
ALGORITHMIC ASPECTS OF GENETIC SEQUENCES
AND RELATIVE KOLMOGOROV COMPLEXITY

Alla Grigorieva1, Dima Grigoriev2

1 St.Petersbourg University, Universitetskaya nab., 7/9,
St.Petersbourg, 199164, RUSSIA

2IRMAR, Université de Rennes Beaulieu, 35042, Rennes, FRANCE
e-mail: dima@math.univ-rennes1.fr

URL: http://name.math.univ-rennes1.fr/dimitri.grigoriev

Abstract: In this paper we use the concept of the relative Kolmogorov com-
plexity for searching fast computable short representations of finite sequences.
We investigate different types of regularities of such sequences in order to ob-
tain polynomial-time algorithms for certain versions of the relative Kolmogorov
complexity or for their majorants, which can be applied to genetic sequences.

AMS Subject Classification: 68Q30

Key words: relative Kolmogorov complexity, computational complexity, in-
formation retrieval.

1. Introduction

In this paper two versions of the relative Kolmogorov complexity of finite
sequences are introduced. We use structural information, different types of
repetitions of the motifs, edit operations (like insertion, deletion), complemen-
tary words (which arise while studying DNA sequences) in order to obtain
their fast computable descriptions.

The fundamental definition of the Kolmogorov complexity K(x) of a finite
object x is a minimum of lengths of all the programs (descriptions of the object)
that output this object. It is well known that the Kolmogorov complexity is
uncomputable Li et al. [7], Zvonkin et al. [12]. In Rivals et al. [9] an average
optimal representation based on the Kolmogorov complexity was explored.

We use the idea which lies behind the Kolmogorov complexity, i.e. to find
optimal (with respect to certain conditions) and necessary computable (and
moreover, efficiently computable) representations of an object by specifying
different sets of admissible operations in the underlying programs Jost [6],
Li et al. [7], Zvonkin et al. [12]. These programs use the information about
different types of the object’s regularities which are applied for compressing
the description of genetic sequences Sagot et al. [10]. This leads to the concept
of the relative Kolmogorov complexity.

Programs of the type F1 for a finite word x of a length n contain the oper-
ations of the concatenation and four types of repetitions on the words (more
precisely, repetitions of r-regular subwords). The length of the program is
usually the sum of the weights of its operations, we assume all the weights to
be equal to 1.

Programs of the type F2 use all the operations from the type F1 and also
insertions and deletions of the letters. We can assume without loss of generality
that x is a word over the alphabet {0, 1}. Two variants KF1(x) and KF2(x) of
the relative Kolmogorov complexity of the word x are introduced. The relative
Kolmogorov complexity was studied not only for (linear) strings, but also for
some 2-dimensional objects Grigorieva et al. [3, 4]. An algorithm for computing
KF1(x) with the quadratic time complexity O(n2) is designed, where n = |x|
denotes the length of the word x. For KF2(x) we produce a majorant which is
computable within time complexity O(n6).

2. Basic definitions

Let X∗ = {0, 1}∗ be the set of all the finite strings x over the alphabet
{0, 1}. Let x be a word of a length n, x = x1 . . . xn, n ≥ 1, when n = 0 the
word x is empty. Denote by xi,j the segment

xi,j = xixi+1 . . . xj if i ≤ j or
xi,j = xjxj−1 . . . xi if i ≥ j.
When x = x1 . . . xn, y = y1 . . . yk are two words then x = y if n = k and

xi = yi, 1 ≤ i ≤ n. As usual, we call the word y the inverse of x when
y = xn . . . x1 and denote y = xT . The word y is a subword of x (we denote this
by y ⊂ x) if there exist 1 ≤ i ≤ j ≤ n such that y = xi,j. The word y is an
inverse subword of x (in this case yT ⊂ x) if y = xi,j for suitable 1 ≤ j ≤ i ≤ n.

We also study the finite words in the alphabet of nucleotides Σ =
{A,C,G, T} where (A, T) and (C,G) are Watson-Crick base pairs Carbone
et al. [1], Sagot et al. [10]. The letters of the pair (A, T) are called complemen-
tary (as well as the letters (C,G)). These letters name the four nucleotides
from which the DNA is composed.

Let us introduce the notion of a word p being a r-regular subword of a word
v (generalising the relation p ⊂ v) and denote this relation by p ≺ v taking

into account 4 following cases. Thus, p ≺ v holds if either p ⊂ v (i.e. either p is
a subword of v), either pT ⊂ v (i.e. either p is an inverse subword of v), either
p ⊂ v where p is obtained from p by means of transposing the complementary
letters in the base pairs (A, T) and (C,G), or pT ⊂ v (i.e. either p or p is either
a subword or an inverse subword of v, respectively).

