
Constructions in public-key cryptography over matrix

groups

Dima Grigoriev
CNRS, IRMAR, Université de Rennes

Beaulieu, 35042, Rennes, France

dmitry.grigoryev@univ-rennes1.fr

http://name.math.univ-rennes1.fr/dimitri.grigoriev

Ilia Ponomarenko ∗

Petersburg Department of V.A.Steklov

Institute of Mathematics

Fontanka 27, St. Petersburg 191023, Russia

inp@pdmi.ras.ru

http://www.pdmi.ras.ru/˜inp

Abstract

The purpose of the paper is to give new key agreement protocols (a multi-party
extension of the protocol due to Anshel-Anshel-Goldfeld and a generalization of
the Diffie-Hellman protocol from abelian to solvable groups). They as well as a
number of homomorphic public-key cryptosystems rely on difficulty of the conju-
gacy and membership problems for subgroups of a given group. To support all of
them we present a general technique to produce a family of instances being matrix
groups (over finite commutative rings) which play a role for these schemes similar
to the groups Z

∗
n in the existing cryptographic constructions like RSA or discrete

logarithm.

Introduction

One of the oldest cryptographical problems consists in constructing of a key agreement
protocol. Roughly speaking it is a multi-party algorithm, defined by a sequence of steps,

∗Partially supported by RFFI, grants, 03-01-00349, NSH-2251.2003.1. The paper was done during the
stay of the author at the Mathematical Institute of the University of Rennes.

1

specifying the actions of two or more parties in order a shared secret becomes available to
two or more parties. Probably the first such procedure based on abelian groups is due to
Diffie-Hellman (see [8]). In fact, it concerns automorphisms of abelian (even cyclic) groups
induced by taking to a power. Some generalizations of this protocol to non-abelian groups
(in particular, the matrix groups over some rings) were suggested in [22] where security was
based on an analog of the discrete logarithm problems in groups of inner automorphisms.
Certain variations of the Diffie-Hellman systems over the braid groups were described
in [14]; there several trapdoor one-way functions connected with the conjugacy and the
taking root problems in the braid groups were proposed. A general scheme for constructing
key agreement protocols based on algebraic structures was proposed in [1]. In principle, it
enables one to construct such protocols for non-abelian groups and their automorphisms
induced by conjugations. In this paper we generalize to the non-abelian case the Diffie-
Hellman protocol, construct multi party procedure for the protocol [1], and analyze the
security of both protocols realized in matrix groups over rings.

The question on finding probabilistic public-key cryptosystems in which the decryp-
tion function has a homomorphic property goes back to [23] (see also [7]). In such a
cryptosystem the spaces of messages and of ciphertexts are algebraic structures G and
H and the decryption function D : G → H is a homomorphism. A number of such
cryptosystems is known for abelian groups, e.g. the quadratic residue cryptosystem [8]
and its generalization for highest residues [21] (see also an overview in [11]). In most of
them the security is based on the intractability of number-theoretical problems close to
the integer factoring. Recently, several homomorphic cryptosystems were constructed for
infinite (but finitely presented) groups, see [11, 12] and references there.

The third problem considered in this paper is how to produce instances for cryptosys-
tems based on computations with matrix groups over rings. In contrast to numerous
theoretical cryptosystems where there is a lot of efficient algorithms to generate integers
with given properties (e.g., the pairs of two distinct large primes of the same bit size
used in the quadratic residue cryptosystem), it is not clear a priory how to find efficiently
matrix groups in which some problems (like membership or conjugacy) arising in cryptog-
raphy are computationally difficult. We propose a general scheme for solving this problem
and give a specialization of this scheme for matrix groups over finite commutative rings.

