
Loewy- and Primary-Decompositions of D-Modules

D. Grigoriev
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Abstract

Starting from the well-known factorization of linear ordinary differential equations, we define
the generalized Loewy and primary decomposition for a D-module. To this end, for any module I,
overmodules J ⊇ I are constructed. They subsume the conventional factorization as special cases.
Furthermore, the new concept of the module of relative syzygies Syz(I, J) is introduced. The
invariance of this module and its solution space w.r.t. the set of generators is shown. We design an
algorithm which constructs the Loewy and primary decompositions for finite-dimensional and some
kinds of more general D-modules. Also an algorithm is exhibited which describes all isomorphisms
of finite-dimensional D-modules. These results are applied for solving various second- and third-
order linear partial differential equations.

Introduction

The concept of factorization of a linear ordinary differential equation (lode) originally goes back to
Beke [1] and Schlesinger [27]. Loewy [18] extended it and introduced a unique decomposition of any
lode into largest completely reducible factors, i. e. factors which are the least common multiple of
irreducible right factors. Similar as in the algebraic case, if such a nontrivial decomposition may be
found, the solution procedure is faciliated because the order of the equations to be solved is lowered.
Algorithms for factoring a lode have also been described by Schwarz [29] and, with an improved
complexity bound, by Grigoriev [8]. A survey on factorization of lode’s may be found in the book by
Singer and van der Put [22].

Factoring linear partial differential equations (lpde’s) is much more difficult. So far there has
been no common agreement on what to understand by factoring lpde’s in general. A first attempt
to generalize the above theory was undertaken by Tsarev [35]. The paper by Li et al. [17] consid-
ered factoring those lpde’s which have a finite-dimensional solution space, it is achieved by a fairly
straightforward extension of the factorization of lode’s. Recently in [12] the problem of factoring a
single lpde was studied. An algorithm was designed for factoring so-called separable lpde’s, but the
general factorization problem remained open, see also [36].

Here an algebraic approach is suggested which subsumes the conventional factorizations and its
corresponding decompositions as special cases. Any given linear differential equation is considered as
the result of applying a differential operator to a differential indeterminate. This operator or, if a
system of equations is involved, this set of operators, are considered as generators of a left D-module
over an appropriate ring of differential operators. Some background on D-modules may be found e. g.
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in the books by Sabbah [25] or Coutinho [4]. Certain algorithms for D-modules may be found in [9],
[10], [11] and [19]. In our algebraic approach decomposing a D-module means finding overmodules
which describe various parts of the solution of the original problem. There are two possibilites for
constructing these overmodules.

- A set of new generators is searched for such that the original module may be reduced to zero wrt.
to them. This stands for the conventional factorization like factoring linear ode’s [29], factoring
linear pde’s with a finite-dimensional solution space [17], or the factorizations that have been
described in [12].

- It may be possible to construct new generators forming a Janet base of an overmodule in com-
bination with the given ones, which are not necessarily of lower order.

In either case, the result is a set of operators generating an overmodule of the given one. The further
proceeding depends on the result of this construction. It may occur that several over-modules have
been obtained such that their intersection is identical to the given one. If this is true, solving the
original problem is reduced to solving several, possibly simpler problems, each of which describes some
part of the desired solution. In Loewy’s terminology [18] such a module is called completely reducible.

If this case does not apply, for each over-module the module of relative syzygies is constructed
as defined in Section 2 below. Then the same procedure is applied to it as for the originally given
module. This process terminates until no further over-modules may be constructed. The result is the
natural generalization of Loewy’s decomposition of ordinary differential operators.

From this decomposition the solution of the originally given equation may be obtained iteratively.
At first all homogeneous problems have to be solved. The solutions of the rightmost factors are already
part of the solution of the full problem. In the next step the solutions of the module of relative syzygies
are taken as inhomogeneity of the respective rightmost factor. Solving these problems yields additional
parts of the solution of the full problem. This process is repeated until the last module of relative
syzygies has been reached. If all equations that occur in this decomposition may be solved, the general
solution of the original problem has been obtained or, if this is not true, at least some part of it.

In Section 1 we show that the space of solutions of a module is determined by its class of isomor-
phisms (Proposition 1.1), up to an equivalence 'D which is called D-isomorphism. In Section 2 we
introduce the new concept of the module of relative syzygies Syz(I, J) of two modules I and J with
I ⊆ J . It extends the one given in [17] for finite-dimensional modules. It is shown that it is essentially
invariant w.r.t. to the set of generators. We also show that for the space of solutions of Syz(I, J)
there holds VSyz(I,J) 'D VI/VJ (Lemma 2.4), this provides a bijective correspondence between classes
of isomorphisms of the factors I/J and classes of D-isomorphisms of the solutions spaces VSyz(I,J)
(Corollary 2.5). In addition we describe a procedure to calculate the module of relative syzygies.
Finally, the relation aτ (Syz(I, J)) = aτ (I)−aτ (J) (Theorem 2.7) is proved for the leading coefficients
aτ of the Hilbert-Kolchin polynomials; τ is the differential type of the module I, see [15] and [16].

In Section 3, at first we define a unique Loewy decomposition of a finite-dimensional module I.
The crucial role here plays the intersection R(I) of all maximal overmodules of I. Instead of I the
modules R(I) and Syz(I,R(I)) with smaller differential type or smaller typical differential dimension
(see e.g., [15], [16]) are considered in the inductive definition. After that the Loewy decomposition is
generalized to infinite-dimensional modules I of differential type τ > 0. It relies on the intersection
Rτ (I) of the classes of maximal overmodules of I with differential type τ , considered up to modules of
differential types less than τ . In Section 4 a primary decomposition of a finite-dimensional module I
is introduced. The crucial role here plays the intersection N(I) of all proper overmodules of I. Similar
to Section 3, we replace I in the inductive definition by N(I) and Syz(I,N(I)). Then the primary
decomposition is extended to an infinite-dimensional module I of differential type τ > 0. Similar to
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Section 3 the intersection Nτ (I) of the classes of overmodules, up to modules of differential type less
than τ is introduced.

In Section 5 we introduce the formal concept of a parametric-algebraic family of D-modules. Its
significance is justified by the algorithms from [17] which generates all the overmodules of a finite-
dimensional module I as a parametric-algebraic family. Based on it and on the algorithms manipulat-
ing algebraic varieties, we design an algorithm which accepts two such families as input and returns
a family of pairs of modules such that one of the modules in a pair contains the other. In particular,
this allows one to produce the family of all maximal modules in a given family. Relying on these
algorithms one can construct Loewy- and primary decompositions of a finite-dimensional module, see
Section 6. In Section 7 an algorithm is exhibited which allows one to yield a parametric-linear family
of all D-homomorphisms of two finite-dimensional D-modules and furthermore, a parametric-algebraic
family of all their D-isomorphisms. The results of Section 5 are applied in Section 8 for the discussion
of algorithms. In particular, the theory outlined in the preceding sections is applied to certain classes
of second- and third-order linear pde’s with rational function coefficients. An algorithm is presented
that accomplishes its Loewy decomposition whenever possible. If it succeeds the solution may be
obtained from it.

A short version of this paper has been presented in [13].

1 Invariance of the Space of Solutions of a D-Module

Let F be a universal differential field [15] with commuting derivatives d1, . . . , dm and D = F [d1, . . . , dm]
be the ring of partial differential operators. Denote by C ⊂ F its subfield of constants. Introduce
differential indeterminates y1, . . . , yn over F . By Θ denote the commutative monoid generated by
d1, . . . , dm and by Γ the set of all the derivatives θyi for θ ∈ Θ, 1 ≤ i ≤ n. We fix also an admissible
total ordering ≺ on the derivatives [16, 26]. A background in differential algebra may be found in
[15, 2, 32, 33].

Let I ⊂ Dn be a left D-module. For vectors g = (g1, . . . , gn), v = (v1, . . . , vn) ∈ Fn we denote the
inner product gv = (g, vT ) =

∑
givi ∈ F . By VI = {v ∈ Fn : Iv = 0} ⊂ Fn we denote the space of

solutions of I being a C-vector space. A priori VI depends on the imbedding I ⊂ Dn. The purpose
of this section is to show that actually VI depends up to an isomorphism just on the factor Dn/I,
considered as well up to an isomorphism.

Now let I1 ⊂ Dn1 , I2 ⊂ Dn2 . We say that a n1 × n2 matrix A = (aij) with aij ∈ D provides a
D-homomorphism from Dn1/I1 to Dn2/I2 if (Dn1/I1)A ⊂ (Dn2/I2), i.e. I1A ⊂ I2. Clearly one gets a
homomorphism of D-modules.