3. Regularities in genetic sequences and
relative Kolmogorov complexity

Let x = yz, i.e. the word x = x1 . . . xn is the concatenation of the words
y = y1 . . . yi−1 and z = z1 . . . zm, n = i − 1 + m, in a particular case when z
consists of a single letter a the concatenation becomes x = ya. The subword y
of x is called its prefix, and z is called the suffix of x. For integers k, s we denote
a subword xk,k+s = xkxk+1 · · ·xk+s of x and by xk+s,k = xk+sxk+s−1 · · ·xk+1xk

an inverse subword of x.

Introduce the following operations on words:
Insertion of a word v into the word x starting with the position i, i.e.
Ii[v](x) = yvz

where x = yz, y = x1 . . . xi−1. Its particular case is the insertion Ii[a](x) of a
letter a into the word x at the position i (i.e. v = a in the previous notations).

Deletion of a subword xi,i+k from the word x we define as follows:
Di,i+k(x) = x1,i−1xi+k+1,n, 0 ≤ k ≤ i + k ≤ n.

In case when i+ k = n we have in the above notations that Di,n(x) = y, thus,
a subword z is deleted. A particular case of the deletion is the deletion Dj(x)
of a letter from the position j (i.e. k = 0 in the previous notations).

Repetition of a subword xi,i+k of the word x is the concatenation of x and
of xi,i+k:

Ri,i+k(x) = xxi,i+k.

Repetition of the inverse of a subword xi,i+k of the word x is the con-
catenation of x and of the inverse xi+k,i:

Ri+k,i(x) = xxi+k,i.

All the listed types of regularities allows one to use important structural
information for the purpose of an algorithmic approach to genetic sequences
Crochemore et al. [2], Pevzner [8], Sagot et al. [10].

In case of the alphabet Σ = {A,C,G, T} for the nucleic acid sequences we
regard the following analogs of the defined above operations. In addition, for
a word x in the alphabet {A,C,G, T} denote here by x the result of transpo-
sitions of the letters in the base pairs A, T and C,G, respectively.

Let us introduce some versions of the relative Kolmogorov complexity and
estimate the time complexity of their calculation.

Denote by F1 the set of the following three operations on words x =
x1 . . . xn, |x| = n:

1) Ia(x) = xa is the concatenation of the word x and a letter a;

2) Rl,m(x) = xxl,m is the concatenation of the word x and the segment xl,m

such that xl,m ≺ x;

3) Rl,m(x) = xxl,m, in this case we also introduce two types of repetitions
of the direct and inverse subwords with the difference that transpositions are
made in all the base pairs A, T and C,G.

Now for a word x we can use a program (or a description of x) over the set
F1 which one can treat as a word f ∈ F ∗1 in the alphabet F1. We introduce a
metaprogram P1 : F ∗1 → X∗ which for a program f outputs its result x ∈ X∗.
The weights of these operations I, R,R ∈ F1 in the definition of the relative
Kolmogorov complexity KP1 (with respect to P1) equal to 1. More precisely,
Grigorieva [5]

KP1(x) = min{|f | : P1(f) = x, f ∈ F ∗1 }

Definition 3.1 Define a function C1(x) for the words x by recursion on
their lengths as follows relying on two auxiliary functions:

C
(1)
1 (x) = min{C1(u) + |s|+ 1}

where min ranges over all the representations of the word x in the form x = uvs
such that v ≺ u, provided that |v| ≥ 1. In order to take into account the case
|v| = 0 we put

C
(0)
1 (x) = min{C1(u) + |s|}

where min ranges over all the representations in the form x = us.
Finally, C1(x) = min{C(1)

1 (x), C
(0)
1 (x)}.

Lemma 3.2 C1(x) = KP1(x) for any word x.

Proof goes by induction on n = |x|. First we show the inequality C1(x) ≥
KP1(x). Consider one of the minimal representations of the word x = vps, i.e.
C1(x) = C1(v) + |s|+ 1 where p ≺ v. Then by the inductive hypothesis we get

C1(x) ≥ KP1(v) + |S|+ 1 ≥ KP1(x)

We can describe the word x by the program that outputs first the prefix v,
after that repeats an r-regular subword p of v and finally outputs all the letters
of the suffix s using |s| operations.

Now we have to verify the inverse inequality C1(x) ≤ KP1(x). Among the
minimal programs for the word x we look for the presentation x = v0p0s0 such
that p0 ≺ v0, |p0| ≥ 1 and

KP1(x) = KP1(v0) + |s0|+ 1

For this purpose we choose the last segment of the word x being a repetition
of a certain r-regular subword of the prefix v0.