In Section 1 we study key agreement protocols between two parties (named usually
Alice and Bob) and their extensions to several parties. The security of the Diffie-Hellman
protocol relies on the difficulty of the following transporter problem: having an action
G × V → V of a group G on a set V for given u, v ∈ V to find g ∈ G (provided that it
does exist) such that (g, u) 7→ v. In case of V being a cyclic group of order n and G being
a group acting on V by taking a power, one arrives to the discrete logarithm problem
(usually, n is taken to be prime). The security of the key agreement protocol of [1] (see also
Subsection 1.1) relies on the difficulty of the conjugacy problem with respect to a subgroup
of G. In Subsection 1.1 we extend the construction of [1] to multi-party key agreement

2

protocol. Then in Subsection 1.2 we design another generalization of the Diffie-Hellman
protocol to actions of groups G which satisfy a certain identity. Clearly, any abelian group
satisfies the identity aba−1b−1 = 1 and more generally, any solvable group with a fixed
length of its derived series satisfies an appropriate commutator identity. The security of
our protocol again relies on the difficulty of the transporter problem for a suitable action
of G.

In Section 2 we consider homomorphic public-key cryptosystems (see e.g. [11]) in which
the decrypting function (known to Alice) is a group homomorphism f : G → H where the
groups H,G play the roles of the spaces of plain and ciphertext messages, respectively.
Usually, the security of a homomorphic cryptosystem relies on the difficulty of the problem
of the membership to a normal subgroup of G (here, the kernel of f). For example, in a
homomorphic cryptosystem from [12] G was a subgroup of the modular group SL2(Z) and
the security of this cryptosystem relied on the difficulty of a certain membership problem
to a subgroup of the modular group.

The crucial role in the classical cryptographic constructions (like RSA, discrete loga-
rithm or quadratic residue [8]) plays the natural action of the group Aut(Z∗

n) on the group
Z
∗
n. So, varying n one gets a mass pool of instances for cryptographic primitives. This

action is a special case of the natural action of the group AutR(V) (viewed as a matrix
group) on the free module V over the ring R. In this paper we propose a construction
of a pool of matrix groups instances for cryptographic primitives (Subsection 3.2). The
security of these instances relies on the difficulty of certain problems on matrix groups
(e.g. the membership to a subgroup or the conjugacy with respect to a subgroup). For
the complexity of such problems few results were established in case of matrix groups over
fields [3, 13]; for matrix groups over arbitrary rings much less is known. We note also that
matrix groups were mentioned in [6] as candidates for groups with a difficult conjugacy
problem.

The common way in cryptography of producing a trapdoor and a cryptosystem, is to
generate a private key departing from a pair of primes p, q, while their product n = pq
plays the role of a public key. In our scheme (see Subsection 3.1) as a private key we
take a rooted tree (called a derivation tree) whose leaves being furnished with specially
chosen (non-abelian, in general) groups. We assume that Alice has in possession such
representations of these groups which allow her to solve efficiently a problem lying in the
background of a cryptosystem (like membership or conjugacy). Internal vertices of the
tree are endowed with certain operations on groups which allow one to assign recursively
a group to each vertex of the tree starting with its leaves. At the end of the recursion a
group is assigned to the root, and this group plays the role of a public key. This scheme
is also modified to produce a ”secret” homomorphism of matrix groups with a private
key being a derivation tree for this homomorphism (similar to the derivation tree of the
group). In Subsection 3.2 we give a realization of this general scheme in finite matrix
groups.

3

The similarity of the common constructions in cryptography based on commutative
groups (say. Z∗

n) with our construction (relying on finite matrix groups) allows us to call
the latter type of constructions the non-commutative cryptography.

1 Group-theoretical key agreement protocol

1.1 A multi-party protocol. The following group-theoretical variant of key agreement
two-party protocol was proposed in [1]. Let G be a group, and to two parties A and B
are assigned their subgroups

GA = 〈a1, . . . , am〉, GB = 〈b1, . . . , bn〉. (1)

The group G and the elements ai, bj are publically known. The parties A and B choose
secret elements a ∈ GA and b ∈ GB and transmit to each other the collections

XB = {a−1bja}
n
j=1, XA = {b−1aib}

m
i=1,

respectively. Since A (resp. B) has a representation of the element a (resp. b) via
generators a1, . . . , am (resp. b1, . . . , bn), then A (resp. B) can compute a representation
of the element b−1ab (resp. a−1ba) via elements of the set XA (resp. XB). Thus, A and
B have a common key

a−1(b−1ab) = [a, b] = (a−1ba)−1b.