We call Dn1/I1 and Dn2/I2 to be D-isomorphic if in addition there exists a n2×n1 matrix B = (bij)
with bij ∈ D such that (Dn2/I2)B ⊂ Dn1/I1 and

AB|(Dn1/I1) = id, BA|(Dn2/I2) = id. (1)

For the spaces of solutions VI1 ⊂ Fn1 , VI2 ⊂ Fn2 we say that a matrix A provides a D-
homomorphism if A(VI2)T ⊂ (VI1)T (more precisely, one should talk about a D-homomorphism of
the imbeddings VI1 ⊂ Fn1 , VI2 ⊂ Fn2). In a similar way, if there exists a n2 × n1 matrix B such that
B(VI1)T ⊂ (VI2)T and

AB|V T
I1

= id, BA|V T
I2

= id (2)

we call VI1 , VI2 to be D-isomorphic and denote this by VI1 'D VI2 . The following proposition extends
Lemma 2.5 [31] (established for the ordinary case m = 1) to finite-dimensional modules.

Proposition 1.1 i) A matrix A provides a D-homomorphism of Dn1/I1 to Dn2/I2 if and only if it
provides D-homomorphisms of VI2 to VI1.
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ii) Dn1/I1 and Dn2/I2 are D-isomorphic if and only if VI1 and VI2 are D-isomorphic.

Proof. i) Assume that (Dn1/I1)A ⊂ (Dn2/I2). We need to verify that A(VI2)T ⊂ (VI1)T . The
latter is equivalent to the equality I1A(VI2)T = 0 which holds because of the inclusion I1A ⊂ I2.

Conversely, assume that A(VI1)T ⊂ (VI1)T , then as above I1A(VI2)T = 0 which implies I1A ⊂ I2
due to the duality in the differential Zariski topology (see Corollary 1, page 148 in [15], also [32]).
Hence (Dn1/I1)A ⊂ (Dn2/I2).

ii) Assume that (1) holds. One has to verify (2), i. e. for any v ∈ VI1 to show that ABvT = vT .
The latter holds if and only if for any g ∈ Dn1 the equality gABvT = gvT is true. Equation (1) entails
that gABvT = (g + g0)v

T = gvT for a certain vector g0 ∈ I1.
We mention that D-isomorphism of D-modules implies isomorphism of the spaces of their solutions

in a more general setting, see e.g. [21], [23] (while the converse essentially uses that we deal with a
universal differential field).

Conversely, assume (2) is valid. For any g ∈ Dn1 (2) implies the equality (gAB − g)(VI1)T = 0,
therefore gAB − g ∈ I1 again due to Corollary 1, page 148 of [15]. This establishes (1). 2

Remark 1.2 We observe that for any two D-modules I1 ⊂ Dn1 , I2 ⊂ Dn2 such that dimF (Dn1/I1) =
dimF (Dn2/I2) < ∞ we have Dn1/I1 'D Dn2/I2. On the other hand, in case of infinite-dimensional
modules the isomorphism does not always hold, e.g., in case m = 2 the modules D/(d1) and D/(d2)
are not D-isomorphic.

2 Relative Syzygies of D-modules

In Loewy’s original decomposition scheme, the largest completely reducible right factors are removed
by exact division. This is a valid procedure because all ideals of ordinary differential operators are
principal. In the ring of partial differential operators this is not true any more. In addition to the
relations following from the division there are the integrability conditions which guarantee that an
ideal or module is generated by a Janet base. The proper generalization of the exact quotient is given
by the following

Definition 2.1 (Relative syzygies module) Let I ⊆ J ⊆ Dn be two D-modules, and let
J =< g1, . . . , gt >. The relative syzygies D-module Syz(I, J) of I and J is Syz(I, J) = {(h1, . . . , ht) ∈
Dt|

∑
higi ∈ I}.

This definition is more general than the definition of the quotient ofD-modules in [17] because we do
not require g1, . . . , gt to be a Janet basis of J (for a background on Janet basis see e.g. [15, 16, 28, 26])
and in addition it takes into account all relations among g1, . . . , gt which put them in I. We notice
that in case when I = 0 the module Syz(0, J) coincides with the usual syzygies module Syz(J). Our
next goal is to show that Definition 2.1 does not depend on the choice of generators g1, . . . , gt. Another
proof may be obtained applying the methods of [23] and [24].

Lemma 2.2 Let I ⊆ I1 ⊆ J be D-modules. Then Syz(I1, J)/Syz(I, J) ' I1/I.

Proof. First we verify that the mapping ϕ(h1, . . . , ht) =
∑
higi provides a homomorphism

ϕ : Syz(I1, J)/Syz(I, J) → I1/I being a monomorphism according to Definition 2.1. Finally, for
any representative g ∈ I1 of a class ḡ ∈ I1/I one can write g =

∑
higi, then ϕ(h1, . . . , ht) = g. 2

Corollary 2.3 i) Dt/Syz(I, J) ' J/I;
ii) Syz(I, J)/Syz(J) ' I.
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The main goal for introducing the relative syzygies module according to Definition 2.1 is the
following statement proved in [17] in case when g1, . . . , gt being a Janet basis of J , one can find in [24]
another proof of it.

Lemma 2.4 With the notation above there holds VSyz(I,J) 'D VI/VJ .

Proof. The mapping ψ : v → (g1, . . . , gt)
T v assures the D-monomorphism VI/VJ ↪→ VSyz(I,J) ⊂ F t.

To establish that it is an epimorphism, suppose first that g1, . . . , gt constitute a Janet basis of J . Let
y = (y1, . . . , yn) be a vector of differential indeterminates. For any vector (w1, . . . , wt)

T ∈ VSyz(I,J)
the system of linear pde’s giy = wi, 1 ≤ i ≤ t is solvable since {g1y − w1, . . . , gty − wt} is a linear
coherent autoreduced set, see page 136 in [15], also Theorem 5.5.6, page 247 [16] and [17]. Taking any
f ∈ I one can represent f =

∑
higi, then (h1, . . . , ht) ∈ Syz(I, J) and 0 =

∑
hiwi = fy, thus y ∈ VI .

This completes the proof that ψ : VI/VJ ' VSyz(I,J) is a D-isomorphism.
To get rid of the supposition that g1, . . . , gt constitute a Janet basis take an arbitrary set

g
(1)
1 , . . . , g

(1)
t1

of generators of J and construct the syzygies module Syz(I, J)(1) ⊂ Dt1 ; the nota-

tion Syz(I, J)(1) is used to distinguish it from the syzygies module Syz(I, J) constructed from a Janet
basis g1, . . . , gt. Corollary 2.3 implies that Dt/Syz(I, J) ' Dt1/Syz(I, J)(1). Proposition 1.1 entails
that VSyz(I,J) 'D VSyz(I,J)(1) . Together with the D-isomorphism ψ this completes the proof. 2

The following corollary claims that the space of solutions VSyz(I,J) of a relative syzygies module
depends just on the factor of D-modules J/I.

Corollary 2.5 Let I1 ⊆ J1 ⊆ Dn1, I2 ⊆ J2 ⊆ Dn2. Then J1/I1 ' J2/I2 if and only if

VSyz(I1,J1) 'D VI1/VJ1 'D VI2/VJ2 'D VSyz(I2,J2).

Proof. Corollary 2.3 implies that J1/I1 ' Dq1/Syz(I1, J1) and J2/I2 ' Dq2/Syz(I2, J2). Both
D-isomorphisms VSyz(I1,J1) 'D VI1/VJ1 and VSyz(I2,J2) 'D VI2/VJ2 follow from Lemma 2.4. Proposi-
tion 1.1 entails that VSyz(I1,J1) 'D VSyz(I2,J2) if and only if Dq1/Syz(I1, J1) ' Dq2/Syz(I2, J2) 2

Remark 2.6 As usual, having Janet bases of I =< f1, . . . , fs > and of J =< g1, . . . , gt > one can
construct a Janet basis of Syz(I, J), e. g. cf. Theorem 5.3.7 in [16], also [17]. Briefly to remind, for
each fj there holds fj =

∑
hi,jgi, 1 ≤ j ≤ s for certain hi,j ∈ D. Furthermore, for each pair (k, j) with

1 ≤ k < j ≤ t we represent the ∆-polynomial of gk and gj as lc(gj)θ1gk − lc(gk)θ2gj =
∑
hijkgi such

that the operators lc(gj)θ1gk and lc(gk)θ2gj have the same leading terms with the minimal possible
leading derivative w.r.t. the applied term ordering ≺. Then the basis of Syz(I, J) consists of the
vectors (h1,j , . . . , ht,j), 1 ≤ j ≤ s, and of the vectors

(h1jk, . . . , hkjk − lc(gj)θ1, . . . , hjjk − lc(gk)θ2, . . . , htjk), 1 ≤ k < j ≤ t. (3)

In the special case I = 0, the relative syzygies module Syz(0, J) reduces to the syzygies module of J .
Then as in Schreyer’s theorem, page 212 of [3], one can show that the constructed basis of Syz(0, J)
which consists of vectors of the form (3), constitutes in fact, a Janet basis.

We mention also that relying on the algorithm from [9] one can produce a basis of Syz(I, J) starting
with arbitrary, not necessarily Janet bases, of I and J , with double-exponential complexity.

