
THE MATCHING PROBLEM FOR BIPARTITE GRAPHSWITH POLYNOMIALLY BOUNDED PERMANENTS IS IN NC(EXTENDED ABSTRACT)Dima Yu. GrigorievSteklov Institute of MathematicsSov. Acad. of SciencesLeningrad 191011Marek KarpinskiDept. of Computer ScienceUniversity of Bonn5300 Bonn 1
Abstract.It is shown that the problem of deciding and constructing a perfect matchingin bipartite graphs G with the polynomial permanents of their n � n adjacencymatrices A (perm(A) = nO(1)) are in the deterministic classes NC2 and NC3,respectively. We further design an NC3 algorithm for the problem of construct-ing all perfect matchings (enumeration problem) in a graph G with a permanentbounded by O(nk). The basic step was the development of a new symmetric func-tions method for the decision algorithm and the new parallel technique for thematching enumerator problem. The enumerator algorithm works in O(log3 n) par-allel time and O(n3k+5:5 � log n) processors. In the case of arbitrary bipartite graphsit yields an `optimal' (up to the log n-factor) parallel time algorithm for enumer-ating all the perfect matchings in a graph. It entails also among other things ane�cient NC3-algorithm for computing small (polynomially bounded) arithmetic1

permanents, and a sublinear parallel time algorithm for enumerating all the perfectmatchings in graphs with permanents up to 2n" .

1. Introduction.Given a bipartite graph G, and its (bipartite) adjacency matrix A. The prob-lem of constructing all perfect matchings of G (the computation of the arithmeticpermanent perm(A)) is #P -complete [Va 79]. Let PERT (logical permanent prob-lem) denote the set of all square adjacency matrices that have a perfect match-ing. PERT does have polynomial time algorithms and O(m5)-uniform circuits[HK 73],[Ra 85].Also a problem of �nding some perfect matching (not the enumeration of allmatchings) can be done in polynomial time [HK 73]. The problem of perfect match-ing for bipartite graphs is known to be in RNC2 [MVV 87], [KUW 85]. The prob-lem of deciding whether there exists a perfect matching (the problem of the logicalpermanent) possesses some interesting lower bound properties for monotone cir-cuits [Ra 85], as well as interesting connections of its circuit upper bounds to theintractability of the discrete logarithm problem [FLS 85], for example. In 1984, Ra-bin and Vazirani [RV 84] have proved that if a graph has a unique perfect matching,then the problem of �nding it lies in NC.Kozen, Vazirani and Vazirani [KVV 85] and Hembold and Mayr [HM 86] havedesigned NC-algorithms for the problem of testing for unique matching as well asfor interval graphs and the connected problem of 2-processor scheduling. [DK 86a]has generalized the result on interval graphs to strongly chordal graphs ([Fa 83],[Ta 85]). It was observed in [DK 86a] that the perfect matching for chordal graphs iscomplete for the general matching problem. Surprisingly, it was proved in [DK 86b]that the problem of matching for regular graphs is complete for the general matchingproblem.It is also known that the perfect matching construction for bipartite regulargraphs is in NC2 [LPV 81]. In [Br 86] interesting approximation methods havebeen proposed for bipartite matching problems. The status of the general perfectmatching problem remains open and is still one of the most intriguing open problemsin parallel computation.In this paper we attack the problem of checking and constructing perfect match-ings in bipartite graphs in the case where its number is bounded by the constantsand the polynomials. It was known from Rabin and Vazirani [RV 84] that if a graphhas a unique perfect matching, then the problem of �nding it lies in NC.The aim of this paper is to prove the following three results:(1) If a bipartite graph G has a polynomial adjacency permanent (perm(AG) �

cnk), then the problem of deciding the existence of a perfect matching and itsconstruction is in NC2 and NC3, respectively (Theorems 1 and 3).(2) If a bipartite graph G has a bounded adjacency permanent (perm(AG) � k),then the construction problem of `all perfect matchings' lies in NC2 (Theorem 2).(3) If a bipartite graph G has a polynomial adjacency permanent, then the prob-lem of constructing all perfect matchings lies inNC3 (Theorem 4). The enumeratoralgorithm works within O(log3 n) parallel time and O(n3k+5:5 logn) processors.The algorithm involves development of the new method of symmetic functions(Theorem 1) and the new parallel techniques for the matching construction and thematching enumerator.It is interesting to notice that we have displayed a new parallel complexity featureof the matching problem, the easiness of its parallel enumerator for the small num-ber of solutions. This feature is seemingly not shared, on the di�erent complexitylevels, by other hard counting problems (cf. [VV 85], [MVV 87]).2. The Algorithms.Given a bipartite graph of n vertices, denote its 0-1 bipartite adjacency matrixby AG. The permanent of G is the permanent of AG = (aij)n�n, i.e. the numberperm(AG) = P� a1�(1) a2�(2) � � � an�(n), where summation extends over all per-mutations � on f1; 2; � � � ; ng. Given a 0-1 matrix A = (aij), a 1-pattern tA of A isa mapping from f1; � � � ; ng � f1; � � � ; ng into f1; � � � ; n2g such that tA(i; j) = l ifaij = 1 and aij is the l-th non-zero element, tA(i; j) = 0 otherwise.Theorem 1. If a bipartite graph G has a polynomial permanent, perm(AG) �cnk for given constants c and k, then the problem of deciding the existence of aperfect matching (the logical permanent problem) is in NC2 .Proof. Suppose G is a given graph of n vertices and A its adjacency matrix.Let p1; p2; � � � ; pk denote consecutive prime numbers. We construct the followingNC2-algorithm for deciding the existence of a perfect matching:1. Construct in parallel all matricesAm = (amij) for 1 � m � cnk byamij = � (ptA(i;j))m if aij = 10 otherwise

2. Compute the determinants of Am; 1 � m � cnk : Det(Am) = �mIn this paper we shall use the boolean circuit model of computation ([Co 85]).Computing the determinants of an n� n matrix of n-bits numbers takes O(log2 n)boolean parallel time and O(n4:5) processors ([BGH 82], [BCP 83]).3. If 9m[�m 6= 0] then `accept' else `reject'.We prove the correctness of the algorithm by the followingLemma 1. 8m[�m = 0]() perm(A) = 0.Proof. (=)). We make use of the fact that the determinants of the consecutivematrices (amij) form symmetric di�erences of the form Pi xmi � Pj ymj ; for xi; yjprime codings of all matchings, 1 � m � cnk. Codings xi and yj are pairwisedi�erent xi 6= yj , xi 6= xj , etc. or equal to zero. �m = Pi xmi and �0m = Pj ymjare symmetric functions.All such functions are uniquely represented by the elementary symmetric functionssi (cf. [Ma 79]), si stands for the i-th symmetric function, by the use of the Newtonformulas (cf. [Ga 60], pp. 87-88): �1 = s1; �2 = s21 � 2s2; �3 = s31 � 3s1s2 +3s3; � � �etc. Any two solution systems for fxig and fyjg must coincide up to permutations,so in general there must exist a permutation � such that xi = y�(i). On the otherhand all xi and yj are di�erent or equal to zero; therefore equal to zero, which endsthe proof.It is interesting to note that because of the monotonicity property, comput-ing the logical permanent of matrices with k-bounded arithmetic permanents,perm(A) � k, for k = 1; 2; � � � ; does have superpolynomial n
(logn) monotonecircuit complexity ([Ra 85]) for all k's. It stands in contrast with ourCorollary 1. The Logical Permanent Problem for matrices with k-bounded arith-metic permanents is computable within the uniform O(log2 n) depth and O(n4:5)size boolean circuits.Theorem 2. If a bipartite graph G has a bounded permanent, perm(AG) �k for k a constant, then the problem of constructing all matchings of G is in NC2 .Proof. One sees that the algorithm of Theorem 1 encodes matchings in theform of the numbersPi xmi �Pj ymj for 1 � m � cnk. The problem of decryptionof these numbers and recovery of all actual matchings is a very interesting problemof polynomial algebra. We shall be able to prove the existence of such parallel`matching recovery' in Lemma 3 for numbers of matchings bounded by log(12�") n.