An obvious necessary condition for this protocol to be secure is that the set of all such
commutators with a ∈ GA, and b ∈ GB should contain at least two elements.

Let us describe a generalization of the group-theoretical key agreement protocol for s
parties with s ≥ 2 and a single public communicating channel. In contrast to the straight-
forward algorithm having a quadratic complexity, we give an algorithm the complexity of
which is linear in s. Without loss of generality we assume that s = 2t for some t ≥ 1,
for otherwise in the recursive construction below we divide the parties into two unequal
subsets which leads just to a slight changing the notation. As in the case s = 2 the groups
G1, . . . , Gs ⊂ G of the parties are given publically by their sets of generators. At the initial
step the ith party chooses a secret key ai ∈ Gi, i = 1, . . . , s. Let S1 and S2 be disjoint s/2-
subsets of the set {1, . . . , s}. Then given u = 1, 2 the parties from Su recursively construct
the common key Ku ∈ G, such that for all i ∈ Su there exist integers εi,j ∈ {−1,+1} and
1 ≤ mi ≤ s/2, 1 ≤ j ≤ mi, and certain elements Bi,1, . . . , Bi,mi

∈ 〈{al : l ∈ Su,i}〉 with
Su,i = Su \ {i}, for which we have

Ku = (B−1
i,1 a

εi,1
i Bi,1) · · · (B

−1
i,mi

a
εi,mi

i Bi,mi
).

By recursion we can assume that the ith party knows the elements B−1
i,j aBi,j for all j and

for all chosen generators a of the group Gi (and thereby, it knows B−1
i,j aiBi,j), but does not

4

necessary know Bi,j. At this point the party i ∈ Su sends the elements B−1
i,j aBi,j for all

the chosen generators a of the group Gi to a certain party from the set Su′ with u′ = 3−u
and asks for the elements K−1

u′ B
−1
i,j aBi,jKu′. Then for u = 1 the ith party computes the

element

[K1, K2] = K−1
1 (K−1

2 K1K2) = K−1
1 (K−1

2 (B−1
i,1 a

εi,1
i Bi,1)K2) · · · (K

−1
2 (B−1

i,mi
a
εi,mi

i Bi,mi
)K2).

Similarly, for u = 2 the ith party computes the element [K1, K2] = (K−1
1 K2K1)

−1K2.
Thus, this element can be chosen as the common key for all parties. It is easy to see that
the ith party computes the common key in O(s|ai|) operations in the group G, where |ai|
denotes the length of the word ai in the chosen generators of the group Gi.

1.2 A new protocol. In this subsection we define a new group-theoretical two party
key agreement protocol that can be viewed as a non-commutative generalization of the
Diffie-Hellman protocol (see [8]).

Let G be a group acting on a set X so that given (x, g) ∈ X × G the image xg of
x with respect to g can be efficiently computed. Two parties A and B going to choose
a secret common key from X , fix publically subgroups GA, GB of the group G and two
words

WA(uA, uB) = u
a1,1
A u

b1,1
B · · ·u

a1,m1

A , WB(uA, uB) = u
b2,1
B u

a2,1
A · · ·u

b2,m2

B

of the free group F2 with two free generators uA, uB such that

(W1) m1, m2 ∈ N, ai,j , bi,j ∈ Z for all i, j, and a1,m1
6= 0, b2,m2

6= 0,

(W2) WA(gA, gB) = WB(gA, gB) for all (gA, gB) ∈ GA ×GB.

The protocol begins with the choice of a publically known element x0 ∈ X and the secret
elements gA ∈ GA by the party A and gB ∈ GB by the party B. Then during the
communications the party A performs the following:

– At step 0 set KA = x0.

– At steps i = 1, . . . , m1 − 1 send KgA
a1,i

A and receive KA := KgA
a1,igB

b1,i

A .

– At step i = m1 set KA := KgA
a1,m1

A .