Let us denote by HI the Hilbert-Kolchin polynomial of I w.r.t. the usual filtration by order of
derivatives, so (Dn)r = {f ∈ Dn : ord f ≤ r} (cf. page 223 of [16]). The degree deg(HI) of HI is
called the differential type of I [15], page 130 and [16], page 229, and its leading coefficient lc(HI) is
called the typical differential dimension of I ibid.

The next theorem can be deduced directly from Theorem 5.2.9 of [16], but we give an independent
proof following the arguments from [16], cf. also Theorem 4.1 in [32].

5



Theorem 2.7 Let again I ⊆ J ⊆ Dn. Then deg (HJ) ≤ deg (HI), deg (HSyz(I,J)) ≤ deg (HI) and
deg (HSyz(I,J)) = deg (HI −HJ), lc (HSyz(I,J)) = lc (HI −HJ).

Proof. We recall that the isomorphism ϕ : Dt/Syz(I, J) ↪→ J/I in Lemma 2.2 (putting I1 = J)
maps h1, . . . , ht to

∑
higi. Let ord(gi) ≤ p, 1 ≤ i ≤ t. Since we have in the filtration (J/I)r = Jr/Ir,

r ≥ 0 (cf. Theorem 5.1.8 of [16]) we obtain that ϕ((Dt/Syz(I, J))r) ⊆ (J/I)r+p and thereby

HSyz(I,J)(r) = dimF (Dt/Syz(I, J))r ≤ dimF (J/I)r+p = HI(r + p)−HJ(r + p)

for sufficiently large r.
Conversely, assuming w.l.o.g that g1, . . . , gt constitute a Janet basis of J we conclude that for any

g ∈ (J/I)r one can represent g =
∑
higi with ord(higi) ≤ r, 1 ≤ i ≤ t and hence

HI(r)−HJ(r) = dimFV(J/I)r ≤ dimFV(Dt/Syz(I,J))r = HSyz(I,J)(r)

for sufficiently large r. 2

Definition 2.8 (Gauge of a module) Let I be a D-module. We call the pair (deg(HI), lc(HI)) the
gauge of I. We say that a module I1 is of lower gauge than another one I2 if the pair (deg(HI1), lc(HI1))
is less than (deg(HI2), lc(HI2)) in the lexicographic ordering. Taking into account Corollary 2.5 one
can talk also about the gauges of the corresponding spaces of solutions VI1 and VI2.

The construction of the relative syzygies allows one to reduce finding a basis of VI to finding a basis
of VJ and joining it with any solution y of the system giy = wi, 1 ≤ i ≤ t (see the proof of Lemma 2.3)
for each element (w1, . . . , wt) of a basis of VSyz(I,J). An algorithm for solving the inhomogeneous
system giy = wi may be obtained by a proper generalization of Lagrange’s variation of constants, see
e. g. the textbook [34], page 193-195 if the homogeneous system is known to have a finite-dimensional
solution space which will always be the case in our applications. Theorem 2.7 implies that both J
and Syz(I, J) have gauges not greater than the gauge of I. Moreover, in the applications in the
next section, the gauges of J and Syz(I, J) will be actually lower than the gauge of I. In case of a
finite-dimensional ideal I this reduction was exploited in [17].

3 Loewy Decompositions

Let us first study the case of a finite-dimensional module I ⊂ Dn, i. e. modules of differential type 0.
Consider the intersection R(I) = J (0) = ∩J of all maximal modules J ⊇ I. Any intersection of
maximal modules will be called a complete intersection. R(I) plays a role similar to the role of the
radical of two-sided ideals in a ring. Note that there exists a finite number of maximal modules
J1, . . . , Jq for which J1 ∩ · · · ∩ Jq = R(I). Indeed, keep taking J1, J2, . . . while it is possible to have
dimCVJ1∩···∩Ji+1 > dimCVJ1∩···∩Ji for every i ≥ 1. Since dimCVI < ∞ we arrive finally at J1, . . . , Jq
such that dimCVJ1∩···∩Jq∩J = dimCVJ1∩···∩Jq for any maximal module J ⊇ I. Then J1∩· · ·∩Jq = R(I).

Applying this procedure to the relative syzygies module I(1) = Syz(I, J (0)), replacing the role of I,
which one can compute making use of Remark 2.6, this yields a complete intersection J (1) such
that J (1) = R(I(1)) ⊇ I(1). Continuing this way, one obtains successively the complete intersections
J (0), J (1), . . . , J (s) and the modules I(1), . . . , I(s) such that J (l) = R(I(l)) and I(l+1) = Syz(I(l), J (l))
for 0 ≤ l ≤ s − 1, defining I(0) = I. In the last step there holds J (s) = I(s). We have dimC VI(l) −
dimC VI(l+1) = dimC VJ(l) for 0 ≤ l ≤ s, defining I(s+1) = {0}. Thus, dimC VI =

∑
0≤l≤s dimC VJ(l) ,

which provides an upper bound s < dimC VI on the number of steps of the described procedure. The
uniquely defined sequences J (0), J (1), . . . , J (s) and I(1), . . . , I(s) can be viewed as a Loewy decomposition
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of I. To get the spaces of solutions VJ(l) , 0 ≤ l ≤ s of the complete intersections J (l) = ∩qJ (l)
q where

J
(l)
q are maximal modules, we apply proposition 3.1 [32] (see also the beginning of the proof of theorem

4.1 [32], p.483 and [2]) which entails that VJ(l) =
∑

q VJ(l)
q

.

Now we proceed to a Loewy decomposition of an infinite-dimensional module I ⊂ Dn of differential
type τ > 0. To this end, we introduce another concept first.

Definition 3.1 (Gauge-equivalence) We say that two modules J1, J2 ⊂ Dn are gauge-equivalent if J1,
J2 and J1 ∩ J2 are of the same gauge.

If J1 and J2 are gauge-equivalent, then by Theorem 4.1 in [32] also J1 + J2 is of the same gauge.

Lemma 3.2 i) Two modules J1 ⊆ J2 of differential type τ are gauge-equivalent if and only if
deg(HJ1 −HJ2) < τ ;

ii) if each of two modules J1, J2 ⊆ J is gauge-equivalent to J then J1 ∩ J2 is also gauge-equivalent
to J ;

iii) gauge-equivalence is an equivalence relation.

Proof. i) follows from Definition 2.8.
ii) Since we have in the filtration (J1∩J2)r = (J1)r∩(J2)r (cf. Section 2) we get for Hilbert-Kolchin

polynomials that HJ1∩J2 −HJ ≤ (HJ1 −HJ) + (HJ2 −HJ) (the inequality for polynomials means the
inequality for their values at sufficiently big integer points), which proves ii).

To prove iii) assume that each of two modules J1, J3 of differential type τ is gauge-equivalent to
J2. Then each of two modules J1 ∩ J2, J3 ∩ J2 is gauge-equivalent to J2. From ii) we deduce that
J1 ∩ J2 ∩ J3 is gauge-equivalent to J2. Hence i) entails that deg(HJ1∩J2∩J3 −HJ2) < τ . On the other
hand, the assumption and i) imply that deg(HJ1∩J2 − HJ1) < τ , deg(HJ1∩J2 − HJ2) < τ , therefore
deg(HJ1∩J2∩J3 −HJ1) < τ . The latter inequality and the inclusions J1 ∩ J2 ∩ J3 ⊆ J1 ∩ J3 ⊆ J1 entail
that deg(HJ1∩J3 −HJ1) < τ . Together with a similar inequality deg(HJ1∩J3 −HJ3) < τ this completes
the proof of iii). 2

The equivalence class of gauge-equivalent modules of a module J is denoted by [J ]. If the actual
value of the differential type of the elements of a class [J ] equals to τ , any two members of it are called
τ -equivalent (below τ is fixed and |J | means a class of τ -equivalence).

Example 3.3 Let J1 =< ∂x >, J2 =< ∂xx, ∂xy > and J3 =< ∂y >. Then J1 ∩ J2 = J2, J1 + J2 = J1
all of which are of gauge (1, 1). Consequently J1 and J2 are gauge-equivalent. Notice that although J3
is also of gauge (1,1), it is not gauge-equivalent to J1 because J1∩J3 =< ∂xy > which is of gauge (1,2).

The generic solution of J1 is F (y), where F is an ”undetermined function”, whereas J2 has generic
solution Cx + F (y), C being a generic constant. The generic solution here and below is defined with
the help of the defining ideal (see e. g. [15], page 146 and [16], page 132) as follows. For a set of
elements of a differential field its defining ideal consists of all lpdo’s which annihilate them. A solution
of an ideal J is generic if its defining ideal coincides with J . Then above C is a generic constant, i. e.
the defining ideal of C coincides with < ∂x, ∂y >, the defining ideal of F is J1 and the defining ideal
of Cx+ F coincides with J2.

We say that [J1] is subordinated to [J2] if J1 ∩ J2 is τ -equivalent to J1.