However, we now apply for a constant k a completely di�erent method which isan interesting new `divide-and-conquer' approach to the problem of matching.The following is the NC2-algorithm for constructing all matchings of a givenbipartite graph with a bounded permanent, perm(AG) � k for k a constant:Input: Matrix A`Subroutine (Split (A`)). Take in parallel all (i; j) entries of a matrix A such thataij 6= 0 and compute two new matrices A`+11 and A`+12 :� A`+11 is the (n� 1)� (n� 1) matrix resulting from the cancellation of its i-throw and j-th column; store the numbers (i; j).and� A`+12 is the n� n matrix resulting from plugging `0' into its (i; j)-entry.Algorithm.1. A0 AG2. Repeat in parallelsubroutine Split (A`)until ` = k � 1.3. Construct new matrices N = (xij) on the leaves of the computation tree. Sup-pose M = (yij) is on the leaf; thenxij = � ptM (i;j) if yij = 10 otherwise4. Compute the determinants of all matrices N .5. If a determinant is an encoding of a unique matching (the condition: det(Ak�11) 6=0 and det(Ak�12) = 0 is ful�lled), recover it from the determinant (by consecutivedividing by prime numbers p1; p2; � � � ; pn and retrieving stored numbers (i; j) fromthe computational path) and print it out. (If you do not want repetition, do addi-tional parallel sorting.) The correctness of the algorithm is based on the followingLemma 2. For every matching in a graph G there exists a leaf of a computationtree (step 3) with the unique matching in it.We now aim at improving Theorem 2. First we proveLemma 3. If a bipartite graph G has a permanent bounded bylog 12�" n; perm(AG) � log 12�" n, then the problem of constructing all its matchingslies in NC.

Proof. Denote by k the number of matchings. Let k < log(12�") n, and fqig aresuch primes that1)qi > k (in fact qi � kn log n < log(1 12�") n) and2)Qi qi > 2n(n!)k > �j(x1; � � � ; x`); 1 � j � k; x1; � � � ; xk | products of primesplugged in matchings; the number of qi is near kn.Fix qi0 (in parallel) and solve the systemP1�i�` xi �P1�j�k�` yj =A1...P1�i�` xki �P1�j�k�` ykj =Ak 0@mod qi0 1A :Take any solution �x1; � � � ; �x`; �y1; � � � �yk�` (at the beginning we test ` = 0; 1; � � � ; k),then compute �j(�x1; � � � ; �x`); �j(�y1; � � � ; �yk�l); 1 � j � k. Any two solutions ofthis system coincide up to permutations in �x1; � � � ; �x` and �y1; � � � ; �yk�` (separately)because qi0 > k. Therefore �j(�x1; � � � ; �x`); �j(�y1; � � � ; �yk�`) are uniquely de�nedand�j(�x1; � � � ; �x`) = �j(x1; � � � ; x`)(mod qi0)�j(�y1; � � � ; �yk�`) = �j(y1; � � � ; yk�`)(mod qi0)where x1; � � � ; x`; y1 ; � � � ; yk�` is the unique (up to permutations in x1; � � � ; x` andin y1; � � � ; yk�`) solution of the system8><>:Pxi �P yj =A1...Pxki �P ykj =Akand so �j(x1; � � � ; x`); �j(y1; � � � ; yk�`) are de�ned uniquely.By the Chinese remainder theorem restore �j(x1; � � � ; x`), �j(y1; � � � ; yk�`). Itis possible since Q qi > �j(x1; � � � ; x`), �j(y1; � � � ; yk�`). Then apply [Lo 83] or[BKR 84] to �nd x1; � � � ; x`, y1; � � � ; yk�` .The complexity of the solving system mod qi0 (the method of [ChG 83] and[ChG 84]) is polynomial in (deg)(var)2 . qi0 � kk2 �kn log n is polynomial in n. Thepoint is that the method of [ChG 83] and [ChG 84] can be done simultaneouslyin parallel time log (sequential time)� O(log n) { its main subroutine is factoringin IF q[x1; � � � ; xn] { and the method in [ChG 83] needs only linear algebra { notreduction basis.Having proved the existence of an NC-algorithm for the enumerator of log 12�" nmatchings (which seems to be a limit for an e�cient parallel algebra algorithm),