The communications of the party B are defined similarly. Thus, at the end of the com-
munication process due to condition (W2) the parties A and B have the common key

KA = x
WA(gA,gB)
0 = x

WB(gA,gB)
0 = KB.

5

For X = Z
∗
p with p being a prime, G = GA = GB being the group Z

∗
p−1

∼= Aut(Z∗
p) and

WA(uA, uB) = uBuA, WB(uA, uB) = uAuB we come to the Diffie-Hellman protocol.
This scheme can be easily realized for a solvable group G with bounded length n of

the derived series of G. For example, one can take GA = GB = G and choose the words
WA = WA,n and WB = WB,n by induction on n as follows. If n = 1, then the group G is
abelian and so conditions (W1) and (W2) are satisfied for

WA,1(uA, uB) = uBuA, WB,1(uA, uB) = uAuB.

For n ≥ 2 the commutator [g, h] = g−1h−1gh with arbitrary g, h ∈ G belongs to the
derived subgroup G′ = [G,G] of G (the derived length of G′ equals n − 1). Assume
by induction that conditions (W1) and (W2) are satisfied for the words WA,n−1 and
WB,n−1. Then a straightforward checking shows that these conditions are also satisfied,
for example, for the words

WA,n = WA,n−1([uB, uA], [u
−1
A , u−1

B]), WB,n = WB,n−1([uB, uA], [u
−1
A , u−1

B]).

Indeed, property (W2) is obvious. Next, one can verify by induction on n ≥ 1 that the
length (the number of letters) of the word WA,n (as well as WB,n) equals 2 · 4n−1. This
means that there are no reductions in these words which implies property (W1).

More generally, to define WA,n and WB,n one can choose arbitrary words
W1,W2,W3,W4 ∈ WY where Y = {uA, uB} and WY is the set of all words in the al-
phabet Y ±, and use [W1,W2] and [W3,W4] instead of [uA, uB] and [u−1

B , u−1
A], respectively.

Certainly, to provide condition (1) one should guarantee that the words WA,n−1(uA, uB)
(resp. WB,n−1(uA, uB)) and W2 (resp. W4) must be terminated to uA (resp. uB). To avoid
triviality we also should take W1, . . . ,W4 so that WA,n and WB,n would be nonidentity
elements in the underlying free group.

Clearly, any realization of the above protocol is based on identities of the group G.
In addition to commutator identities for solvable groups (see above) one can also use the
identity xm = 1 (that holds in any finite group the order of which is a divisor of m, and in
the Burnside groups). In this case we can choose as the words WA and WB the prefix and
the inverse of the suffix of the word (uAuB)

m, respectively, so that the prefix is terminated
to uA. In fact, as it was proved by B.Neumann any variety of groups can be given by a
collection of identities such that the first of them is of the form xm = 1 with m being
a nonnegative integer, whereas the other ones are the elements of the commutant of the
underlying free group (see [17]).

We complete the subsection by making two remarks on the above protocol. First,
the set X must be of superpolynomial size, for otherwise the key agreement scheme
can be broken in polynomial time by the known permutation group theory technique
(see [16]). Second, the words WA and WB must be chosen so that the number of elements
WA(gA, gB) = WB(gA, gB) with gA, gB ∈ G would be at least two.

6

1.3 On the security of the protocols. In the above protocols we assume that all
groups are given explicitly, e.g. by sets of generators, so that the group operations can be
performed efficiently. Then the security of the first protocol is based on the intractability
of the following problem (see [24]).

Subgroup Conjugation Search Problem (SCSP). Given a group G, subgroups
H1, H2 of G, and two elements f, g ∈ H1, find an element h ∈ H2 such that f = h−1gh,
provided that at least one such h exists.

As usually in the cryptography, an efficient algorithm solving SCSP would break the
protocol (but to break the protocol it is not necessary to solve SCSP). Such an algorithm
does exist for G = GL(n,Fq) where n is a natural number, Fq is a finite field of the order q,
and the subalgebra A(H2) of the full matrix algebra Matn(Fq) generated by the group H2

is such that
A(H2) ∩G = H2.

