considered also as an
element of cAl. Hence Hdt(f) can be considered as an element of cAl for every
f ∈ hAl. To avoid an ambiguity we shall denote it by Hdtc(f) ∈ cAl. Put
Hdtc(hI) = {Hdtc(f) : f ∈ hI}. So the sets Hdt(hI) and Hdtc(hI) are in the
one–to–one correspondence.

Denote by cI ⊂ cAl the graded submodule of cAl generated by Hdtc(hI).
Then one can easily see that the set of monomials from the module cI coincides
with Hdtc(hI)\{0}. Further, for everym > 0 the F -linear space of homogeneous
elements cIm is generated by the monomials ev,i0,i,j such that there is 0 6= f ∈
hIm with o(f) = (v, i0, i, j). The Hilbert function

H(cI,m) = dimF {(z1, . . . , zl) ∈
cI : ∀ i ( deg zi = m or zi = 0 )},

H(cAl/cI,m) = l

(
m+ 2n

2n

)
−H(cI,m).

Let f ∈ cAl and the module cI be as above. Then there is the unique element
g ∈Al such that

g =
∑

v,i0,i,j

gv,i0,i,jev,i0,i,j , gv,i0,i,j ∈ F,

f − g ∈ hI and if gv,i0,i,j 6= 0 then ev,i0,i,j 6∈ Hdtc(hI) (the proof is similar to
the one of the existence and uniqueness of g from (23)). The element g is called
the normal form of f with respect to the module cI, cf. [4]. We shall denote
g = nf(cI, f). Obviously, nf(cI, (cAl)m) ⊂ (cAl)m is a linear subspace and

dimF nf(cI, (cAl)m) = l

(
m+ 2n

2n

)
−H(cI,m) = H(cAl/cI,m).

Since by the given definitions the F -linear spaces nf(cI, (cAl)m) and nf(hI, (hAl)m)
are generated by the same monomials we have for every m > 0

dimF nf(cI, (cAl)m) = dimF nf(hI, (hAl)m,

H(hAl/hI,m) = H(cAl/cI,m), H(hI,m) = H(cI,m).

Therefore, see Section 3,

H(I,m) = H(cI,m), m > 0. (24)

5 Bound on the kernel of a matrix over the ho-

mogenized Weyl algebra

LEMMA 4 Let k > 1 and l > 1 be integers. Let b = (bi,j)16i6k, 16j6l be a
matrix where bi,j ∈ hA are homogeneous elements for all i, j. Let deg bi,j < d,
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d > 2, for all i, j. Assume that there are integers dj > 0, 1 6 i 6 k, and d′i > 0,
1 6 j 6 l, such that

deg bi,j = di − d′j (25)

for all nonzero bi,j, and additionally d′j are chosen to be minimal possible (this

means that there do not exist integers d̃i, d̃
′
j similar to di, d

′
j such that d̃′j 6 d′j

for all 1 6 j 6 l and at least one of the last inequalities is strict). Then
di < min{k + 1, l}d, d′j < min{k, l− 1}d for all i, j

Further, assume that k = l − 1. Then there are homogeneous elements
z1, . . . , zl ∈

hA such that (z1, . . . , zl) 6= (0, . . . , 0),

∑

16j6l

bi,jzj = 0, 1 6 i 6 l − 1. (26)

There is an integer µ > 0 such that for all 1 6 j 6 l − 1 if zj 6= 0 then
deg zj = µ + d′j and hence all nonzero bi,jzj have the same degree depending
only on i. Further,

deg zj 6 (2n+ 2)l max
16i6k

{di} < (2n+ 2)l2d, 1 6 j 6 l. (27)

Besides that, if all bi,j do not depend on Xn (i.e., they can be represented as
sums of monomials which do not contain Xn) then one can choose also z1, . . . , zl

satisfying additionally the same property. Finally, dividing by an appropriate
power of X0 one can assume without loss of generality that min{ord zi : 1 6

i 6 l} = 0.

PROOF Let us prove at first that di < min{k+1, l}d and d′j < min{k, l−1}d
for all i, j and arbitrary k, l > 1. We define the relation of equivalence on the
set of pairs P = {(v, w) : 1 6 v 6 k& 1 6 w 6 l& bv,w 6= 0} as follows. Put
(v, w) ∼ (v′, w′) if and only if there is a sequence of pairs (v1, w1), . . . , (vν , wν),
ν > 1, from P such that

1) (v, w) = (v1, w1), (v′, w′) = (vν , wν),

2) vα = vα+1 or wα = wα+1 for every 1 6 α 6 ν − 1.

Let π ⊂ P be the class of equivalence with respect to ∼. Then there is a
pair (p, q) ∈ π such that d′q = 0 since the numbers d′j are chosen minimal
possible. Besides that for all (v, w), (v′, w′) ∈ π one can always choose a se-
quence (v1, w1), . . . , (vν , wν) as above and satisfying additionally the following
five properties:

3) (vα, wα) 6= (vα+1, wα+1) for every 1 6 α 6 ν − 1,

4) if vα = vα+1 then wα+1 = wα+2 for every 1 6 α 6 ν − 2,

5) if wα = wα+1 then vα+1 = vα+2 for every 1 6 α 6 ν − 2,

6) vα = vα+1 for some 1 6 α 6 ν − 1 implies vβ 6= vα for every β 6= α, α+ 1,

7) wα = wα+1 for some 1 6 α 6 ν−1 implies wβ 6= wα for every β 6= α, α+1,
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(we leave the details to the reader). Now conditions 1)–7) imply the number of
pairs

#{(wα, wα+1) : wα 6= wα+1 & 1 6 α 6 ν − 1} 6 min{k, l− 1}.

Further, if wα 6= wα+1 then vα+1 = vα and |d′wα+1
− d′wα

| = | deg bvα+1,wα+1 −
deg bvα,wα

| < d. Hence d′wν
< min{k, l − 1}d + d′w0

. For (v0, w0) = (p, q)
and an arbitrary (v, w) = (vν , wν) ∈ π we get d′w < min{k, l − 1}d. Finally,
deg bv,w = dv − d′w < d implies dv < min{k + 1, l}d. The required inequalities
are proved.

Now suppose that deg bi,j = deg b for all nonzero bi,j and k = l − 1. Let us
prove the existence of z1, . . . , zl and obtain an estimate for deg zj in this case.
Consider the linear mapping

(hA)l
m−deg b −→ (hA)l−1

m ,

( z1, . . . , zl ) 7→
(∑

16j6l bi,jzj

)

16i6l−1
.

(28)

If

l

(
m− deg b+ 2n

2n

)
> (l − 1)

(
m+ 2n

2n

)
(29)

then the kernel of (28) is nonzero. But (29) holds if

∏

16w62n

(
1 +

deg b

m+ w − deg b

)
<

l

l − 1
. (30)

Further, (30) is true if (1 + deg b/(m− deg b))2n < l/(l− 1). The last inequality
follows from m > (2n + 1) deg b/ log(l/(l − 1)). Hence also from m > (2n +
1)l deg b. Thus, the existence of z1, . . . , zl is proved, and even more all nonzero
zj have the same degree ((2n+1)l−1) deg b which does not depend on j. Notice
that in the considered case we prove a more strong inequality deg zj 6 (2n+1)ld
for all 1 6 j 6 l.

Finally, let k = l − 1 and the degrees deg bi,j are arbitrary satisfying (25).

Multiplying the i-th equation of system (26) to X
maxw{dw}−di

0 we shall suppose

without loss of generality that all di are equal. Let us substitute zjX
d′

j

0 for zj in
(26). Now the degrees of all the nonzero coefficients of the obtained system are
equal to max16i6k{di} and are less than ld. Thus, replacing in the considered
above case of deg bi,j = deg b the bound d by max16i6k{di} < ld we get the
required (z1, . . . , zl) such that deg zj = ((2n + 1)l − 1)max16i6k{di} + d′j or
zj = 0 for all 1 6 j 6 l and the estimation

deg zj 6 (2n+ 1)l max
16i6k

{di} + d′j < (2n+ 2)l max
16i6k

{di} < (2n+ 2)l2d

for all j.
Suppose that a1, . . . , al do not depend on Xn. We represent zi =

∑
j zi,jX

j
n,

1 6 i 6 l, where all zi,j do not on Xn. Let α = maxi{degXn
zi}. Obviously in

this case one can replace (z1, . . . , zl) by (z1,α, . . . , zl,α). The lemma is proved.