Lemma 3.4 i) If modules J1, J ′1 are τ -equivalent, J2, J ′2 are also τ -equivalent and moreover, J1 ∩ J2
has differential type τ , then J1 ∩ J2, J ′1 ∩ J ′2 are τ -equivalent as well;

ii) under the same assumption J1 + J2, J ′1 + J ′2 are τ -equivalent;
iii) the relation of subordination is independent of a choice of representatives J1, J2 of the classes

of τ -equivalence.
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Proof. i) From the inclusions J1 ∩ J ′1 ∩ J2 ∩ J ′2 ⊆ J1 ∩ J ′1 ∩ J2 ⊂ J1 ∩ J2 and Lemma 3.2 i), taking
into account that HJ2∩J ′2∩J − HJ2∩J ≤ HJ2∩J ′2 − HJ2 for any module J , we conclude (cf. the proof
of Lemma 3.2 iii)) that deg(HJ1∩J ′1∩J2∩J ′2 −HJ1∩J2) < τ . Therefore, J1 ∩ J ′1 ∩ J2 ∩ J ′2 has differential
type τ , as well as J ′1 ∩ J ′2. In a similar way one obtains that deg(HJ1∩J ′1∩J2∩J ′2 −HJ ′1∩J ′2) < τ . Then
i) follows from Lemma 3.2 i),iii).

ii) From the inclusions J1 + J2 ⊆ J1 + J ′1 + J2 ⊆ J1 + J ′1 + J2 + J ′2 and Lemma 3.2 i), taking
into account the inequality HJ1+J −HJ1+J ′1+J

≤ HJ1 −HJ1+J ′1
for any module J , we conclude (as in

the proof of i)) that deg(HJ1+J2 − HJ1+J ′1+J2+J
′
2
) < τ . Since J1 + J2 has differential type τ due to

Theorem 4.1 in [32], J1 + J ′1 + J2 + J ′2 has also differential type τ , as well as J ′1 + J ′2. In a similar way
one obtains that deg(HJ ′1+J

′
2
−HJ1+J ′1+J2+J

′
2
) < τ . Then ii) follows from Lemma 3.2 i),iii).

iii) Under the assumption of i) and making use of that J1 is τ -equivalent to J1 ∩ J2 (thereby,
the assumption that J1 ∩ J2 has differential type τ , is fulfilled automatically), we obtain iii) due to
Lemma 3.2 iii). 2

Remark 3.5 The proof of i) shows that J1 ∩ J2, J ′1 ∩ J ′2 are gauge-equivalent without the assumption
that J1 ∩ J2 has differential type τ because the differential type of J1 ∩ J2 is greater or equal to τ .

We denote the relation of subordination by [J1] � [J2]. Then lc(HJ1) ≥ lc(HJ2). If in addition
[J1] 6= [J2] (we denote this by [J1] � [J2]) then lc(HJ1) > lc(HJ2). Hence any increasing chain of
τ -equivalence classes stops and one can consider maximal τ -equivalence classes.

For any τ -equivalence classes [J1], [J2] satisfying [J ] � [J1], [J ] � [J2] one can uniquely define the
class [J1 ∩ J2] such that [J ] � [J1 ∩ J2]. One can verify that deg(HJ1∩J2) = τ and the class [J1 ∩ J2]
does not depend on the representatives J1, J2.

Example 3.6 Let J =< ∂xyy > with gauge (1, 3), J1 =< ∂x > and J2 =< ∂y >, both with gauge (1, 1).
Because J ∩ J1 = J ∩ J2 = J there holds [J ] � [J1] and [J ] � [J2]. Furthermore J1 ∩ J2 =< ∂xy >≡ J3
with gauge (1, 2) and [J ] � [J3]. Because lc(HJ) = 3, lc(HJ3) = 2 and lc(HJ1) = lc(HJ2) = 1, both
[J1] and [J2] are maximal.

Now take all τ -maximal classes [J ] such that [I]� [J ]. Since J + I is τ -equivalent to J (again due
to Theorem 4.1 [32]) we can assume without loss of generality that the representatives are chosen in
such a way that I ⊆ J . We choose consecutively such classes [J1], [J2], . . . , [Jp] while it is possible to
have

[J1] � [J1 ∩ J2] � · · ·� [J (0) = J1 ∩ J2 ∩ · · · ∩ Jp].

Clearly, p ≤ lc(HI). Then for any maximal class [J ] for which [I]�[J ], we obtain [J (0)]�[J ]. Hence
for any finite family [J

′
1], . . . , [J

′
q] of τ -maximal classes for which [I]� [J

′
l ], 1 ≤ l ≤ q, we conclude that

[J (0)] � [J
′
1 ∩ · · · ∩ J

′
q]. Therefore, the class [J (0)] is defined uniquely and in addition I ⊆ J (0) holds.

We say that J (0) = J1 ∩ J2 ∩ · · · ∩ Jp is completely τ -reducible.
We define a Loewy decomposition of I by induction on the gauge of I. As a base of induction when

the τ -class [I] is maximal then I provides a Loewy decomposition of itself. When [I] is not maximal one
can further apply the described inductive definition of a Loewy decomposition (thereby, replacing the
role of I) to the relative syzygies module I(1) = Syz(I, J (0)) (see Section 2) taking into account that
either deg(HI(1)) < τ or deg(HI(1)) = τ , and in the latter case lc(HI(1)) = lc(HI)− lc(HJ(0)) < lc(HJ)
due to Theorem 2.7; in other words, I(1) is of a lower gauge than I. In case when deg(HI(1)) < τ we
have [I] = [J (0)] again due to Theorem 2.7 and [I] being completely τ -reducible.

Continuing this way we arrive at a sequence of modules J (0), J (1), . . . , J (q) with non-decreasing
differential types such that each module J (l), 0 ≤ l ≤ q is completely deg(HJ(l))-reducible. We notice

8



that this sequence is not necessarily unique unlike the Loewy decomposition of a finite-dimensional
module. The obtained sequence could be called a generalized Loewy decomposition of I. At present
we don’t possess an algorithm to construct it in general.

4 Primary Decompositions

At first let I ⊂ Dn be a finite-dimensional module. Denote by J (0) = N(I) = ∩J⊃IJ the intersection
of all ideals J properly containing I (we mention that N(I) plays a role similar to the role of the
nil-radical of two-sided ideals in a ring). We call I primary if N(I) 6= I. In the latter case N(I)
is the minimal module which properly contains I and the relative syzygies module Syz(I,N(I)) is a
maximal module.

Lemma 4.1 Any finite-dimensional module I is an intersection of a finite number of primary modules.

Proof goes by induction on dimC(I). The base of induction for a maximal module is obvious
because it is primary. For the inductive step in case when I is not primary one can represent it as a
finite intersection I = J1∩ · · ·∩Jq with Ji ⊃ I (cf. Section 3). Then lemma follows from the inductive
hypothesis applied to Ji. 2

Therefore, by recursion on dimC(I) one can define a primary decomposition of I. If I is not primary
then one takes I = J1 ∩ · · · ∩Jq from Lemma 4.1 and the primary decomposition of I is defined as the
collection of primary decompositions of J1, . . . , Jq by the recursive hypothesis. For a primary module
I its primary decomposition consists of a pair of the relative syzygies module Syz(I,N(I)) (being a
maximal module) and a primary decomposition of N(I) by the recursive hypothesis.

One can view as an advantage of a primary decomposition versus the Loewy decomposition from
Section 3 that the expensive operation of taking the relative syzygies module leads to a maximal
module, and so taking relative syzygies modules do not iterate each other. On the other hand, a
primary decomposition is not unique, but still allows one to find the space VI by combining the
already cited result from [32, 2], and also obtaining VI from VJ and the space VI/VJ (see Remark 2.8).

Now let I ⊂ Dn be a D-module of differential type τ . We follow the notations from Section 3. We
choose consecutively classes [J1], [J2], . . . , [Jp] (again one can assume that I ⊆ Ji) while it is possible
such that

[J1] � [J1 ∩ J2] � · · ·� [J (0) = J1 ∩ J2 ∩ · · · ∩ Jp].

Then for any class [J ] for which [I]� [J ] we have [J (0]]� [J ]. We denote [J (0]] = Nτ ([I]). If Nτ ([I])� [I]
we call [I] τ -primary.

We define a primary decomposition of I by induction on the gauge of I. For the base of induction
when [I] is a maximal τ -equivalence class then I constitutes its own primary decomposition. For the
inductive step a primary decomposition of I consists of the ones of the modules J1, . . . , Jp and in
addition of the relative syzygies module Syz(I, J (0)) which has a gauge less than the gauge of I (due
to Theorem 2.7, cf. also Section 3). We observe that when the differential type dim(Syz(I, J (0))) = τ
then Syz(I, J (0)) is τ -maximal and provides its own primary decomposition, else dim(Syz(I, J (0))) < τ
and one deals further in the induction with modules of differential types less than τ .

As a result we arrive at a set of modules {J} such that each [J ] is a dim(J)-maximal class, which
one can view as a primary decomposition of I. It would be interesting to design an algorithm which
constructs a primary decomposition.
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5 Parametric-Algebraic Families of D-Modules

For the rest of the paper, dealing with the design of algorithms, we assume that the coefficients of the
input operators belong to the differential field F0 = Q(X1, . . . , Xm) (cf. Remark 1.2) with derivatives
dk = ∂/∂Xk, 1 ≤ k ≤ m and D0 = F0[d1, . . . , dm],D = F [d1, . . . , dm] where F is a universal extension
of F0.