we are now going to attack the general matching problem of polynomially boundedpermanents, both for the construction of a matching and the matching enumerator.We are able to prove a much stronger result than Lemma 2 by using our symmetricfunctions technique of Theorem 1 for the solution of the logical permanent problem(surprisingly not using any e�cient linear algebra).Theorem 3. If a bipartite graph G has a polynomial permanent (perm(AG) �cnk), then the problem of constructing a perfect matching lies in NC3 .Proof. Denote by A = (aij) a 0-1 n�nmatrix. For any entry aij , by Aij denotethe (n�1)� (n�1) matrix obtained from A by canceling the i-th row and the j-thcolumn.For any aij = 1 test (with the help of the deciding method of Theorem 1) whetherAij has at least one matching. We call such aij generators. Consider a row (i0-th) containing at least two generators ai0j1 = ai0j2 = 1 (otherwise, if no such rowexists, we have found a unique matching). Then at least one of the two matricesAi0j1 and Ai0j2 has at most half of all the matchings of the matrix A. This is acrucial point of our algorithm (the rest is a consequence of our decision algorithmof Theorem 1)Then apply the same construction to both matrices Ai0j1 ; Ai0j2 (call recursivelythe subroutine of Theorem 1), and so on. After t � log(cnk) = O(log n) steps weshall obtain one of the 2t matrices with the unique matching.Theorem 4. (Catching all Perfect Matchings in NC3) If a bipartite graph G hasa polynomial permanent (perm(AG) � cnk), then the problem of constructing allits perfect matchings lies in NC3. The algorithm works in O(log3 n) parallel timeand O(n3k+5:5 logn) processors.Proof. We start with a de�nition:De�nition. A set of entries ai1j1 ; � � � ; aiuju of the matrix A is called (matching)active if there exists a matching in the graph corresponding to the matrix A, con-taining all these entries.One can test for any given set of entries ai1j1 ; � � � ; aiuju whether it forms anactive set. Namely, it is equivalent to the fact that for all ai1j1 = � � � = aiuju = 1,the indices i1; � � � ; iu are pairwise distinct (and also j1; � � � ; ju) and besides, inthe matrix A(i1;��� ;iu)(j1;��� ;ju), obtained from A by canceling the rows i1; � � � ; iu and thecolumns j1; � � � ; ju, there is at least one matching that can be checked by means ofthe decision procedure exposed above (Theorem 1).

Now we describe an algorithm yielding all the matchings of the matrix A. Wecan suppose w.l.o.g. that n = 2m. The algorithm works recursively in (m + 1)stages. At the �rst stage it produces all the active entries.Next, �x a certain i; 1 � i � m; and assume that after the i-th stage thealgorithm has produced the family of all the active sets of entries of the forma2(i�1)�s+1;j1 ; � � � ; a2(i�1)�s+2(i�1);j2(i�1) for each s; 0 � s < 2m�i+1.So, at the (i+ 1)-th stage for every 0 � t < 2m�i the algorithm tests in parallelfor any pair of active sets of the form a2(i�1)(2t)+1;j1 ; � � � ; a2(i�1)(2t)+2(i�1);j2(i�1) anda2(i�1)(2t+1)+1;p1 ; � � � ; a2(i�1)(2t+1)+2(i�1)p2(i�1) whether the union of these two setsa2(i�1)(2t)+1;j1 ; � � � ; a2(i�1)(2t+1)+2(i�1) ;p2(i�1) forms an active set. If yes, then thealgorithm outputs it as one of the results of the (i + 1)-th stage. This completesthe description of the algorithm. At the end of it (after (m+ 1) stages) we obtainall the matchings of the matrix A.Let us prove that the described algorithm is in NC. The depth of the al-gorithm is O(log3 n). To estimate the size of the algorithm observe that af-ter any stage there would be less than n � cnk active sets. Thus, at anystage the algorithm tests less than c2n2k+1 pairs of active sets. This provesthat the described algorithm lies in NC3 and takes O(n3k+5:5 logn) processors.We now derive some important corollaries from the construction of Theorems 3and 4:Corollary 2. The problem of computing a polynomially bounded permanent isin NC3.Corollary 3. If the number of matchings in a graph G is nO(log n), then thedecision problem (logical permanent) and the construction of a perfect matchingproblem are mutually O(log2 n)-uniform depth reducible.Corollary 4. If a bipartite graph G has a permanent less than 2logk n, then thereis a logk+1 n parallel time (logk+1 n-sequential space) algorithm for enumerating allperfect matchings.Corollary 5. If a bipartite graph G has a permanent less than 2n" for a constant" < 1, then there is a sublinear parallel time (sublinear sequential space) algorithmfor enumerating all the perfect matchings in a graph.3. `Optimal' Parallel Time Enumerator Algorithm.