REMARK 3 Lemma 4 remains true if one replaces in its statement condition
(26) by ∑

16j6l

zjbi,j = 0, 1 6 i 6 l − 1, (31)
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The proof is similar.

REMARK 4 Let the elements bi,j be from Lemma 4. Notice that there are
integers δ′i > 0, 1 6 i 6 k, and δj > 0, 1 6 j 6 l, such that

deg bi,j = δj − δ′i

for all nonzero bi,j, and min16i6k{δ
′
i} = 0. Namely, δ′i = −di + max16i6k{di},

δj = −d′j + max16i6k{di}.

REMARK 5 Let bi,j ∈ hA, 1 6 i 6 k, 1 6 j 6 l, be homogeneous elements

and there are integers d̃i, 1 6 i 6 k, d̃′j, 1 6 j 6 l, such that the degrees

deg bi,j = d̃i − d̃′j for all nonzero bi,j. Then there are also integers di > 0,
1 6 i 6 k, d′j > 0, 1 6 j 6 l, such that (25) holds for all nonzero bi,j.

6 Transforming a matrix with coefficients from
h
A to the trapezoidal form

Let b be the matrix from Lemma 4 and integers k, l > 1 are arbitrary. Hence
(25) holds. Let b = (b1, . . . , bl) where b1, . . . , bl ∈ hAk be the columns of the
matrix b (notice that in Lemma 1 and Lemma 2 all bi are rows of size l; so now
we change the notation). By definition b1, . . . , bl are linearly independent over
hA from the right (or just linearly independent if it will not lead to an ambiguity;
in what follows in this paper if it is not stated otherwise “linearly independent”
means “linearly independent from right”) if and only if for all z1, . . . , zl ∈ hA
the equality b1z1 + . . . + blzl = 0 implies z1 = . . . = zl = 0. By (25) in this
definition one can consider only homogeneous z1, . . . , zl. For an arbitrary family
b1, . . . , bl from Lemma 4 (with arbitrary k, l) one can choose a maximal linearly
independent from the right subfamily bi1 , . . . , bir

of b1, . . . , bl. By Lemma 4 we
have r 6 k. It turns out that r does not depend on the choice of a subfamily.
More precisely, we have the following lemma.

LEMMA 5 Let cj =
∑

16i6l bizi,j, 1 6 j 6 r1, where zi,j ∈ hA are homoge-
neous elements. Suppose that there are integers d′′j , 1 6 j 6 r1, such that for
all i, j the degree deg zi,j = d′i − d′′j if zi,j 6= 0. Assume that cj, 1 6 j 6 r1, are

linearly independent over hA from the right. Then r1 6 r, and if r1 < r there are
cr1+1, . . . , cr ∈ {bi1 , . . . , bir

} such that cj, 1 6 j 6 r, are linearly independent
over hA from the right.

PROOF The proof is similar to the case of vector spaces over a field and we
leave it to the reader.

We denote r = rankr{b1, . . . , bl} and call it the rank from the right of b1, . . . , bl.
In the similar way one can define rank from the left of b1, . . . , bl. Denote it by
rankl{b1, . . . , bl}. It is not difficult to construct examples when rankr{b1, . . . , bl}
6= rankl{b1, . . . , bl}. The aim of this section is to prove the following result.

LEMMA 6 Let b be the matrix with homogeneous coefficient from hA satisfying
(25), see above. Suppose that d > 2 and deg bi,j < d for all i, j. Let l1 =
rankr{b1, . . . , bl} and b1, . . . , bl1 be linearly independent. Hence 0 6 l1 6 l and
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k > l1. Then there is a matrix (zj,r)16j,r6l1 (if l1 = 0 then this matrix is empty)
with homogeneous entries zj,r ∈ hA and a square permutation matrix σ of size
k satisfying the following properties.

(i) There are integers d′′r , 1 6 r 6 l1 such that for all 1 6 j, r 6 l1 the degree
deg zj,r = d′j − d′′r or zj,r = 0, and hence all the nonzero elements bi,jzj,r,
1 6 j 6 l1 have the same degree di − d′′r depending only on i, r. Further,

deg zj,r 6 (2n+ 2)l1 max
16i6k

{di} 6 (2n+ 2)l21d. (32)

(ii) Set the matrix e = (ei,j)16i6k, 16j6l1 = σ(b1, . . . , bl1)z where (b1, . . . , bl1)
is the matrix consisting from the first l1 columns of the matrix b. Then

e =

(
e′

e′′

)
,

where e′ = diag(e′1,1, . . . , e
′
l1,l1

) is a diagonal matrix with l1 columns and
each e′j,j, 1 6 j 6 l1, is nonzero.

(iii) ord ei,j > ord e′j,j for all 1 6 i 6 k, 1 6 j 6 l1.

Besides that, if all ai,j (and hence all bi,j) do not depend on Xn (i.e., they
can be represented as sums of monomials which do not contain Xn) then one
can choose also zj,r satisfying additionally the same property. Finally, dividing
by an appropriate power of X0 one can assume without loss of generality that
min{ord zj,r : 1 6 j 6 l1} = 0 for every 1 6 r 6 l1.

PROOF At first we shall show how to construct z, e and σ such that (ii) and
(iii) hold. We shall use a kind of Gauss elimination and Lemma 4. Namely, we
transform the matrix e. At the beginning put

e = (e1, . . . , el1) = (b1, . . . , bl1).

We shall perform some hA-linear transformations of columns and permutations
of rows of the matrix e and replace each time e by the obtained matrix. These
transformation do not change the rank from the right of the family of columns
of e. At the end we get a matrix e satisfying the required properties (ii), (iii).

We have rankr(e) = l1. If l1 = 0, i.e, e is an empty matrix, then this is the
end of the construction: z is an empty matrix. Suppose that l1 > 0. Let us
choose indices 1 6 i0 6 k, 1 6 j0 6 l1, such that ord ei0,j0 = min16j6l1{ord ej}.
Permuting rows and columns of e we shall assume without loss of generality
that (i0, j0) = (1, 1).

By Lemma 4 we get elements wi,1, wi,i ∈ hA of degrees at most (2n + 2)4d
such that e1,1w1,i = e1,iwi,i, 1 6 i 6 l1, and ordwi,i = 0 for every 1 6 i 6 l1.
Set w′ = (−w1,2, . . . ,−w1,l1), and w′′ = diag(w2,2, . . . , wl1,l1) to be the diagonal
matrix. Put

w =

(
1, w′

0, w′′

)

to be the square matrix with l1 rows. We replace e by ew. Now

e =

(
e1,1, 0
E2,1, E2,2

)
,
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where E2,2 has l1 − 1 columns and

min
16j6l1

{ord bj} = ord e1,1 = min
16j6l1

{ord ej} (33)

(for the new matrix e).
Let us apply recursively the described construction to the matrix E2,2 in

place of e. So using only linear transformations of columns with indices 2, . . . , l1
and permutation of rows with indices 2, . . . , k we transform e to the form

σeτ =




e1,1, 0
E′

2,1, E′
2,2

E′′
2,1 E′′

2,2



 , τ =

(
1, 0
0, τ ′

)

where σ is a permutation matrix and τ ′ is a square matrix with l1 − 1 rows (it
transforms E2,2), the matrix E′

2,2 = diag(e2,2, . . . , el1,l1) is a diagonal matrix

with l1 − 1 > 0 columns, and all the elements e2,2, . . . , el1,l1 ∈ hA are nonzero.
We shall assume without loss of generality that σ = 1 is the identity matrix.
We replace e by eτ . Condition (iii) holds for the obtained e and, more than
that, by (iii) applied recursively to (E2,2, E

′
2,2, E

′′
2,2) (in place of (e, e′, e′′)), and

(33) the same equalities (33) are satisfied for the new obtained matrix e.
Let E′

2,1 = (e2,1, . . . , el1,1)
t where t denotes transposition. By Lemma 4

there are nonzero elements v1,1, . . . , vl1,1 ∈ hA of degrees at most

(2n+ 2)(max{deg ei,j : 1 6 i 6 l1 & j = 1, i} + 1)l21 (34)

such that ei,1v1,1 = ei,ivi,1 and min{ordv1,i : 1 6 i 6 l1} = 0 for all 1 6 i 6

l1 − 1. Let v′ = (−v2,1, . . . ,−vl1,1)
t and v′′ be the identity matrix of size l1 − 1.