In the sequel we suppose that all the considered algebraic (affine) varieties W ⊂ Q
N

are given in
an efficient way, say as in [7]. Namely, W = ∪Wj where Wj are irreducible over Q components of W ,
and the algorithms from [7] represent each Wj (of dimension s) in two following ways.

First, we represent Wj by means of a generic point, i.e. an isomorphism

Q(t1, . . . , ts)[α] ' Q(Wj) (4)

where Q(Wj) is the field of rational functions on Wj . The elements t1, . . . , ts ⊂ {Z1, . . . , ZN} consti-
tute a basis of transcendency of Q(Wj) over Q which can be taken among the coordinates Z1, . . . , ZN

of the affine space Q
N

. The element α =
∑

1≤l≤N αlZl for suitable integers αl is algebraic over
the field Q(t1, . . . , ts) with a minimal polynomial φ ∈ Q(t1, . . . , ts)[Z]. The algorithms from [7]
yield the ingredients of (4) explicitly, in other words, t1, . . . , ts; α1, . . . , αN ; φ and the rational ex-
pressions of Zl via t1, . . . , ts, α, i.e. the rational functions of the form gl(t1, . . . , ts, Z)/g(t1, . . . , ts)
where the polynomials g(t1, . . . , ts), gl(t1, . . . , ts, Z) ∈ Q[t1, . . . , ts, Z] being such that the equality
Zl = gl(t1, . . . , ts, Z)/g(t1, . . . , ts) holds everywhere on Wj .

Second, the algorithms from [7] yield polynomials h1, . . . , hM ∈ Q[Z1, . . . , ZN ] such that Wj co-

incides with the variety of all the points from Q
N

which satisfy the system of equations h1 = · · · =
hM = 0.

The algorithms from [7] allow one to produce the union, intersection, complement of varieties, to
get the dimension of Wj , to project a variety (in other words, to eliminate quantifiers), to find all the
points of Wj in case when it is finite (i.e. zero-dimensional) or to yield as many points as one wishes in
case when Wj is infinite (positive-dimensional). Moreover, one extends these algorithms from varieties
to constructive sets , i.e. the unions of the sets of the form W

′ \W ′′
where W

′
,W

′′
are varieties (in

other terms, constructive sets constitute the boolean algebra generated by all the varieties).

Definition 5.1 (Parametric-algebraic D-modules) We say that a family of D-modules J = {J} ⊂ Dn

is parametric-algebraic if there is a constructive set V = ∪Vj ⊂ Q
N

for an appropriate N such that
J = ∪Jj and for any fixed j the following holds. A Janet basis of any J ∈ Jj has fixed leading
derivatives lder(J) = lderj and the parametric derivatives pder(J) = pderj, see [17]. Moreover, any
element of the Janet basis of J has the form

γ0 +
∑

γ∈pderj

Aγ(Z1, . . . , ZN )γ (5)

where γ0 ∈ lderj and Aγ ∈ Q(Z1, . . . , ZN )(X1, . . . , Xm).
When (Z1, . . . , ZN ) ranges over the constructive set Vj, the set of linear differential operators of

the form (5) for all γ0 ∈ lderj ranges over the Janet basis for all modules J from Jj. Thus, we have a
bijective correspondance between the points of Vj and the modules, or rather their Janet basis) from Jj.

We rephrase in our terms the following proposition which was actually proved in [17].

Proposition 5.2 ([17]). One can design an algorithm which for any finite-dimensional D-module
I ⊂ Dn finds a parametric-algebraic family of all the factors of I, i.e. the modules J ⊂ Dn such that
I ⊂ J .
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Lemma 5.3 One can design an algorithm which for a pair of parametric-algebraic families I,J of
D-modules yields the parametric-algebraic family of all the pairs (I, J) where I ∈ I, J ∈ J such that
I ⊆ J .

Proof. Let

{γ0 +
∑

γ∈pderj

Aγ(Z1, . . . , ZN )γ}γ0∈lderj

be a Janet basis of Jj and

{λ0 +
∑

λ∈pders

Bλ(Z1, . . . , ZN )λ}λ0∈lders

be a Janet basis of Is. Then the condition that I ⊆ J for I ∈ Is, J ∈ Jj can be expressed as the
existence for each λ0 ∈ lders of operators of the form

∑
θ Cθ,γ0,λ0θ ∈ D where θ ≺ θ0 and λ0 = θ0yi

for a certain 1 ≤ i ≤ n such that

λ0 +
∑

λ∈pders

Bλ(Z1, . . . , ZN )λ =
∑

γ0∈lderj

(
∑
θ

Cθ,γ0,λ0θ)(γ0 +
∑

γ∈pderj

Aγ(Z1, . . . , ZN )γ) (6)

where the external summation in the right-hand side ranges over the elements of the Janet basis of Jj .
Clearly, one can rewrite (6) as a system of linear (algebraic) equations in the unknowns Cθ,γ0,λ0 ,

while the entries of this system are the rational functions from Q(X1, . . . , Xm)(Z1, . . . , ZN ). One can

find the constructive set U = Uj,s ⊂ Q
N

such that just for (Z1, . . . , ZN ) ∈ U this linear system is
solvable. Combining this for all pairs l, s completes the proof of the lemma. 2

Corollary 5.4 For a finite-dimensional D-module I ⊂ Dn one can find a parametric-algebraic family
Imax of all maximal D-modules J which contain I.

Proof. Among the family of all the factors J of I produced in proposition 5.2 one can relying on
Lemma 5.3 distinguish all J0 such that if J0 ⊆ J then J0 = J holds. 2

6 Constructing Loewy- and Primary Decompositions

Now we are able for a finite-dimensional D-module I ⊂ Dn0 to construct its Loewy (see section 3)
and primary decompositions (see section 4). First, in order to obtain Loewy decomposition we apply
corollary 5.4. After that the purpose is to find the intersection R(I) of all the maximal modules
from Imax. To this end we conduct the (internal) recursion on dim(R(I)). Assume that a current
(complete) intersection J0 of several maximal modules from Imax is already constructed. Applying
lemma 5.3 we test whether there exists a maximal module J ∈ Imax which does not contain J0. Then
we replace J0 by the (complete) intersection J ∩ J0 and continue the (internal) recursion. Finally,
we arrive at R(I) and thereupon (by the external recursion) proceed to the relative syzygies module
Syz(I,R(I)) (see section 2), provided that the latter is not zero, else halt.

In order to construct a primary decomposition of I we use Proposition 5.2 and Lemma 5.3 in a
similar way and (by the internal recursion) compute the intersection N(I) of all the modules strictly
containing I in the form N(I) = ∩J where the latter intersection is finite. Thereupon we proceed
(by the external recursion) to primary decompositions of all the non-maximal J from this intersection
joined by the relative syzygies module Syz(I,N(I)) (provided that the latter does not vanish). If all
J are maximal then halt.

Thus, we have shown the following
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Corollary 6.1 For a finite-dimensional D-module I ⊂ Dn0 one can construct its Loewy and primary
decompositions.

7 Testing Isomorphism of Finite-Dimensional D-Modules

We follow the notations of Section 1. We assume that the field of constants C ⊂ F coincides with
Q̄ and the modules I1 ⊂ Dn1 , I2 ⊂ Dn2 are defined over the field F0 = Q̄(X1, . . . , Xm). We design
an algorithm to test whether Dn1/I1 'D0 Dn2/I2. W.l.o.g. one can suppose that dim(Dn1/I1) =
dim(Dn2/I2) = l. Then dimCVI1 = dimCVI2 = l ([15], page 151). Let I1 =< g1, . . . , gq >, I2 =
< f1, . . . , fp > be Janet bases of I1 and I2 respectively. The condition that a matrix A = (ai,j) with
ai,j ∈ D provides a D-homomorphism can be expressed as a system∑

1≤i≤n1

gs,iai,j =
∑

1≤t≤p
hs,tft,j , 1 ≤ s ≤ q, 1 ≤ j ≤ n2 (7)

of lpde’s with unknowns ai,j , hs,t ∈ D. Since ai,j are taken modulo fj , 1 ≤ j ≤ p one can assume ai,j
to be reduced modulo fj , 1 ≤ j ≤ p. Let ord(gs), ord(fj) ≤ r, 1 ≤ s ≤ q, 1 ≤ j ≤ p, then ord(ai,j) ≤ r,
ord(gs,iai,j) ≤ 2r and therefore ord(hs,tft,j) ≤ 2r as well because f1, . . . , fp is a Janet basis. Thus
writing ai,j =

∑
K ai,j,Kd

K , hs,t =
∑

K hs,t,Kd
K with the weights of multiindices |K| ≤ 2r, one can

treat (7) as a system of lpde’s in the indeterminates ai,j,K and hs,t,K .
By virtue of Corollary 2.5 the matrix A provides a C-linear transformation of l-dimensional C-

vector spaces (VI2)T , (VI1)T . If A provides a zero transformation then A ⊂ I2 due to the duality in
the Zariski topology (cf. the proof of Proposition 2.5). Hence the ai,j-components of all solutions
of (7) constitute a C-linear subspace of l × l matrices representing C-linear transformations between
(VI2)T and (VI1)T . In other words, Hom(Dn1/I1,Dn2/I2) can be viewed as a C-linear subspace of l× l
matrices over C (this generalizes the considerations of the ordinary case m = 1, see pages 42-44 [22]).