We consider now the computational problem of enumerating all the perfectmatchings in an arbitrary bipartite graph. A lower bound for the parallel (boolean)time is
(log(perm(A))) for perm(A), say, at least linear, perm(A) � n (the worstcase is
(n logn)). We are now interested in the best possible parallel enumeratorsfor (big sized) permanents not covered by Theorem 4. The enumerator algorithm ofTheorem 4 can be reused now to design the `optimal' up to the log n-factor paralleltime enumerator algorithm:Theorem 5. There exists an O(log(perm(A)) + log2 n) logn parallel time (-uniform boolean depth) algorithm for enumerating all the perfect matchings inan arbitrary bipartite graph.Proof. Given an arbitrary bipartite graph G with the adjacency matrix A. Theparallel algorithm for the logical permanent of A (Theorem 1) can be designedworking in O(log(perm(A))+ log2 n) parallel time. Now we generalize the enumer-ator algorithm of Theorem 4 for the case of graphs with arbitrary permanents.We reduce the resulting unbounded fan-in at every stage to the bounded oneon the expense of O(log(perm(A)))-depth. This yields an algorithm working inO(log(perm(A)) + log2 n) logn-parallel timeCorollaries 4 and 5 are now special cases of Theorem 5.4. Deciding whether the Permanent is Small; a Randomised Version oftheMatching Enumerator.It is known that for every positive integer k there exists a (0; 1)-matrix with thepermanent k. The minimum order of (0; 1)-matrices with the permanent k doesnot exceed dlog(k � 1)e+ 2 for k = 2; 3; � � � ([GMW 74]). An important computa-tional problem of bounded counting arises: given an arbitrary k; k = 0; 1; 2; 3; � � � ,decide whether perm(A) is k-small, i.e. whether perm(A) � k. If the answer isyes, our enumerator algorithm of Section 2 will produce all the perfect matchings.Our algorithms provide a way of deciding whether perm(A) = k, for k > 0, butunfortunately they cannot distinguish between zero and many matchings.A similar situation holds for polynomially small permanents. For a functionf 2 nO(1); perm(A) is f -small if perm(A) � f(n) for an n� n-matrix A. We arenow interested in detecting all matrices A with f -small permanents. We producehere an attractive randomized version of our Theorem 4.Theorem 6. (Randomised Enumerator) For any polynomial f 2 nO(1) (f(n) =

cnk) there exists a randomized (Las Vegas) RNC3-algorithm for deciding whetherperm(A) is f -small. In the case perm(A) is f -small, the algorithm outputs allthe perfect matchings of A. The algorithm takes O(log3 n) parallel time andO(n2k+6:5 logn) processors.Proof. There exists a Las Vegas RNC2 -algorithm (not outputting any errors)for the logical permanents (cf. [MVV 87], [KUW 85],[Ka 86]) working in O(log2 n)parallel time and O(n5:5) processors and using O(n2 logn) random bits. We usethis algorithm (instead of applying the deterministic procedure of Theorem 4) tocompute the logical permanent of the active set matrices Ai1;��� ;iuj1;��� ;ju in the algorithmof Theorem 4.We control the number of active sets produced at any level by comparing it inparallel with the number n � cnk (computed by another NC1-circuit). If it exceedsthis number, we switch the circuit o�. If not, we shall obtain a printout of all thematchings in A in O(log3 n) parallel time. The algorithm takes O(n2k+6:5 logn)processors.The randomized enumerator algorithm above reduces the number of processorsby the factor of � O(nk) on the expense of O(n2k+8:5 log2 n) random bits.Remark. As an immediate application of the randomized enumerator al-gorithm, we observe that the problem of checking whether perm(A) =det(A) for any given 0 � 1 matrix A with det(A) = nO(1) hasbeen put in RNC3 . It is also interesting to note that the gen-eral problem of testing whether perm(A) = det(A) ([VY 87]) for 0 � 1matrices is polynomial time equivalent to the problem of checking whether a givenbipartite graph has a Pfa�an orientation ([LP 86]), and to the Even Cycle Problem([VY 87]) for directed graphs.5. Extensions.Our results can be extended to the problem of MaximumMatching for the case ofnon-bipartite graphs with the polynomially bounded number of matchings. In thiscase we deal with computations over skew matrices and Pfa�an functions ratherthan bipartite adjacency matrices. Due to the enumerator algorithm of Theorem4, the problems of Maximum Weighted Matching (with weights in binary), ExactMatching (cf. [MVV 87]), First Lexicographical Perfect Matching, or the connectedStable Marriage Problems are all put in NC3 , provided the number of underlying