Put

v =

(
v1,1, 0
v′, v′′

)
.

Let us replace e by ev. Put z = wτv. Recall that without loss of generality
σ = 1 is the identity permutation. We have e = (b1, . . . , bl1)z. These Gauss
elimination transformations of e do not change the rank from the right of the
family of columns of e. It can be easily proved using the recursion on l, cf.
Lemma 8 below. Now the matrix e satisfies required conditions (ii), (iii) and
σ = 1.

Let us change the notation. Denote the obtained matrix z by z′. Let
z′ = (z′1, . . . , z

′
l1

) where z′j is the j-th column of z′. Our aim now is to prove
the existence of the matrix z satisfying (i)–(iii). By Lemma 4 for every 1 6

r 6 l1 there are homogeneous elements zj,r ∈ hA, 1 6 j 6 l1, such that
(z1,r, . . . , zl1,r) 6= (0, . . . , 0), the degrees deg zj,r = d′r + µr or zj,r = 0 for all
1 6 j 6 l1 and

∑

16j6l1

bi,jzj,r = 0 for every 1 6 i 6 l1, i 6= r, (35)

and estimations for degrees (32) hold. Put the matrix z = (zj,r)16j,r6l1 and
d′′r = −µr. Let z = (z1, . . . , zl1) where zj is the j-th column of z. Hence
zj = (z1,j , . . . , zl1,j)

t.
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LEMMA 7 For every 1 6 r 6 l1 we have

∑

16j6l1

br,jzj,r 6= 0. (36)

Further, for every 1 6 r 6 l1 there are nonzero homogeneous elements g′r, gr ∈
hA such that z′rg

′
r = zrgr.

PROOF Consider the matrix (z′, zr) with l1 rows and l1 + 1 columns. By
Lemma 4 there are homogeneous elements h1, . . . , hl1+1 ∈ hA (they depend on r)
such that (h1, . . . , hl1+1) 6= (0, . . . , 0) and the following property holds. Denote
h = (h1, . . . , hl1+1)

t, h′ = (h1, . . . , hl1)
t. Then

z′h′ + zrhl1+1 = 0 (37)

(we don’t need at present any estimation on degrees from Lemma 4; only the
existence of h). Denote by b′′ the submatrix consisting of the first l1 rows of the
matrix (b1, . . . , bl1). Multiplying (37) to b′′ from the left we get

b′′z′h′ + b′′zrhl1+1 = 0. (38)

But b′′z′ is a diagonal matrix with nonzero elements on the diagonal, see (ii)
(for z′ in place of z). Hence by (35) and (38) hj = 0 for every j 6= r.

Now suppose that hr = 0. Then h′ = 0. Hence by (37) and since zr 6= 0 we
have hl1+1 = 0. Hence h = (0, . . . , 0)t and we get a contradiction.

Suppose that hl1+1 = 0. Then by (38) we have hr = 0. Hence h = (0, . . . , 0)t

and again we get a contradiction.
Thus, hr 6= 0 and hl1+1 6= 0. Now (38) implies (36). Put g′r = hr and

gr = −hl1+1. We have z′rg
′
r = zrgr by (37). The lemma is proved.

Let us return to the proof of Lemma 6. Now (i)–(iii) are satisfied by Lemma 7.
The last assertions of Lemma 6 are proved similarly to the ones of Lemma 4.
Lemma 6 is proved.

7 An algorithm for solving linear systems with

coefficients from h
A.

Let u = (u1, . . . , ul) ∈ hAl. Let all nonzero uj be homogeneous elements of the
degree −d′j +ρ for an integer ρ. Suppose that −d′j +ρ < d′ for an integer d′ > 1.
Let b = (bi,j)16i6k, 16j6l be the matrix with k rows and l columns from the
statement of Lemma 6 (but now k and l are arbitrary). So deg bi,j = di−d′j < d
for all i, j and d > 2. Let Z = (Z1, . . . , Zk) be unknowns. Consider the linear
system ∑

16i6k

Zibi,j = uj , 1 6 j 6 l, (39)

or, which is the same,
Zb = u.

Denote
ordu = min

16i6l
{ordui}. (40)
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The similar notations will be used for other vectors and matrices. In this section
we shall describe an algorithm for solving linear systems over hA and prove the
following theorem for an infinite field F (this theorem for an finite field F is
easily reduced to the case of an infinite field F ; but we shall not use this theorem
for a finite field F in this paper).

THEOREM 2 Suppose that system (39) has a solution over hA. Then one
can represent the set of all solutions of (39) over hA in the form

J + z∗,

where J ⊂ hAl is a hA-submodule of all the solutions of the homogeneous system
corresponding to (39) (i.e., system (39) with all uj = 0) and z∗ is a particular
solution of (39). Moreover, the following assertions hold.

(A) One can choose z∗ such that ord z∗ > ordu− ν, where ν > 0 is an integer

bounded from above by (dl)2
O(n)

. The degree deg z∗ is bounded from above

by d′ + (dl)2
O(n)

.

(B) There exists a system of generators of J of degrees bounded from above by

(dl)2
O(n)

. The number of elements of this system of generators is bounded

from above by k(dl)2
O(n)

.

The constants from O(n) in assertions (A) and (B) are absolute. Besides that,
if all bi,j and uj do not depend on Xn (i.e., they can be represented as sums
of monomials which do not contain Xn) then z∗ and all the generators of the
module J also satisfy this property.

PROOF Let l1 = rankr(b1, . . . , bl). Permuting equations of (39) we shall
assume without loss of generality that (b1, . . . , bl1) are linearly independent from
the right over hA. Let σ, z, e, e′, e′′ be the matrices from Lemma 6. Similarly to
the proof of Lemma 6 we shall assume without loss of generality that σ = 1.
Denote by b′ the submatrix of b consisting of the first l1 columns of b, i.e., b′ =
(b1, . . . , bl1). By Lemma 4 there are nonzero homogeneous elements q1,1, . . . ,
ql1,l1 of degrees at most

(2n+ 2)(max{deg ei,i : 1 6 i 6 l1} + 1)l21

such that e1,1q1,1 = ei,iqi,i and min{ord qi,i : 1 6 i 6 l1} = 0. Set q =
diag(q1,1, . . . , ql1,l1) to be the diagonal matrix. Let ν0 = ord e1,1q1,1. Then by
Lemma 6 (iii) ord (b′zq) > ν0. Let Xν0

0 δ = b′zq. Then δ is a matrix with
coefficients from hA and

δ = (δi,j)16i6k, 16j6l1 =

(
δ′

δ′′

)
,

where δ′ = diag(δ1,1, . . . , δl1,l1) is a diagonal matrix with homogeneous coef-
ficients from hA and all the elements on the diagonal are nonzero and equal,
i.e., δj,j = δ1,1 for every 1 6 j 6 l1. Besides that, ord δ1,1 = 0. Fur-
ther, δ′′ = (δi,j)l1+16i6k, 16j6l1 . We have ord (uzq) > ν0, since, otherwise,
system (39) does not have a solution. Obviously ordu 6 ord (uzq). Denote
u′ = (u′1, . . . , u

′
l1

) = X−ν0
0 uzq ∈ hAl. Hence ordu′ > ord (u) − ν0.
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By Lemma 6 (i) and since q is the diagonal matrix with nonzero homogeneous
entries on the diagonal there are integers d′′j , 1 6 j 6 l1, such that for all i, j
the degree

deg δi,j = di − d′′j (41)

or δi,j = 0. Besides that, by the same reason there is an integer ρ′ such that
deg u′j = −d′′j + ρ′ or u′j = 0 for all 1 6 j 6 l1 (here we leave the details to the
reader).