In terms close to Definition 5.1 Hom(Dn1/I1,Dn2/I2) can be represented as parametric-linear
family A(Z) = (ai,j(Z)) where the parameters Z = ({Zu}1≤u≤N ) range over the space CN , and
ai,j(Z) depend on Z linearly.

The algorithm finds this parametric-linear family A(Z) by producing a Janet basis of system (7).
We have already established that A(Z) lies in a finite-dimensional C-vector space of dimension at most
N ≤ l2, therefore one obtains from the Janet basis an ideal of A(Z) and thereupon making use of [17],
page 448, finds a basis of all rational solutions A(Z) over the field F0. Slightly changing the notation,
we keep the notation A(Z) for the parametric-linear family of all elements from Hom(Dn1

0 /I1,Dn2
0 /I2)

with rational coefficients, in other words, D0-homomorphisms.
In a similar way the algorithm yields a parametric-linear family B(Z ′) of all the elements from

Hom(Dn2
0 /I2,Dn1

0 /I1) with rational coefficients. Then Dn1
0 /I1 and Dn2

0 /I2 are D0-isomorphic if and
only if there exist elements of the form A = A(Z), B = B(Z ′) such that AB|Dn2

0 /I2
= id, BA|Dn1

0 /I1
=

id that can be rewritten as a system

BAei − ei =
∑

1≤t≤q
htgt, 1 ≤ i ≤ n1, ABe′j − e′j =

∑
1≤s≤p

h′sfs, 1 ≤ j ≤ n2 (8)

with unknowns ht, h
′
s, where e1, . . . , en1 (respectively e′1, . . . e

′
n2

) form a basis of the free module Dn1
0

(respectively Dn2
0 ).

We have already seen that ord(A), ord(B) ≤ r, hence ord(htgt), ord(h′sfs) ≤ 2r, taking into account
that g1, . . . , gq and f1, . . . , fp constitute Janet bases. Denote ht =

∑
ht,Kd

K , h′s =
∑
h′s,Kd

K where
|K| ≤ 2r. Thus one can treat (8) as a parametric linear algebraic system in the indeterminates ht,K ,
h′s,K with parameters Z,Z ′. One can solve such a parametric system using an algorithm described
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e.g. in [8]. The algorithm outputs the constructive set of all parameters Z,Z ′ for which system (8)
is solvable, i.e. which provide an isomorphism A(Z), B(Z ′), in particular this constructive set is not
empty if an only if Dn1

0 /I1 and Dn2
0 /I2 are D0-isomorphic. We summarize the results of the present

section in the following theorem.

Theorem 7.1 There is an algorithm which finds for any pair of finite-dimensional D0-modules all D0-
homomorphisms (respectively isomorphisms) of Dn1

0 /I1 and Dn2
0 /I2 as a parametric-linear (respectively

parametric-algebraic) family. By the same token the algorithm can yield the (algebraic) groups of all
D0-automorphisms of the D0-module Dn1

0 /I1.

It would be interesting to design an algorithm to test D0-isomorphism or even D-isomorphism of
infinite-dimensional D-modules.

8 Calculations and Examples

The construction from Corollary 6.1 is the basis in [17] for decomposing finite-dimensional modules.
An algorithm has been given there which applies these steps. It has been applied to various examples,
an implementation may also be found in the ALLTYPES system [30].

For general modules the answer is less complete. In [12] proper factorizations and the corresponding
decompositions have been considered for second- and third-order operators. Here this approach is
extended to the case where genuine factors of such operators do not exist. To put this into proper
perspective, a short review of the history of these problems is given first.

Most of the research on finding closed-form solutions of lpde’s has been restricted to second-order
equations for an unknown function z depending on two arguments x and y. The general linear equation
of this kind may be written as

Rzxx + Szxy + Tzyy + Uzx + V zy +Wz = 0 (9)

where R,S, . . . ,W are from some function differential field which is usually called the base field. Under
fairly general constraints for its coefficients it can be shown that it may be transformed either to

zxy +A1zx +A2zy +A3z = 0 (10)

or to
zxx +A1zx +A2zy +A3z = 0. (11)

In this section it is always assumed that all Ak ∈ Q(x, y). Any solution scheme is closely related to
the question what type of solutions are searched for, which in turn raises the question what kind of
solutions do exist at all. For linear ode’s the answer is well known. The general solution is a linear
combination of a fundamental system over the constants, i. e. the arbitrary elements are n constants
if the order of the equation is n. For pde’s in general the answer is much more involved. There are
equations of the form (10) allowing solutions

f0(x, y)F (x) + f1(x, y)F ′(x) + . . .+ fm(x, y)F (m)(x) (12)

or
g0(x, y)G(y) + g1(x, y)G′(y) + . . .+ gn(x, y)G(n)(y) (13)

where the fk, gk are determined by the given equation, and F (x) and G(y) are generic functions of
the respective argument (cf. Example 3.3). The existence of either type of solution, or of both types,
depends on the values of the coefficients Ak. To decide their existence is already highly nontrivial.
Moreover there may be solutions with integrals involving the ”undetermined elements”.

An algorithm is described now which performs these steps for certain pde’s of second or third
order. An auxiliary problem that occurs as part of the proceeding described above is considered first.
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Lemma 8.1 Let the q generic functions Cj(x), j = 1, . . . , q satisfy the linear homogenenous system

of r ode’s
∑q

j=1

∑pj
k=0 aijkC

(k)
j = 0, i = 1, . . . , r, pj ≥ 0 for j = 1, . . . , q. It can always be decided

whether the Cj can be represented as

Cj = fj,0F + fj,1F
′ + . . .+ fj,sF

(s) (14)

for a given value of s and F an generic function of x If the answer is affirmative, such a representation
can be found.

Proof. In the representation (14) the fi,k are considered as undetermined coefficients of the Cj .
They are substituted into the given system of ode’s. Because F is considered as a generic function
of x, its derivatives are algebraically independent. Therefore the system of conditions obtained can
only be satisfied if the coefficients of each derivative of F vanish. This leads to a linear homogeneous
system of ode’s for the fi,k. By autoreduction it can always be decided whether a nontrivial solution
exists and, if it is true, a special solution can be found. In [10] a polynomial-time algorithm with the
additional property of being of the logarithmic parallel complexity was designed for this problem. 2

Pommaret and Quadrat [20] have described a different method for dealing with systems of this
kind. Although their method is of lower complexity, it is extremely simple to implement the above
scheme if a Janet base algorithm is available.

Example 8.2 Let the system C2,x + C2 − x(C1,x + C1) = 0, C3,x + C3 − C1,x − C1 = 0 be given.
Substituting the ansatz Cj = fj,0F + fj,1F

′ + fj,2F
′′ for j = 1, 2, 3, yields a linear homogeneous

system of ode’s with the Janet base f2,2 = xf3,2, f1,2 = f3,2, f2,1 = xf3,1 − f3,2, f1,1 = f3,1, f3,0 =
f ′3,1 + f3,1 − f ′′3,2 − 2f ′3,2 − f3,2, f2,0 = xf ′3,1 + (x − 1)f3,1 − xf ′′3,2 − (2x − 1)f ′3,2 − (x − 1)f3,2, f1,0 =
f ′3,1 + f3,1 − f ′′3,2 − 2f ′3,2 − f3,2. Choosing f3,1 = f3,2 = 1 yields C1 = C3 = F ′′(x) + F ′(x) and
C2 = xF ′′(x) + (x− 1)F ′(x).

In our algebraic approach equation (10) is written as Dxyz = 0 where

Dxy ≡ ∂xy +A1∂x +A2∂y +A3. (15)

This case has been studied most thorougly in the literature. It will be discussed first. The principal
ideal < Dxy > is of gauge (1, 2). There may exist operators forming a Janet base in combination with
(15) which are of the form

Dxm ≡ ∂xm + a1∂xm−1 + . . .+ am−1∂x + am (16)

or
Dyn ≡ ∂yn + b1∂yn−1 + . . .+ bn−1∂y + bn (17)

with m and n positive integers. Usually it is a difficult problem to construct new operators which
extend a set of given ones to form the Janet base of a larger ideal. However, due to the special
structure of the problem, the auxiliary systems for the unknown coefficients aj and bj in (16) and (17)
may always be solved as is shown next.