By the definition, we get

C1(x) ≤ C1(v0) + |s0|+ 1 ≤ KP1(v0) + |s0|+ 1 = KP1(x),

provided that C1(x) = C
(1)
1 (x) (see definition of C1 above).

In case of C1(x) = C
(0)
1 (x), i.e. |p0| = 0 the proof goes in a similar way. 2

The (evident) upper bound on the time complexity for calculating KP1(x)
based on the definition of C1 is exponential.

Now we propose a polynomial time algorithm to calculate the relative Kol-
mogorov complexity KP1(x) of a genetic sequence x.

Definition 3.3 For a word x we consider a representation x = vp with the
longest possible suffix p such that p ≺ v. Then we define by recursion on the
length of a word x a function

C2(x) = C2(v) + 1
if |p| ≥ 1, and if |p| = 0 we denote x = x′a where a is the last letter of x, then

C2(x) = C2(x
′) + 1.

Lemma 3.4 C2(x) = C1(x)

Proof. Obviously, we have C2(x) ≥ C1(x).
We establish the inverse inequality C2(x) ≤ C1(x) by induction on n = |x|.

Let x = v0p0s0, p0 ≺ v0, see the definition of the function C1 (without loss of
generality one can assume that |s0| ≥ 1), such that for this representation of
x holds the equality

C1(x) = C1(v0) + |s0|+ 1.
We also take a representation x = vp, p ≺ v for which C2(x) = C2(v) + 1,
see the definition of the function C2 (one can assume that |p| ≥ 1). Three
following cases can occur:

1) |p| ≤ |s0|. In this case x = v0p0s0 = v0p0s
′
0p and therefore, one can diminish

the length of the program f ∈ F ∗1 such that P1(f) = x by means of repeating
one of the r-regular subwords of v0;

2) |s0| < |p| < |s0|+ |p0|. Then
C2(x) = C2(v) + 1 ≤ C1(v) + 1 ≤ C1(v0) + 2 ≤ C1(v0) + 1 + |s0| = C1(x)

3) |p| ≥ |p0|+ |s0|. Then
C2(x) = C2(v) + 1 ≤ C1(v) + 1 ≤ C1(v0) + 1 + |s0| = C1(x). 2.

One can bound the time complexity T2(n) of an algorithm which computes
C2(x) (where |x| = n) according to its recurisive definition, by T2(n) ≤ O(n2)
because of the recursive formula

T2(n) ≤ T2(n− 1) + cn

for a suitable constant c > 0 due to the linear-time algorithm for pattern
matching (see e.g. Slissenko [11]).

Thus, we have designed a polynomial-time algorithm for a version of the
relative Kolmogorov complexity based on the operations of repetitions and its
appropriate modifications.

4. Affinity of genetic sequences and
relative Kolmogorov complexity

We introduce a set of the following operations on the words:

F2 = F1 ∪ Ii[a](x) ∪Dj(x), |x| = n, 1 ≤ i, j ≤ n

i.e. we add to F1 two new operations: insertion and deletion of a letter with
the weights of both operations (for the purpose of definition of a version of the
relative Kolmogorov complexity) equals to 1. If necessary, one could use their
composition, namely, the operation of a substitution Sj[a](x) whose result is
replacing a letter of the word x at the position j by the letter a imposing the
weight of the substitution equal to 2.

In this section we study the relative Kolmogorov complexity involving not
only regularities of genetic sequences, but also affinity of pairs of sequences.

Us usual, the edit distance d(y, z) between the words y, z (let us denote
|y| = k, |z| = l) equals to a minimal number of insertions and deletions needed
to transform y into z. The problem of computing the edit distance is equivalent
to the problem of finding the longest common subsequence s(y, z) of the words
y, z, one has d(y, z) = k + l − 2|s(y, z)| (cf. e.g. Pevzner [8]).

Denote by P2 a metaprogram (or in other words, a decoding algorithm)
P2 : F ∗2 → X∗ which transforms a program over the operations from F2 into
a word x being a result of this program. Then denote by KP2(x) a version of
the relative Kolmogorov complexity with respect to P2. In order to compute
KP2(x) we introduce the following auxiliary function.

Definition 4.5

C3(x) = min{C3(v) + d(v, v′) + d(p, p′) + 1}

where min is taken over all the representations of the form x = v′p′ and the
words p, v such that p ≺ v

Lemma 4.6 1) C3(x) = KP2(x) for any word x;
2) in the definition of C3 it suffices to take min just over the words v of

lengths at most n, i.e. |v| ≤ |x|.

Proof. The first item can be proved similar to the proof of Lemma 3.2.
To prove the item 2) let us fix some representation of the word x = v′p′.

Take words v, p such that v ≺ p for which min is attained for the expression
C3(v) + d(v, v′) + d(p, p′) + 1 in definition 4.5.