Consider the linear system
Zδ = u′. (42)

LEMMA 8 Suppose that system (39) has a solution over hA. Then linear
system (42) is equivalent to (39), i.e., the sets of solutions of systems (42) and
(39) over hA coincide.

PROOF The system Zb′z = uz is equivalent to (39) by Lemma 5. System
(42) is equivalent to Zb′z = uz since the ring hA does not have zero–divisors.
The lemma is proved.

REMARK 6 We have rankr(b1, . . . , bl) = l1. Hence by Lemma 6 for every
l1 + 1 6 j 6 l there are homogeneous zj,j , z1,j, . . . , zl1,j ∈ hA such that zj,j 6= 0
and bjzj,j +

∑
16r6l1

brzr,j = 0 and all deg zj,j, deg zr,j are bounded from above

by (2n + 2)(l1 + 1)2d. Put u′j = ujzj,j +
∑

16r6l1
urzr,j, l1 + 1 6 j 6 l. Then

system (39) has a solution if and only if system (42) has a solution and u′j = 0
for all l1 + 1 6 j 6 l. This follows from Lemma 8 and Lemma 5. But in what
follows for our aims it is sufficient to use only Lemma 8.

REMARK 7 Assume that degXn
bi,j 6 0 for all i, j, i.e., the elements of the

matrix b do not depend on Xn. Then by Lemmas 4 and 6 and the described
construction all the elements of the matrices b, z, q, δ, δ′, δ′′ also do not depend
on Xn.

By Lemma 4 and Remark 3 for every l1 + 1 6 i 6 k there are homogeneous
elements gi,i, gi,j ∈ hA, 1 6 j 6 l1, such that

gi,iδi,j = gi,jδ1,1, 1 6 j 6 l1,

all the degrees deg gi,i, deg gi,j , 1 6 j 6 l1, are bounded from above by

(2n+ 2)(l1 + 1)2(max{deg δi,j : 1 6 j 6 k} + 1)

and min16j6l1{ord gi,i, ord gi,j} = 0. Hence ord gi,i = 0 for every l1 + 1 6 i 6 k
since ord δ1,1 = 0.

We need an analog of the Noether normalization theorem from commutative
algebra, cf. also Lemma 3.1 [7].

LEMMA 9 Let h ∈ hA be an arbitrary nonzero element and the degree deg h =
ε. There is a linear automorphism of the algebra hA

α : hA→ hA, α(Xi) =
∑

16j6n

(α1,i,jXj + α2,i,jDj),

α(Di) =
∑

16j6n

(α3,i,jXj + α4,i,jDj), α(X0) = X0, 1 6 i 6 n,
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such that all αs,i,j ∈ F , degDn
α(h) = ε. Moreover, one can choose α such that

additionally for every H ∈ hA if degXn
H = 0 then degXn

α(H) = 0.

PROOF At first it is not difficult to construct a linear automorphism β such
that β(X0) = X0, β(Xn) = Xn, β(Dn) = Dn,

β(Xi) = β1,iXi + β2,iDi, β(Di) = β3,iXi + β4,iDi, 1 6 i 6 n,

and β(h) contains a monomial ai1,...,in
Di1

1 , . . . , D
in
n with ai1,...,in

6= 0 and i1 +
. . .+in = ε, i.e., ε = degD1,...,Dn

β(h). After that one can find an automorphism
γ such that γ(X0) = X0,

γ(Xi) = Xi, γ(Di) = Di + γiDn, 1 6 i 6 n− 1,
γ(Xn) = Xn −

∑
16i6n−1 γiXi, γ(Dn) = Dn,

where γi ∈ F for all 1 6 i 6 n−1 and (γ ◦β)(h) contains a monomial aDε
n with

a coefficient 0 6= a ∈ F . Put α = γ ◦ β. Obviously if H ∈ hA and degXn
H = 0

then degXn
α(H) = 0. The lemma is proved.

Put h = δ1,1gl1+1,l1+1gl1+2,l1+2 . . . gk,k. So h ∈ hA is a nonzero homogeneous
element and ordh = 0. Applying Lemma 9 to h we obtain an automorphism
α. In what follows to simplify the notation we shall suppose without loss of
generality that α = 1. So h contains a monomial aDε

n with a coefficient 0 6= a ∈
F , where ε = deg h. It follows from here that

degDn
δ1,1 = deg δ1,1, degDn

gi,i = deg gi,i, l1 + 1 6 i 6 k. (43)

Let z = (z1, . . . , zk) ∈ hAk be a solution of (42). Then (43) implies that one can
uniquely represent

zi = z′igi,i +
∑

06r<deg gi,i

zi,rD
r
n, l1 + 1 6 i 6 k, (44)

where z′i, zi,s ∈ hA, the degrees degDn
zi,s 6 0 for all l1 + 1 6 i 6 k, 0 6 s <

degD1
gi,i. Again by (43) one can uniquely represent

u′j = u′′j δ1,1 +
∑

06s<deg δ1,1

u′j,sD
s
n, 1 6 j 6 l1,

where u′′j , u
′
j,s ∈ hA, the degrees degDn

u′j,s 6 0 for all 1 6 j 6 l1, 0 6 s <
degD1

gi,i. Finally, by (43) for all l1 + 1 6 i 6 k, 1 6 j 6 l1, 0 6 r < degD1
gi,i,

one can uniquely represent

Dr
nδi,j = δi,r,jδ1,1 +

∑

06s<deg δ1,1

δi,r,j,sD
s
n,

where δi,r,j , δi,r,j,s ∈ hA, the degrees degDn
δi,r,j,s 6 0 for all considered i, r, j, s.

Put

I = { (i, r) : l1 + 1 6 i 6 k& 0 6 r < deg gi,i } ,

J = { (j, s) : 1 6 j 6 l1 & 1 6 s < deg δ1,1 } .

21



Therefore,

zj = −
∑

l1+16i6k

z′igi,j −
∑

(i,r)∈I

zi,rδi,r,j + u′′j , 1 6 j 6 l1, (45)

∑

(i,r)∈I

zi,rδi,r,j,s = u′j,s, (j, s) ∈ J . (46)

Let us introduce new unknowns Zi,r, (i, r) ∈ I. By (44)–(46) system (39) is
reduced to the linear system

∑

(i,r)∈I

Zi,rδi,r,j,s = u′j,s, (j, s) ∈ J . (47)

More precisely, any solution of system (39) is given by (44), (45) where z′i ∈
hA

are arbitrary and zi,r is a solution of system (46) over hA (we underline that
here this solution zi,r may depend on Dn although one can restrict oneself
by solutions zi,r which do not depend on Dn). Note that all δi,r,j,s and u′j,s
are homogeneous elements of hA. Put di,r = di + r, (i, r) ∈ I and d′j,s =
d′′j + s, (j, s) ∈ J , ρ̃ = ρ′ where dj , d

′′
i , ρ

′ are introduced above, see (41). Then
deg δi,r,j,s = di,r − d′j,s or δi,r,j,s = 0, and deg u′j,s = −d′j,s + ρ̃ or u′j,s = 0 for all
(i, r) ∈ I, (j, s) ∈ J . This follows immediately from the described construction
(we leave the details to the reader).

Now all the coefficients of system (47) do not depend on Dn. As we have
proved if the coefficients of (39) do not depend on Xn then the coefficients of
(47) also do not depend on Xn, and hence in the last case they do not depend
on Xn, Dn.

If the coefficients of (47) depend on Xn we perform an automorphism Xn 7→
Dn Dn 7→ −Xn, Xi 7→ Xi, Di 7→ Di, 1 6 i 6 n − 1. Now the coefficients of
system (47) do not depend on Xn (but depend on Dn).