Proposition 8.3 Let an operator of the form (15) be given. The following types of overideals may be
constructed.

a) If n ≥ 2 is a natural number, it may be decided whether there exists an operator (17) such that
(15) and (17) combined form a Janet base. If the answer is affirmative, the operator (17) may
be constructed explicitly with coefficients bi ∈ Q(x, y), the ideal < Dxy, Dyn > is of gauge (1,1).
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b) If m ≥ 2 is a natural number, it may be decided whether there exists an operator (16) such that
(15) and (16) combined form a Janet base. If the answer is affirmative, the operator (16) may
be constructed explicitly with coefficients ai ∈ Q(x, y), the ideal < Dxy, Dxm > is of gauge (1,1).

Proof. The proof will be given for case a). If the operator (15) is derived repeatedly wrt. y, and
the reductum is reduced in each step wrt. (15), n− 2 equations of the form

∂xyk +Rk∂x + Pk,k∂yk + Pk,k−1∂yk−1 + . . .+ Pk,0 (18)

for 2 ≤ k ≤ n−1 may be obtained. All coefficients Rk and Pi,j are differential polynomials in the ring
Q{A1, A2, A3}. There is no reduction wrt. (17) possible. Deriving the last expression once more wrt.
y and reducing the reductum wrt. both (10) and (17) yields

∂xyn +Rn∂x + (Pn,n−1 − Pn,nb1)∂yn−1 + (Pn,n−2 − Pn,nb2)∂yn−2 + ...

+(Pn,1 − Pn,nbn−1)∂y + Pn,0 − Pn,nbn.
(19)

In the first derivative of (17) wrt. x

∂xyn + b1,x∂yn−1 + b2,x∂yn−2 + . . .+ bn−1,x∂y + bn,x

+b1∂xyn−1 + b2∂xyn−2 + . . .+ bn−1∂xy + bn∂x

the terms containing derivatives of the form ∂xyk for 1 ≤ k ≤ n− 1 may be reduced wrt. (18) or (10)
with the result

∂xyn + (b1,x − Pn−1,n−1b1)∂yn−1

+(b2,x − Pn−1,n−2b1 − Pn−2,n−2b2)∂yn−2

...
...

+(bn−1,x − Pn−1,1b1 − Pn−2,1b2 . . .− P2,1bn−2 −A2bn−1)∂y

+bn,x − Pn−1,0b1 − Pn−2,0b2 − . . .− P2,0bn−2 −A3bn−1

+(bn −Rn−1b1 −Rn−2b2 − . . .−R2bn−2 −A1bn−1)∂x.

(20)

If this expression is subtracted from (19), the coefficients of the derivatives must vanish in order that
(10) and (17) form a Janet base. The resulting system of equations is

b1,x + (Pn,n − Pn−1,n−1)b1 − Pn,n−1 = 0,

b2,x − Pn−1,n−2b1 + (Pn,n − Pn−2,n−2)b2 − Pn,n−2 = 0,

...
...

bn−1,x − Pn−1,1b1 − . . .+ (Pn,n −A2)bn−1 − Pn,1 = 0,

bn,x − Pn−1,0b1 − . . .−A3bn−1 + Pn,nbn − Pn,0 = 0,

bn −Rn−1b1 −Rn−2b2 − . . .−R2bn−2 −A1bn−1 = 0.

(21)

The last equation may be solved for bn. Substituting it into the equation with leading term bn,x,
and eliminating the first derivatives bj,x for j = 1, . . . , n − 1 by means of the preceding equations, it
may be solved for bn−1. Proceeding in this way, due to the triangular structure, finally b1 is obtained
from the equation with leading term b2,x. Backsubstituting these results, all bk are explicitly known.
Substituting them into the first equation, a constraint for the coefficients A1, A2 and A3 expressing
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the condition for the existence of a Janet base comprising (10) and (17), i. e. a solution of the type
specified above in case a) is obtained. The proof for case b) is similar and is therefore omitted. 2

Goursat [6], Section 110, describes a method for constructing a linear ode which is in involution
with a given second order equation zxy + azx + bzy + cz = 0. As is well known, this an extremely
difficult problem in general. The basic achievement of the method applied above is the construction of
a triangular system from which the unknown coefficients are guaranteed to be obtained by elimination.
They are supplemented by a set of conditions on the coefficients a, b and c which make the problem
feasible. Exactly the same strategy works for the third-order equations discussed below. It is not
obvious how to generalize Goursat’s scheme to any other case beyond the second-order equation
considered by him.

Case a), n = 1 and case b), m = 1, have been discussed in detail in [12]. The corresponding ideals
are maximal and principal, because they are generated by ∂y + a1 and ∂x + b1 respectively. The term
factorization is applied in these cases in the proper sense because the obvious analogy to ordinary
differential operators where all ideals are principal. For any value m > 1 or n > 1 the overideals are
Jm =< Dxy, Dxm > or Jn =< Dxy, Dyn >. For any fixed values m1 < m2, the corresponding ideals
obey Jm2 ⊂ Jm1 , and similary for values of n. This situation becomes particularly clear from the
following graph.

-

6d

d
t

x

y

1 2 3 . . . m

1

2

3

...

n

The heavy dot at (1, 1) represents the leading derivative ∂xy of the given equation. If a second
equation with leading derivative ∂xm represented by the circle at (m, 0) exists, the ideal is enlarged
by the corresponding operator. For m = 1 this ideal contains the original operator with leading
derivative ∂xy, i. e. this operator is redundant. This shows clearly how the conventional factorization
corresponding to a first-order operator is obtained as a special case for any m. A similar discussion
applies to additional equations with leading derivative ∂xn .

A similar scheme for equations (11) is not known. First of all, searching for an equation (16)
does not make sense because by reduction wrt. (11) it would mean searching for a first-order factor
which is covered by Theorem 3.1 of [12]. A Janet base comprising equations (11) and (17) has a
four-dimensional solution space. Even if a basis can be determined, it does not really bring forward
the solution procedure as is shown by the following example.

Example 8.4 Let the equation be (∂xx − ∂y)z = 0. In conjunction with ∂yyz = 0 it forms a Janet
base. The ideals I =< ∂xx − ∂y > and J =< ∂xx − ∂y, ∂yy > generate the relative syzygy module
Syz(I, J) =< (1, 0), (∂yy, ∂xx − ∂y) >=< (1, 0), (0, ∂xx − ∂y) >∈ D2. Determining a solution for the
latter comes down to solving the original equation and therefore is not helpful.

Next the algebraic approach will be applied third to order equations of the form Dxyyz = 0 where

Dxyy ≡ ∂xyy +A1∂xy +A2∂yy +A3∂x +A4∂y +A5. (22)

16



The ideal < Dxyy > is of gauge (1, 3). Proper right factors of differential type 1 and of first or second
order may be obtained by Corollary 4.3 of [12]. For completeness they are given next without proof.

Proposition 8.5 An operator of the form (22) generates an ideal < Dxyy > of gauge (1, 3). It may
have the following proper right factors of order two or one.

a) If 2A2,y +A1A2 −A4 6= 0 and b1,y − b21 +A1b1 −A3 = 0 where

b1 =
1

2A2,y +A1A2 −A4
(A2,yy + 2A2,yA1 +A2A1,y −A4,y −A1A4 −A2A3 +A2

1A2)

a right factor ∂xy + b1∂x + b2∂y + b3 exists, b2 = A2, b3 = A2b1 +A4 −A2,y −A1A2.

b) If 2A2,y+A1A2−A4 = 0 and A5−A2,yy−A2,yA1−A2A3 = 0, a right factor ∂xy+b1∂x+b2∂y+b3
exists where b1 is a solution of b1,y − b21 +A1b1 −A3 = 0, and b2 = A2, b3 = A2b1 +A2,y.

c) If A4 − 2A2,y −A1A2 = 0 and A5 −A2,yy −A2,yA1 −A2A3 = 0, a right factor ∂x + b exists with
b = A2.

d) If A4−A1A2−A1,x 6= 0 and by− b2 +A1b−A3 = 0 where b =
A5 −A2A3 −A3,x

A4 −A1A2 −A1,x
, a right factor

∂y + b exists.

e) If A4 − A1A2 − A1,x = 0 and A5 − A2A3 − A3,x = 0, a right factor ∂y + b exists where b is a
solution of b1,y − b21 +A1b−A3 = 0.

The ideals generated in case a) and b) are of gauge (1,2), in the remaining cases they are of gauge
(1,1).

If such a factor does not exist, over-ideals of the form < Dxyy, Dxm > or < Dxyy, Dyn > may be
searched for. This is considered next.

Proposition 8.6 Let an operator of the form (22) be given. The following types of overideals of
differential type 1 may be constructed.

a) If n ≥ 2 is a natural number, it may be decided whether there exists an operator (17) such that
(22) and (17) combined form a Janet base. If the answer is affirmative, the operator (17) may
be constructed explicitly with coefficients bi ∈ Q(x, y).

b) If m ≥ 2 is a natural number, it may be decided whether there exists an operator (16) such that
(22) and (16) combined form a Janet base. If the answer is affirmative, the operator (16) may
be constructed explicitly with coefficients ai ∈ Q(x, y).