matchings is small. Also, as a consequence of the enumerator, inherently di�cultproblems of counting perm(A) mod k ([Va 79], [VV 85]) have been proved e�cientlyparallelisable for the polynomially small permanents.6. Further Research.It remains to be seen whether the method applied in our algorithm for boundedcases of the logical permanent could be re�ned to provide a general deterministicsolution. It seems that a more careful look at the algebraic varieties stemming fromour symmetric functions construction of Theorem 1 is now justi�ed.Independently, it would be very nice to shed some light (say, via NC-reducibilities) on the mutual interdependence between the decision methods andthe construction of a perfect matching for graphs with superpolynomial perma-nents (Theorem 3 and Corollary 3 might be good starting points).Acknowledgements.We are thankful to Avi Wigderson, Volker Strassen and Mark Jerrum for a numberof interesting conversations. Special thanks also go to Erich Kaltofen for valuablecomments concerning parallel algebra for computing integer roots of polynomialsused in Lemma 3. Finally we thank Michael Ben-Or, Noga Alon and Michael Rabinfor commenting on the preliminary draft of this paper.

References.[BKR 84] Ben-Or, M., Kozen, D., and Reif, J., The Complexity of ElementaryAlgebra and Geometry, Proc:16th ACM STOC (1984), pp.457-464[BCP 83] Borodin, A., Cook, S.A., and Pippenger, N., Parallel Computa-tion for Well-EndowedRings and Space-Bounded ProbabilisticMa-chines, Information and Control 58 (1983), pp.113-136[BGH 82] Borodin, A., von zur Gathen, J., and Hopcroft, J., Fast ParallelMatrix and GCD Computation, Proc. 18th IEEE FOCS (1982),pp. 65-71[Br 86] Broder, A.Z., How Hard is it to Marry at Random (On the Ap-proximation of the Permanent), Proc. 18th ACM STOC (1986),pp. 50-58[ChG 83] Chistov, A.L., and Grigoriev, D.Yu., Subexponential-Time SolvingSystems of Algebraic Equations I/II, LOMI Reports E-9-83, E-10-83, Steklov Mathematical Institute (1983), pp. 1-57, pp. 1-62[ChG 84] Chistov, A.L., and Grigoriev, D.Yu., Fast Decomposition of Poly-nomials into Irreducible Ones and the Solution of Systems of Al-gebraic Equations, Soviet Math. Dokl. (1984), pp. 380-383[Co 85] Cook, S.A., A Taxonomy of Problems with Fast Parallel Algo-rithms, Information and Control 64 (1985), pp. 2-22[DK 86a] Dahlhaus, E., and Karpinski, M., The Matching Problem forStrongly Chordal Graphs is in NC, Research Report No. 855-CS,University of Bonn (1986), pp. 1-8[DK 86b] Dahlhaus, E. and Karpinski, M., Perfect Matching for RegularGraphs is AC0-Hard for the General Matching Problem, ResearchReport No. 858-CS, University of Bonn (1986), pp. 1-5[Fa 83] Farber, M., Characterizations of Strongly Chordal Graphs, DiscreteMath. 43 (1983), pp. 173-189[FLS 85] Furst, M., Lipton, R., Stockmeyer, L., PseudorandomNumber Gen-eration and Space Complexity, Information and Control 64 (1985),pp. 43-51[FSS 81] Furst, M., Saxe, J.B., and Sipser, M., Parity, Circuits, and thePolynomial Time Hierarchy, Proc. 22nd IEEE FOCS (1981), pp.260-270