After that we apply our construction recursively to system (47).
The final step of the recursion is n = 0 (although in the statement of theorem

n > 1, see Section 1; we are interested only in Weyl algebras). In this case
I = J = ∅. Hence using (45) for n = 0 we get the required z∗ and J for n = 0.

Thus, by the recursive assumption we get a particular solution Zi,r = z∗i,r,
(i, r) ∈ I, of system (47), an integer ν1 (in place of ν from assertion (A))
satisfying the inequality

min
(i,r)∈I

{ord z∗i,r} > min
(j,s)∈J

{ordu′j,s} − ν1, (48)

and a system of generators

( zα,i,r )(i,r)∈I , 1 6 α 6 β, (49)

of the module J ′ of solutions of the homogeneous system corresponding to (47).
Notice that if the coefficients of (39) do not depend on Xn then J ′ is a module
over the homogenization F [X0, X1, . . . , Xn−1, D1, . . . , Dn−1] of the Weyl alge-
bra of X1, . . . , Xn−1, D1, . . . , Dn−1. But obviously in the last case (49) gives
also a system of generators of the hA-module J ′′ = hAJ ′ of solutions of the
homogeneous system corresponding to (47). Put

z∗j = −
∑

(i,r)∈I

z∗i,rδi,r,j + u′′j , 1 6 j 6 l1,
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z∗i =
∑

06r<deg gi,i

z∗i,rD
r
n, l1 + 1 6 i 6 k,

z∗ = (z∗1 , . . . , z
∗
k).

Then z∗ is a particular solution of (39). Put

zα,j = −
∑

(i,r)∈I

zα,i,rδi,r,j, 1 6 j 6 l1, 1 6 α 6 β,

zα,i =
∑

06s<deg gi,i

zα,i,sD
s
n, l1 + 1 6 i 6 k, 1 6 α 6 β,

zβ−l1+i,j = 0, l1 + 1 6 i, j 6 k, j 6= i,

zβ−l1+i,i = gi,i, l1 + 1 6 i 6 k,

zβ−l1+i,j = −gi,j , 1 6 j 6 l1, l1 + 1 6 i 6 k.

Then J =
∑

16α6β+k−l1
hA(zα,1, . . . , zα,k). Hence (zα,1, . . . , zα,k), 1 6 α 6

β+k− l1, is a system of generators of the module J . By (48) and the definitions
of u′, u′′j and u′j,s we have ord z∗ > ord (u) − ν0 − ν1. Put ν = ν0 + ν1.

LEMMA 10 All the degrees deg δi,j, deg gi,i, deg gi,j, deg δi,r,j, deg δi,r,j,s and
ν0, see above, are bounded from above by (nld)O(1), the degrees deg u′j, deg u′′j ,

deg u′j,s are bounded from above d′ + (nld)O(1). Further, all ordu′′j , ordu′j,s
are bounded from below by ordu − ν0. Finally, in system (47) the number of
equations #J is bounded from above by (nld)O(1) and the number of unknowns
#I is bounded from above by k(nld)O(1).

PROOF This follows immediately from the described construction.

Let us return to the proof of Theorem 2. Applying Lemma 10 and recursively
assertions (A) and (B) for the formulas giving z∗ and J we get (A) and (B)
from the statement of the theorem. The last assertion (related to the case when
all bi,j and uj do not depend on Dn) has been already proved. The theorem is
proved.

8 Proof of Theorem 1 for Weyl algebra

Let us show that it is sufficient to prove the theorem for an infinite field F .
Indeed, let F1 be an infinite field and F1 ⊃ F . Let f1, . . . , fm be a Janet basis
of the module I ⊗F F1 with all the degrees deg fw, 1 6 w 6 m, bounded from

above by d2O(n)

. There is a finite extension F2 ⊃ F such that for all v, i, j for all
1 6 w 6 m the coefficient of fw at the monomial ev,i,j belongs to the field F2.
Let aα, 1 6 α 6 µ, be the basis of the field F2 over F . Then one can represent
fw =

∑
16α6µ aαfα,w where all fα,w ∈ I. Now deg fα,w 6 deg fw and fα,w,

1 6 w 6 m, 1 6 α 6 µ is a Janet basis of the module I. Moreover, the reduced
Janet basis of the module I remains the same after an arbitrary extension of
scalars. The required assertion is proved. So extending the ground field F we
shall suppose without loss of generality that the field F is infinite.

Let a be the matrix from Section 1. We shall suppose without loss of gen-
erality that the vectors (ai,1, . . . , ai,l), 1 6 i 6 k, are linearly independent over

the field F . We have deg ai,j < d. This implies k 6 l
(
d+2n
2n

)
.
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Put the matrix b = ha. Let us define the graded submodules of hI

J0 = hA(b1,1, . . . , b1,l) + . . .+ hA(bk,1, . . . , bk,l),

Jν = J0 : (Xν
0 ) = {z ∈ hAl : zXν

0 ∈ J0}, ν > 1.

We have the exact sequence of graded hA-modules

hAk → J0 → 0.

Further, Jν ⊂ Jν+1 ⊂ hI for every ν > 0 and hI =
⋃

ν>0 Jν . Since hA is

Noetherian there is N > 0 such that hI = JN . So to construct a system of
generators of hI it is sufficient to compute the least N such that hI = JN and
to find a system of generators of JN .

LEMMA 11 hI = JN for some N bounded from above by (dl)2
O(n)

. There is a
system of generators b1, . . . , bs of the module JN such that s and all the degrees

deg bv, 1 6 v 6 s, are bounded from above by (dl)2
O(n)

.

PROOF Let us show that the module JN+1 ⊂ JN for N > ν. Let u ∈ JN+1.
Consider system (39). By assertion (A) of Theorem 2 there is a particular
solution z∗ of (39) such that ord z∗ > 1. Hence u ∈ X0JN ⊂ JN . The required
assertion is proved. Hence hI = Jν .

Let us replace in (39) (u1, . . . , ul) by (U1X
ν
0 , . . . , UlX

ν
0 ), where U1, . . . , Ul are

new unknowns. Then applying (B) from Theorem 2 to this new homogeneous
linear system with respect to all unknowns U1, . . . , Ul, Z1, . . . , Zk we get the
required estimations for the number of generators of Jν and the degrees of these
generators. The lemma is proved.

COROLLARY 1 Let (ai,1, . . . , ai,l), 1 6 i 6 l, be from the beginning of the
section and the integer N be from Lemma 11. Then for every integer m > 0 the
F–linear space

Am+N (a1,1, . . . , a1,l) + . . .+Am+N (ak,1, . . . , ak,l) ⊃ Im. (50)

PROOF By Lemma 11 we have (J0)m+N ⊃ XN
0 (JN )m = XN

0 (hI)m. Taking
the affine parts we get (50). The corollary is proved.

Now everything is ready for the proof of Theorem 1. By Lemma 11 and
Lemma 1 there is a system of generators of the module gr(I) with degrees

bounded from above by (dl)2
O(n)

. By Lemma 12 from Appendix 1 the Hilbert

function H(gr(I),m) is stable for m > (dl)2
O(n)

. By (11) Section 2 the Hilbert

function H(I,m) is stable for all m > (dl)2
O(n)

.
Consider the linear order < on the monomials from hAl which is induced

by the linear order < on the monomials from Al, see Section 4. Then the
monomial (i.e., generated by monomials) submodule cI ⊂ cAl is defined, see
Section 4, where cA = F [X0, . . . , Xn, D1, . . . , Dn] is the polynomial ring. By

(24) Section 4 the Hilbert function H(cI,m) is stable for all m > (dl)2
O(n)

.
Hence all the coefficients of the Hilbert polynomial of cI are bounded from

above (dl)2
O(n)

. Therefore, according to Lemma 13 the module cI has a system

of generators with degrees (dl)2
O(n)

. We can suppose without loss of generality
that the last system of generators of cI consists of monomials. The sets of
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monomials from cI and from Hdt(hI) are in the natural degree–preserving one–
to–one correspondence, see Section 4. Therefore, see Section 4, the degrees of
all the elements of a Janet basis of hI with respect to the induced linear order

< are bounded from above by (dl)2
O(n)

. Since the ideal hI is homogeneous the
same bound holds for the degrees of all the elements (they are homogeneous)
of the reduced Janet basis of hI . Hence by Lemma 3 (iii) Section 4 the same
is true for some Janet basis f1, . . . , fm (respectively by Lemma 3 (ii) for the
reduced Janet basis in the case when the initial order < is degree-compatible)
of the module I with respect to the linear order < on the monomials from Al.