The proofs of Propositions 8.3 and 8.6 are constructive. They allow determining any overideal with
generators of the form (16) or (17) for given m and n for the equations under consideration. These
results are combined now to produce the following algorithm DecomposeLpde which returns the most
complete decomposition for any operator of the form (10) or (22) if the order of the additional operator
is limited.

Algorithm DecomposeLpde(L, d). Given an operator L of the form (10) or (22) generating I =< L >,
its decomposition into overideals of differential type 1 and with leading derivative of order not higher
than d is returned.
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S1 : Proper factorization. Determine right factors f1, f2, . . . of L as described in
Corollary 3.3 of [12] or Proposition 8.5. If any are found, collect them as
F := {f1, f2, . . .}.

S2 : Extend ideal. If step S1 failed, apply Proposition 8.3 or 8.6 in order to con-
struct operators g1, g2, . . . of the form (16) or (17) with m ≤ d and n ≤ d,
beginning with m = n = 2 and increasing its value stepwise by 1 until d is
reached. If any are found, assign them to G := {g1, g2, . . .}. If F and G are
empty return L.

S3 : Completely reducible? If J := Lclm(F ) =< L > return F , else if for the
elements on G there holds J := Lclm(< L, g1 >,< L, g2 >, . . .) =< L >,
return G.

S4 : Relative syzygies. Determine generators of S := Syz(I, J) and transform S it
into a Janet base. If F is not empty return (S, F ) else return (S,G).

This algorithm has been implemented in ALLTYPES, a computer algebra type system which may
be accessed over the internet on the website www.alltypes.de [30]. From this decomposition large
classes of solutions of an equation Lz = 0 may be obtained. In the completely reducible case, from
the operators returned in step S3 solutions may be constructed as described in [12], or by solving the
returned linear ode and applying Lemma 8.1. If L is not completely reducible, the result of step S4 is
applied as follows. From F or G a partial solution is obtained similar as in the previous case. Solving
the equations corresponding to S and taking the result as inhomogeneity for F or G respectively
yields an additional part of the solution. This proceeding may fail if not all of the equations which
occur during this proceeding can be solved. In these cases only a partial solution is obtained. The
following examples have been treated according to this proceeding. Most of them are taken from the
literature quoted at the beginning of this section. The first example due to Goursat leads to proper
factorization, but is not completely reducible.

Example 8.7 (Goursat 1906) The equation (∂xy − y∂y)z = 0 has been considered in [6], vol II,
page 212. The ideal < ∂xy − y∂y > is of gauge (1,2). In step S1 the single right factor ∂y is
obtained. It generates the over-ideal < ∂y > of gauge (1,1) which contributes a generic function G(x)
(cf. Example 3.3) to the solution. Step S4 yields the module of relative syzygies < ∂x − y > with
solution F (y) exp (xy). Taking it as inhomogeneity of the right factor equation, the generic solution
G(x) +

∫
F (y) exp (xy)dy is obtained.

The next example taken from Forsyth shows how complete reducibility has its straightforward
generalization if there are no proper factors.

Example 8.8 (Forsyth 1906) Define Dxy ≡ ∂xy + 2
x− y∂x−

2
x− y∂y −

4
(x− y)2

which generates the

principal ideal I =< Dxy > of gauge (1,2). The equation Dxyz = 0 has been considered in [5], vol.
VI, page 80. In step S1 no first-order factor is obtained. Step S2 shows that there exist generators

Dxx ≡ ∂xx −
2

x− y
∂x +

2

(x− y)2
and Dyy ≡ ∂yy +

2

x− y
∂y +

2

(x− y)2

such that the ideals J1 =< Dxy, Dxx > and J2 =< Dxy, Dyy >, each of gauge (1,1), are generated by
a Janet base. In step S3 it is found that I = Lclm(J1, J2), i.e. I is completely reducible, and the sum
ideal is J1 + J2 =< Dxy, Dxx, Dyy >. The generic solution of Dxxz = 0 is C1(x − y) + C2x(x − y)
where C1,2 are generic functions of y. Substitution into Dxyz = 0 yields C1,y + yC2,y − C2 = 0.
By Lemma 8.1 they may be represented as C1 = 2F (y) − yF ′(y) and C2 = F ′(y). Consequently the
solution z1 = 2(x − y)F (y) + (x − y)2F ′(y) is obtained. The equation Dyyz = 0 has generic solution
C1(y−x)+C2y(y−x) where C1,2 are generic functions of x now. By a similar procedure as above, the
solution z2 = 2(y − x)G(x) + (y − x)2G′(x) is obtained. The generic solution of Dxyz = 0 is z1 + z2.
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The following example by Imschenetzky has been reproduced in many places in the literature.
Unfortunately a misprint from the original has been reproduced by all quotations.

Example 8.9 (Imschenetzky 1872) The equation (∂xy + xy∂x− 2y)z = 0 has been considered in [14].
Step S1 shows again that there are no first-order right factors. According to step S2, an operator of
the form (17) with n ≤ 3 does not exist. However, for m = 3 there is an operator ∂xxx such that the
ideal < ∂xy +xy∂x−2y, ∂xxx > of gauge (1,1) is generated by a Janet base. The equation zxxx = 0 has
the generic solution C1 +C2x+C3x

2 where the Ci, i = 1, 2, 3 are generic functions of y. Substituting
it into the above equation and equating the coefficients of x to zero leads to the system C2,y−2yC1 = 0,

C3,y− 1
2yC2 = 0. By Lemma 8.1, the Ci may be represented as C1 = 1

y2
F ′′− 1

y3
F ′, C2 = 2

yF
′, C3 = F ,

F is a generic function of y, F ′ ≡ dF/dy. It yields the solution z1 = x2F (y)+
2xy2 − 1

y3
F ′(y)+ 1

y2
F ′′(y)

of the given equation. In step S4, from the ideals I =< ∂xy + xy∂x − 2y > and J =< ∂xy + xy∂x −
2y, ∂xxx > the relative syzygy module Syz(I, J) =< (1, 0), (∂xx,−∂y − xy) >=< (1, 0), (0, ∂y + xy) >
of gauge (1,1) is constructed, the latter being generated by a Janet base. Its solution (0, G(x)s(x, y))

with s(x, y) = exp (−1
2xy

2) and G(x) an generic function of x yields the solution

z2 =
1

2

∫
G(x)s(x, y)x2dx− x

∫
G(x)s(x, y)xdx+

1

2
x2

∫
G(x)s(x, y)dx

of the original equation, its generic solution is z1 + z2.

The last example is a third-order equation which allows a single over-ideal generated by ∂xxx if
the order is limited to five.

Example 8.10 Let the third-order operator

Dxyy ≡ ∂xyy + (x+ y)∂xy + (x+ y)∂x − 2∂y − 2

be given. It generates the principal ideal I =< Dxyy > of gauge (1,3). Step S1 does not yield any right
factors of order one or two. In step S2 an operator of the form (17) and n ≤ 5, or an operator of the
form (16) for m ≤ 2 is not found. However, for m = 3 there is an operator Dxxx ≡ ∂xxx such that
the ideal J =< Dxyy, Dxxx > of gauge (1,1) is generated by a Janet base. The equations Dxyyz = 0
and Dxxxz = 0 yield the solution

z1 = [(x+ y)2 − 2(x+ y) + 2]F (y) + 2(x+ y − 1)F ′(y) + F ′′(y)

where F is a generic function of y. In step S4, I and J yield the relative syzygy module Syz(I, J) =<
(1, 0), (∂xx,−∂yy − (x + y)∂y − x − y) >=< (1, 0), (0, ∂yy + (x + y)∂y + x + y) > of gauge (1,2). Its

solution G(x)s(x, y) + H(x)s(x, y)
∫
e−y

dy
s(x, y)

, where s(x, y) = exp (−1
2(x+ y − 2)2 − y) and G,H

are generic functions of x. According to the discussion in the Introduction on page 2 one finally obtains

z2 =
1

2

∫
G(x)s(x, y)x2dx− x

∫
G(x)s(x, y)xdx+

1

2
x2

∫
G(x)s(x, y)dx

and for z3 an identical expression with G(x) replaced by H(x) and s(x, y) by s(x, y)
∫
e−y

dy
s(x, y)

. The

generic solution of the given equation Dxyyz = 0 is z1 + z2 + z3.
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9 Conclusion

The results presented in this article allow decomposing partial differential operators of the form (10) or
(22) into components of lower gauge. If such a decomposition is found, it may be applied to determine
the general solution of the corresponding pde, or at least some parts of it.

It is highly desirable to develop a similar scheme to large classes of modules of partial differential
operators. The possible types of overmodules can always be determined. The hard part is to identify
those for which generators may be constructed algorithmically. If this is not possible for a particular
type, this overmodule has to be discarded. An important field of application could be the symmetry
analysis of nonlinear pde’s, because the determining equations of these symmetries are linear homoge-
neous pde’s. A different type of problem is to find an upper bound for the order d of possible operators
in algorithm DecomposeLpde. Such a bound would mean that full classes of over-modules could be
excluded from the decomposition. On the other hand, a negative answer would be an evidence that
this problem could be undecidable
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