[Ga 60] Gantmacher, F.R., The Theory of Matrices, Chelsea Publ., NewYork (1960), pp. 1-374[vzG 86] von zur Gathen, J., Permanent and Determinant, Proc. 22nd IEEEFOCS (1986), pp.398-401[GT 86] Goldberg, A.V., and Tarjan, R.E., A New Approach to the Maxi-mum Flow Problem, Proc. 18th ACM STOC (1986), pp.136-146[GMW 74] Gordon, B., Motzkin, T.S., and Welch, L., Permanents of 0; 1-matrices, J. Computational Theory Ser. A 17 (1974), pp. 145-151[HM 86] Hemboldt, D., and Mayr, E., Two Processor Scheduling is in NC,Proc. VLSI Algorithms and Architectures, LNCS 227 (1986), pp.12-25[HK 73] Hopcroft, J.E., and Karp, R.M., An n 52 Algorithm for MaximumMatching in Bipartite Graphs, SIAM J. Comp. 2 (1973), pp. 225-231[Ka 86] Karlo�, H.J., A Las Vegas RNC Algorithm for Maximum Match-ing, Combinatorica 6 (1986), pp. 387-391[KUW 85] Karp, R.M., Upfal, E., and Wigderson, A., Constructing a PerfectMatching is in Random NC, Proc. 17th ACM STOC (1985), pp.22-32[KVV 85] Kozen, D., Vazirani, U.V., and Vazirani, V.V., NC Algorithms forComparabilityGraphs, Interval Graphs, and Testing for Unique Perfect Matching,Proc 5th Conference on Foundations of Software Technology andTheoretical Computer Science, Springer LNCS Vol. 206 (1985),pp. 496-503[LPV 81] Lev, G., Pippenger, N., and Valiant, L., A Fast Parallel Algorithmfor Routing in Permutation Networks, IEEE Transactions on Com-puters Vol. C-30 (1981), pp. 93-100[Lo 83] Loos, R., Computing Rational Zeros of Integer Polynomials by p-adic Expansions, SIAM J.Comp.12 (1983), pp.286-293[LP 86] Lov�asz, L., and Plummer, M.D., Matching Theory, North HollandMathematical Studies Vol 29 (1986), pp. 1-544[Ma 79] Macdonald, I.G., Symmetric Functions and Hall Polynomials,Clarendon Press, Oxford (1979), pp.1-180

[MVV 87] Mulmuley, K., Vazirani, U.V., and Vazirani, V.V., Matching isas Easy as Matrix Inversion, Proc. 19th ACM STOC (1987), pp.345-354[NW 75] Nijenhuis, A., and Wilf, H., Combinational Algorithms, AcademicPress, (1975), pp.1-253[RV 84] Rabin, M.D., and Vazirani, V.V., Maximum Matchings in Gen-eral Graphs through Randomisation, TR-15-84, Harvard Univer-sity Center for Research in Computing Technology (1984)[Ra 85] Razborov, A.A., Bound on the Monotone Network Complexity ofthe Logical Permanent, Matem. Zametki 37 (1985), in Russian[Sm 87] Smolensky, R., Algebraic Methods in the Theory of Lower Boundsfor Boolean Circuit Complexity, Proc. 19th ACM STOC (1987),pp. 77-82[St 83] Stockmeyer, L., The Complexity of Approximate Counting, Proc.15th ACM STOC (1983), pp. 118-126[Ta 85] Tarjan, R.E., Decomposition by Clique Separators, Discrete Math-ematics 55 (1985), pp. 221-232[Va 79] Valiant, L.G., The Complexity of Computing the Permanent, The-oretical Computer Science 8 (1979), pp. 189-201[VV 85] Valiant, L.G., and Vazirani, V.V., NP is as Easy as DetectingUnique Solutions, Proc. 17th ACM STOC (1985), pp. 458-463[VY 87] Vazirani, V.V., and Yannakakis, M., Pfa�an Orientations, 0=1 Per-manents, and Even Cycles in Directed Graphs, manuscript (1987)