It remains to consider the case l = 1 and an arbitrary admissible linear
order <. We need to obtain the estimates for the reduced Janet basis of I in
this case. In the considered case the linear order < is given on the set of pairs
of multiindices (i, j), i, j ∈ Zn

+. Now, see, for example, [13] p. 58, there is a real
ordered field R and a linear form L ∈ R[Y1, . . . , Yn, Z1, . . . , Zn] with all positive
coefficients such that for all pairs (i, j), (i′, j′) of multiindices (i′, j′) < (i, j) if
and only if

L(i− i′, j − j′) = L(i1 − i′1, . . . , in − i′n, j1 − j′1, . . . , jn − j′n) > 0

in the real ordered field R.
Let ψ1 < . . . < ψa be all the monomials in X1, . . . , Xn, D1, . . . , Dn with

nonzero coefficients of the elements f1, . . . , fm and (i(1), j(1)) < . . . < (i(a), j(a))
the corresponding pairs of multiindices. Let ε > 0 be an infinitesimal with
respect to the field R. Now

L(i(s+1) − i(s), j(s+1) − j(s)) > ε, 1 6 s 6 a− 1 (51)

in the field R(ε). Let U =
∑

16w6n(uwYw + vwZw) be a generic linear form
in Y1, . . . , Yn, Z1, . . . , Zn, i.e., the family {uw, vw}16w6n of coefficients of U has
transcendency degree 2n over R(ε). Consider the system of linear inequalities
with coefficients from Q[ε] with respect to uw, vw, 1 6 w 6 n,





U(i(s+1) − i(s), j(s+1) − j(s)) > ε, 1 6 s 6 a− 1,
uw > ε, 1 6 w 6 n,
vw > ε, 1 6 w 6 n.

(52)

Denote by Kε the set of solutions of system (52) from R(ε)2n. By (51) and since
all the coefficients of the linear form L are positive system (52) has a solution
in R(ε)2n. The left parts of the inequalities from system (52) are linear forms
in uw, vw, 1 6 w 6 n, with integer coefficients. Denote them by Q1, . . . , Qµ,
µ = a− 1 + 2n. Notice that the absolute values of the coefficients of the linear

forms Q1, . . . , Qµ are bounded from above by d2O(n)

.
Let us show that there are indices 1 6 w1 < . . . < ws 6 µ, s 6 2n,

such that Z(Qw1 − ε, . . . , Qws
− ε) ⊂ Kε (here Z(Qw1 − ε, . . . , Qws

− ε) is the
set of all common zeroes of the polynomials Qw1 − ε, . . . , Qws

− ε in R(ε)2n)
and the linear forms Qw1 , . . . , Qws

are linearly independent over Q. Indeed,
one can construct Qw1 , . . . , Qws

recursively choosing subsequently Qwα
, α >

1, such that Z(Qwα
− ε) has a nonempty intersection with the boundary of

Z(Qw1 − ε, . . . , Qwα−1 − ε) ∩Kε (we leave the details to the reader).
Solving the linear system Qw1 − ε = . . . = Qws

− ε = 0 we see that there
is a point (u′w, v

′
w)16w6n ∈ Kε, such that u′w = awε/c, v

′
w = bwε/c where
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all aw, bw, c are positive integers with absolute values bounded from above by

d2O(n)

. Put ε∗ = 1, u∗w = aw/c and v∗w = bw/c, 1 6 w 6 n. Consider (52) as
a linear system with respect to all uw, vw and ε. Then u∗w, v

∗
w and ε∗ > 0 is a

solution of (52) from Q2n+1. Set L∗ = c
∑

16w6n(u∗wYw + v∗wZw).
Now L∗ ∈ Z[Y1, . . . , Yn, Z1, . . . , Zn] is linear form with all positive integer

coefficients bounded from above by d2O(n)

such that

L∗(i(s+1) − i(s), j(s+1) − j(s)) > 0, 1 6 s 6 a− 1. (53)

We shall suppose without loss of generality that Hdt(f1), . . . ,Hdt(fm) is the
family of leading monomials of the reduced Janet basis f ′

1, . . . , f
′
m of the mo-

dule I with respect to the linear order <, and Hdt(f1) > . . . > Hdt(fm). For
any g ∈ A put λ(g) = L∗(i, j) where Hdt(g) = gi,jX

iDj , 0 6= gi,j ∈ F . Then
(53) and the definitions imply that λ(fw) = λ(f ′

w) for all 1 6 w 6 m. Hence

all λ(f ′
w) are bounded from above by d2O(n)

. But obviously deg f ′
w 6 λ(f ′

w),
1 6 w 6 m. Theorem 1 is proved for Weyl algebra.

9 The case of algebra of differential operators

Extending the ground field F we shall suppose without loss of generality that
the field F is infinite. Denote by B = F (X1, . . . , Xn)[D1, . . . , Dn] the algebra of
differential operators. Recall that A ⊂ B and hence relations (2) are satisfied.
Further, each element f ∈ B can be uniquely represented in the form

f =
∑

j1,...,jn>0

fj1,...,jn
Dj1

1 . . . Djn
n =

∑

j∈Z
n
+

fjD
j ,

where all fj1,...,jn
= fj ∈ F (X1, . . . , Xn) and F (X1, . . . , Xn) is a field of rational

functions over F . Let us replace everywhere in Section 1 and Section 2 A,
X iDj , deg f = degX1,...,Xn,D1,...,Dn

f , dimF M , ev,i,j , fv,i,j ∈ F , (v, i, j), (i, j),

(i′, j′), (i′′, j′′) by B, Dj , deg f = degD1,...,Dn
f , dimF (X1,...,Xn)M , ev,j , fv,j ∈

F (X1, . . . , Xn), (v, j), j, j′, j′′ respectively. Thus, we get the definition of the
Janet basis and all other objects from Section 1 for the case of the algebra of
differential operators.

We define the homogenization hB of B similarly to hA, see Section 3. Namely,
hB = F (X1, . . . , Xn)[X0, D1, . . . , Dn] given by the relations

XiXj = XjXi, DiDj = DjDi, for all i, j,
DiXi −XiDi = X0, 1 6 i 6 n, XiDj = DjXi for all i 6= j.

(54)

Further, the considerations are similar to the case of the Weyl algebra A with
minor changes. We leave them to the reader. For example, Theorem 2 for
the case of the algebra of differential operators is the same. One need only to
replace everywhere in its statement A, hA and Xn by B, hB and Dn respectively.
Thus, one can prove Theorem 1 for the case when A is an algebra of differential
operators (but now it is B). Theorem 1 is proved completely.

One can consider a more general algebra of differential operators. Let F be
a field with n derivatives D1, . . . , Dn. Then Kn = F [D1, . . . , Dn] is the algebra
of differential operators. Similarly one can define its homogenization hKn by
means of adding the variable X0 satisfying the relations

DiDj = DjDi, X0Di = DiX0, Dif − fDi = fDi
X0
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for all i, j and all elements f ∈ F where fDi
∈ F denotes the result of the

application of Di to f . Following the proof of Theorem 1 one can deduce the
following statement.

REMARK 8 Bounds similar to the one from Theorem 1 hold for Kn (in place
of the algebra of differential operators A).

Appendix 1: Degrees of generators of a graded

module over a polynomial ring and its Hilbert

function.

We give a short proof of the following result, cf. [1], [12], [6], [4]. Let A =
F [X0, . . . , Xn] be a graded polynomial ring. Homogeneous elements of A are
homogeneous with respect to X0, . . . , Xn polynomials.