Let v = v2p1v3 where the subword p1 is taken from the definition of r-
regular subword of v, i.e. p1 equals to p up to (possible) inversions or taking
complementary letters in the base pairs. One can transform v into v′ and p into
p′, respectively, using d(v, v′) and d(p, p′) operations of insertions and deletions.
One can assume without loss of generality (cf. Pevzner [8]) that in both trans-
formations first the operations of deletions are accomplished followed by the
insertions. Denote by l1 the number of operations of deletions in the sequence
of transformations from v to v′ which are situated at the position correspond-
ing to the letters of p1, i.e. in the range {|v2|+ 1, . . . , |v2|+ |p|}. Denote by l2
the number of operations of deletions in the sequence of transformations from
p to p′.

One can see that in these transformations no letter which corresponds to
the same position in the word p is not deleted, because otherwise one could
delete this letter from the word v, increasing thereby the item C3(v) by at
most by 1, while decreasing each of d(v, v′) and d(p, p′) by 1, thus decreasing
the expression

C3(v) + d(v, v′) + d(p, p′) + 1

which would contradict to its minimality by means of the made choice of p, v.
Hence the number of all deletions l1 + l2 which correspond to the positions of
the word p does not exceed the length of p, i.e. l1 + l2 ≤ |p|. Evidently, we
have |v′| ≥ |v| − l1, |p′| ≥ |p| − l2. Therefore,

|v| ≤ |v′|+ l1 ≤ |v′|+ |p| − l2 ≤ |v′|+ |p′| ≤ |x|

Remark 4.7 1) log2 |x|+ 1 ≤ Ci(x) ≤ |x|, i = 1, 2, 3;
2) A time upper bound of an obvious algorithm based on the described re-

cursive formula for computing C3(x) = KP2(x), |x| = n is O(2n2
).

Since due to the latter remark the time bound for computing the relative
Kolmogorov complexity KP2(x) is exponential it is reasonable to give a certain
majorant for KP2(x) computable within polynomial time. Namely, we define
by recusion the function

C4(x) = min{C4(v) + d1(v, p) + 1}
where min is taken over all the prefixes v of the word x such that x = vp, |v| <
|x| and d1(v, p) = min{d(u, p)} where min ranges over all the words u satisfying
u ≺ v. One can easily prove by recursion on x that C3(x) ≤ C4(x), taking
into account that the definition of C4 is based in fact, on a particular form of
sequences (programs) of operations from F2. On the other hand, the direct use
of the recursion for defining C4 allows one to compute C4(x) for |x| ≤ n relying
on the linear time algorithm for string matching (see e.g. Slissenko [11]). Let
us summarize the established above on C4 in the following lemma.

Lemma 4.8 1) KP2(x) ≤ C4(x) for any word x;
2) One can compute C4(x) within time O(|x|6).

Thus, we have considered few algorithmic approaches to the relatively op-
timal computable descriptions of genetic sequences and their transformations.

References

[1] A. Carbone and M. Gromov, Mathematical slices of molecular biology,
Preprint IHES, (2001), 1–85.

[2] M. Crochemore, C. Hancart and T. Lecroq, Algorithmique du texte, Vuib-
ert (2001).

[3] R. Granvoskaya, I. Bereznaya and A. Grigorieva, Perception of form and
forms of perception, Lawrence Erlbaum Ass. Publishers, Hillside, N.J.
(1987).

[4] R. Granvoskaya, I. Bereznaya and A. Grigorieva, Perceptual complexity of
form, Cognition and brain theory, 4 (1981).

[5] A. Grigorieva, Complexity mesures of the words based on string-matching
and edit distance, J. of Soviet Mathematics, 22 (1983), 1289–1292.

[6] J. Jost, On the notion of complexity, Theory Bioscience, 117 (1998), 161–
171.

[7] M. Li and P. Vitanyi, Introduction to Kolmogorov complexity and its ap-
plications, Springer (1997).

[8] P. Pevzner, Computational molecular biology, MIT Press (2000).

[9] E. Rivals and J.-P. Delahaye, Optimal representation in average using
Kolmogorov complexity, Theoret. Comput. Sci., 200 (1998), 261–287.

[10] M.-F. Sagot and A. Viari, Flexible identification of structural objects in nu-
cleic acid sequences: palindromes, mirror repeats, pseudoknots and triple
helices, Lect. Notes in Comput. Sci., 1264 (1997), 224–246.

[11] A. Slissenko, Linguistic considerations of devising effective algorithms, in
Proc. International Congress of Mathematicians (1984), 347–357.

[12] A. Zvonkin and L. Levin, The complexity of finite objects and the algo-
rithmic concepts of information and randomness, Russian Mathematical
Surveys, 25 (1970), 83–124.