LEMMA 12 Let I ⊂ Al be a graded A-module, and I is given by a system
of generators f1, . . . , fm of degrees less than d where d > 2. Then the Hilbert

function H(Al/I,m) = dimF (Al/I)m is stable for m > (dl)2
O(n+1)

. Further,
all the coefficients of the Hilbert polynomial of Al/I are bounded from above by

(dl)2
O(n+1)

.

PROOF Extending the ground field F we shall suppose without loss of gen-
erality that the field F is infinite. Denote M = Al/I. Let L ∈ F [X0, . . . , Xn]
be a linear form in general position. Denote by K the kernel of the mor-
phism M → M of multiplication to L. We have K = {z ∈ Al : Lz =∑

16i6m fizi,& zi ∈ A}. Hence solving a linear system over A, we get that
K has a system of generators g1, . . . , gµ with degrees bounded from above by

(dl)2
O(n+1)

. Let P be an arbitrary associated prime ideal of the module M
such that P 6= (X0, . . . , Xn). Since L is in general position we have L 6∈ P.
Hence P is not an associated prime ideal of K. Therefore, KN = 0 for all
sufficiently big N . So XN

i gj ∈ I for sufficiently big N and all i, j. Hence
gj =

∑
16i6m yj,ifi where yj,i ∈ F (Xi)[X0, . . . , Xn]. Solving a linear system

over the ring F (Xi)[X0, . . . , Xn] we get an estimation for denominators from
F [Xi] of all yj,i. Since all gj and fi are homogeneous we can suppose without
loss of generality that all the denominators are XN

i . Thus, we get an upper

bound for N . Namely, N is bounded from above by (dl)2
O(n+1)

.
Therefore, the sequence

0 →Mm →Mm+1 → (M/LM)m+1 → 0 (55)

is exact for m > (dl)2
O(n+1)

. But M/LM = Al/(I + LAl) is a module over
a polynomial ring of F [X0, . . . , Xn]/(L) ≃ F [X0, . . . , Xn−1]. Hence by the
inductive assumption the Hilbert function H(Al/(I + LAl),m) is stable for

m > (dl)2
O(n)

. Now (55) implies that the Hilbert function H(Al/I,m) is stable

for m > (dl)2
O(n+1)

.

Obviously for m < (dl)2
O(n+1)

the values H(Al/I,m) are bounded from

above by (dl)2
O(n+1)

. Hence by the Newton interpolation all the coefficients of

the Hilbert polynomial of Al/I are bounded from above by (dl)2
O(n+1)

. The
lemma is proved.
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We need also a conversion of Lemma 12.

LEMMA 13 Let I ⊂ Al be a graded A-module. Assume that the Hilbert func-
tion H(Al/I,m) = dimF (Al/I)m is stable for m > D and all absolute values
of the coefficients of the Hilbert polynomial of the module Al/I are bounded
from above by D for some integer D > 1. Then I has a system of generators

f1, . . . , fm with degrees D2O(n+1)

.

PROOF Let us choose f1, . . . , fm to be the reduced Gröbner basis of I with
respect to an admissible linear order < on the monomials from Al, cf. the
definitions from Section 1 and Section 4. The degree of a monomial from Al is
defined similarly to Section 1 and Section 4. We shall suppose additionally that
the considered linear order is degree compatible, i.e., for any two monomials
z1, z2 if deg z1 < deg z2 then z1 < z2. For every z ∈ Al the greatest monomial
Hdt(z) is defined. Further the monomial module Hdt(I) is generated by all
Hdt(z), z ∈ I. Now Hdt(f1), . . . ,Hdt(fm) is a minimal system of generators of
Hdt(I) and deg fi = deg Hdt(fi) for every 1 6 i 6 m. The values of Hilbert
functions H(Al/Hdt(I),m) = H(Al/I,m) coincide for all m > 0, cf. Section 4.
Thus, replacing I by Hdt(I) we shall assume in what follows in the proof that
I is a monomial module.

For every 1 6 i 6 l denote by Ai ⊂ Al the i-th direct summand of Al. Put
Ii = I ∩ Ai, 1 6 i 6 l. Then I ≃ ⊕16i6lIi since I is a monomial module.
Further, for every 1 6 α 6 m there is 1 6 i 6 l such that fα ∈ Ii. Let us
identify Ai = A. Then Ii ⊂ A is a homogeneous monomial ideal. The case
Ii = A is not excluded for some i. For the Hilbert functions we have

H(Al/I,m) =
∑

16i6l

H(A/Ii,m), m > 0. (56)

If (A/Ii)D = 0 for some i then (A/Ii)m = 0 for every m > D. In this case the
ideal Ii is generated by

∑
06m6D(Ii)m. Hence in (56) for the values m > D one

can omit this index i in the sum from the right part. Therefore, in this case the
proof is reduced to a smaller l. So we shall assume without loss of generality
that (A/Ii)D 6= 0, 1 6 i 6 l.

Further, we use the exact description of the Hilbert function of a homoge-
neous ideal, see [4] Section 7. Namely there are the unique integers bi,0 > bi,1 >

. . . > bi,n+2 = 0 such that

H(A/Ii,m) =

(
m+ n+ 1

n+ 1

)
− 1 −

∑

16j6n+1

(
m− bi,j + j − 1

j

)
(57)

for all sufficiently big m and

bi,0 = min{d : d > bi,1 & ∀m > d (57) holds }. (58)

This description (without constants bi,0) is originated from the classical paper
[11]. The integers bi,0, . . . , bi,n+2 are called the Macaulay constants of the ideal
Ii. Besides that,

h(i,m) = H(A/Ii,m) −

(
m+ n+ 1

n+ 1

)
+ 1 +

∑

16j6n+1

(
m− bi,j + j − 1

j

)
> 0

(59)
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for every m > bi,1, see [4] Section 7. By Lemma 7.2 [4] for all 1 6 α 6 m if
fα ∈ Ii then deg fα 6 bi,0. Hence it is sufficient to prove that all bi,0, 1 6 i 6 l,

are bounded from above by D2O(n+1)

.
By (56) and (57) the coefficient at mn−j , 0 6 j 6 n, of the Hilbert polyno-

mial of Al/I is

µj

(n+ 1 − j)!

∑

16i6l

bi,n+1−j +
∑

06v6j−1

∑

16i6l

1

(n+ 1 − v)!
µj,v(bi,n+1−v), (60)

where 0 6= µj is an integer and µj,v ∈ Z[Z], 0 6 v 6 j − 1, is a polynomial
with integer coefficients and the degree deg µj,v = j− v+1. Moreover, |µj | and
absolute values of all the coefficients of all the polynomials µj,v are bounded from

above by, say, 2O(n2). Denote bj =
∑

16i6l bi,j , 0 6 j 6 n+2. By the condition

of the lemma all the coefficients of the Hilbert polynomial of Al/I are bounded
from above by D. Hence from (60) one can recursively estimate bn+1, bn, . . . , b1.

Namely, bn+1−j = (2n2

lD)2
O(j+1)

, 0 6 j 6 n. Hence b1 = (lD)2
O(n+1)

. Notice
that bi,1 6 max16i6l bi,1 6 b1 for every 1 6 i 6 m.

Now let m > max16i6l bi,1. By (59) if h(i,m) 6= 0 for some 1 6 i 6 l then
m < D, i.e., m is less than the bound D for the stabilization of the Hilbert
function of Al/I. Thus, bi,0 6 max{bi,1, D} by (58). Hence bi,0 is bounded

from above by (lD)2
O(n+1)

.
We have (A/Ii)D 6= 0 for every 1 6 i 6 l. This implies H(Al/I,D) > l.

Denote by cj the j-th coefficient of the Hilbert polynomial of the module Al/I.
Now |cj |Dj > l/(n + 1) for at least one j. Hence Dn+1(n + 1) > l by the

condition of the lemma. This implies that l2
O(n+1)

is bounded from above by

D2O(n+1)

. Therefore, bi,0 is bounded from above by D2O(n+1)

. The lemma is
proved.

Appendix 2: Bound on the Gröbner basis of a

monomial module via the coefficients of its Hilbert

polynomial

Denote by Cl = Zn
+ ∪ · · · ∪ Zn

+ the disjoint union of l copies of the semigroup
Zn

+ = {(i1, . . . , in) ∈ Zn : ij > 0, 1 6 j 6 n}. A subset of Cl which intersects
each disjoint copy of Zn

+ by a semigroup closed with respect to addition of
elements from Zn

+ is called an ideal of Cl. Clearly, I corresponds to a monomial
submodule MI in the free module (F [X1, . . . , Xn])l. Any ideal I in Cl has a
unique finite Gröbner basis V = VI corresponding to the Gröbner basis of MI .
Denote T = Cl \ I. The degree of an element u = (k; i1, . . . , in) ∈ Cl, 1 6

k 6 l is defined as |u| = i1 + · · · + in. The degree of a subset in Cl is defined
as the supremum of the degrees of its elements. The Hilbert function HT (z)
equals to the number of vectors u ∈ T such that |u| 6 z. Hence HT (z) =∑

06s6m csz
s, z > z0 for suitable z0 and integers c0, . . . , cm where the degree

m 6 n. Denote c = max06s6m |cs|s! + 1.

PROPOSITION 1 (cf. [6], [12], [4]). The degree of V does not exceed

(cn)2
O(m)

.
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PROOF An s-cone, 0 6 s 6 n, we call a subset of a k-th copy of Zn
+ in Cl

for a certain 1 6 k 6 l of the form

P = {Xj1 = i1, . . . , Xjn−s
= in−s} (61)

for suitable 1 6 j1, . . . , jn−s 6 n. We define the degree of s-cone (61) as
|P | = i1 + · · · + in−s (note that this definition is different from the one in [4]).
By a predecessor of (61) we mean each s-cone in the same k-th copy of Zn

+ of
the type

{Xj1 = i1, . . . , Xjp−1 = ip−1, Xjp
= ip − 1, Xjp+1 = ip+1, . . . , Xjn−s

= in−s}
(62)

for some 1 6 p 6 n− s, provided that ip > 1. Fix an arbitrary linear order on
s-cones compatible with the relation of predecessors.

By inverse recursion on s we fill gradually T (as a union) by s-cones with
0 6 s 6 m. For the base we start with s = m. Assume that a current union
T0 ⊂ T of m-cones is already constructed (at the very beginning we put T0 = ∅)
and an m-cone of the form (61) with s = m is the least one (with respect to
the fixed linear order on m-cones) which is contained in T and not contained
in T0. Observe that each predecessor of this m-cone was added to T0 at earlier
steps of its construction. Since the total number of m-cones added to T0 does
not exceed cmm! < c we deduce that the degree of every such m-cone is less
than cmm! (taking into account that the very first m-cone added to T0 has the
degree 0).

For the recursive step assume that the current T0 is a union of all possible
m-cones, (m− 1)-cones, . . ., (s+ 1)-cones and perhaps, some s-cones. This can
be expressed as deg(HT −HT0) 6 s. Again as in the base take the least s-cone
of the form (61) which is contained in T and not contained in T0. Observe that
each predecessor of the type (62) of this s-cone is contained in an appropriate
r-cone Q, r > s, such that Q was added to T0 at earlier steps of its constructing
and Q ⊂ {Xjp

= ip − 1}. Hence

|Q| > ip − 1. (63)

The described construction terminates when T0 = T . Denote by ts the number
of s-cones added to T0 and by ks the maximum of their degrees. We have seen
already that tm, km < c.

Now by inverse induction on s we prove that ts, ks 6 (cn)2
O(m−s)

. To this end
we introduce a relevant semilattice on the set of cones. Let C = {Cα,β}α,β, 0 6

β 6 γα be a family of cones of the form (61) where dimCα,β = α. By an α-
piece we call an α-cone being the intersection of a few cones from C. All the
pieces constitute a semilattice L with respect to the intersection with maximal
elements from C. We treat L also as a partially ordered set with respect to the
inclusion relation. Clearly, the depth of L is at most n+1. Our nearest purpose
is to bound from above the size of L. For the sake of simplifying the bound we

assume (and this will suffice for our goal in the sequel) that γα 6 (cn)2
O(m−α)

for s 6 α 6 m and γα = 0 when α < s, although one could write a bound in
general in the same way. Besides that we assume that the constant in O(. . .) is
sufficiently big. In what follows all the constants in O(. . .) coincide.

LEMMA 14 Suppose that for all s 6 α 6 m the number γα 6 (cn)2
O(m−α)

,
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see above. Then the number of α-pieces in L does not exceed (cn)2
O(m−α)+1 for

s 6 α 6 m or (cn)2
O(m−s)(s−α+1)+1 when α < s.

PROOF For each α-piece choose its arbitrary irredundant representation as
the intersection of the cones from C. Let δ be the minimal dimension of these
cones. Then this intersection contains at most δ − α + 1 cones. Therefore, the
number of possible α-pieces does not exceed

∑

max{α,s}6δ6m

(cn)2
O(m−δ)(δ−α+1),

that proves the lemma.
Now we come back to estimating ts, ks by inverse induction on s. Let in the

described above construction the current T0 is the union of all added m-cones,
(m − 1)-cones, . . ., s-cones. Denote this family of cones by C and consider the
corresponding semilattice L (see above). Our next purpose is to represent T0 as
a Z-linear combination of the pieces from L by means of a kind of the inclusion-
exclusion formula. We assign the coefficients of this combination by recursion
in L. As a base we assign 1 to each maximal piece, so to the elements of C. As a
recursive step, if for a certain piece P ∈ L the coefficients are already assigned
to all the pieces greater than P , we assign to P the coefficient ǫP in such a way
that the sum of the assigned coefficients to P and to all the greater pieces equals
to 1. Therefore

T0 =
∑

P∈L

ǫPP

where the sum is understood in the sense of multisets. Hence

HT0(z) =
∑

P∈L

ǫP

(
z − |P | + dimP

dimP

)
(64)

for large enough z. We recall that deg(HT −HT0) 6 s− 1.
Now we majorate the coefficients |ǫP | by induction in the semilattice L. The

inductive hypothesis on tα 6 (cn)2
O(m−α)

, s 6 α 6 m and Lemma 14 imply that

∑

dim P=λ

|ǫP | 6 (cn)2
O(m−λ)

, s− 1 6 λ 6 m.

by inverse induction on λ and the definition of ǫP . In fact, one could majorate
in a similar way also

∑
dim P=λ |ǫP | when λ < s− 1, but we don’t need it. The

inductive hypothesis on kα 6 (cn)2
O(m−α)

, s 6 α 6 m and (64) entail that

the coefficient of HT0(z) at the power zα does not exceed (cn)2
O(m−α)

, s−1 6

α 6 m (actually, due to the inequality deg(HT −HT0) 6 s− 1 the coefficients
at the powers zα for s 6 α 6 m are less than c). In particular, the coefficient at

the power zs−1 does not exceed (cn)2
O(m−s+1)

. Denote HT −HT0 = ηzs−1 + · · ·.
By constructing T0 we add to it ts−1 = η(s − 1)! of (s − 1)-cones. Hence

ts−1 6 (cn)2
O(m−s+1)

. This justifies the inductive step for ts−1.

Let us prove that ks−1 6 (cn)2
O(m−s+1)

. We observe that for each (s−1)-cone
P added to T0 either every its predecessor is contained in a cone of dimension
at least s, or some its predecessor is an (s− 1)-cone as well. In the former case
|P | 6 (maxs6α6m kα +1)(n− s+1) (due to (63)), while in the latter case |P | is
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greater by 1 than the degree of this predecessor Hence ks−1 6 (maxs6α6m kα +
1)(n− s+ 1) + ts−1. Finally, we exploit the inductive hypothesis for km, . . . , ks

and the just obtained inequality on ts−1.

To complete the proof of the proposition it suffices to notice that for any
vector from the basis V treated as an 0-cone, each its predecessor of the type (62)
for s = 0 is contained in an appropriate r-cone from the described construction,
whence the degree of V does not exceed (max06α6m kα + 1)n again due to (63)
(cf. above).
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