Then for arbitrary H1 the problem SCSP can be solved in probabilistic polynomial time
(in n and in log q) by the linear algebra technique, provided that n is less than q/2. Indeed,
in this case the solution of the linear system hf − gh = 0 with respect to h ∈ A(H2) is an
element of H2 with a great probability. (From [4] it follows that in this case the problem
SCSP can be solved efficiently even by a deterministic algorithm.)

It seems that the problem SCSP remains difficult when G is restricted to subgroups
of the group GL(V,R) of all invertible R-linear transformations of the free R-module V
where R is a finite commutative ring. To see this we consider the Linear Transporter
Problem on the intractability of which the second protocol is based.

Linear Transporter Problem (LTP). Let R be a commutative ring, V be an R-module
and G ≤ GL(V,R). Given u ∈ V and v ∈ uG = {ug : g ∈ G} find g ∈ G such that
v = ug.

A special case of (LTP) is the Discrete Logarithm Problem. Indeed, take V = Z
∗
p with

p being a prime. Then V can be considered as an one-dimensional module over the ring
R = End(V) ∼= Zp−1 (with respect to taking the power v 7→ vn where v ∈ V , n ∈ Zp−1).
Choosing u to be a generator of the group V we come to the Discrete Logarithm Problem.

Preserving the notation of LTP set T (V) = {Tv : x 7→ x + v, v, x ∈ V } to be the
translation group of the R-module V . Then obviously

v = ug ⇔ Tv = g−1Tug, u, v ∈ V, g ∈ GL(V,R).

So, the problem LTP is the special case of the problem SCSP with G = AGL(V,R),
H1 = T (V) and H2 = GL(V,R). (Here AGL(V,R) = T (V)GL(V,R) is the group of
all affine transformations of V .) This shows that SCSP is at least as hard as LTP. In
particular, this construction gives us a family of groups for which the problem SCSP

7

turns to be at least as hard as the Discrete Logarithm Problem. A general technique to
construct groups of this kind will be given in Section 3.

2 Homomorphic cryptosystems over groups

A homomorphic cryptosystem is a probabilistic public-key scheme (in the sense of [8]) in
which the spaces of plaintext messages and ciphertexts are groupsHk andGk, respectively,
depending on a security parameter k and such that its decryption function

fk : Gk → Hk (2)

is an epimorphism for all k. Usually, in a homomorphic cryptosystem the public key
includes generator sets Xk and Yk of the groups Gk and Hk, and some set Rk ⊂ Xk such
that Yk ⊂ fk(Rk) = {fk(g) : g ∈ Rk}. Besides, it is assumed that there are publically
known kO(1)-time algorithms to solve the following problems:

(H1) given two elements a, b of Gk (resp. Hk) find the element ab−1,

(H2) given y ∈ Yk find an element of the set Rk ∩ f−1
k (y),

(H3) generate a random element of the group ker(fk)

where sizes of all elements are assumed to be at most k. Under these assumptions the en-
cryption can be performed in time kO(1) as follows. First, given a message h = y1 · · · ym ∈
Hk with yi ∈ Yk and m being a natural number at most kO(1), Bob computes in time
polynomial in k an element r = r1 · · · rm ∈ Gk such that ri ∈ Rk and fk(ri) = yi for all i.
Second, Bob mixes r with random elements g1, · · · , gm+1 ∈ Gk belonging to the kernel of
the homomorphism fk and outputs the element g = g1r1g2 · · · gmrmgm+1 as the ciphertext
of h. Alice being able to compute fk efficiently performs the decoding as follows:

fk(g) = fk(g1r1g2 · · · gmrmgm+1) = fk(r1) · · ·fk(rm) = y1 · · · ym = h.

The key point of such a system is to choose a presentation of the group Gk and the
epimorphism fk in order to provide the inverse of fk to be a trapdoor function. The exact
definition of homomorphic public-key cryptosystems and a survey of constructions can be
found in [11, 12].

One way to implement the general concept of a homomorphic cryptosystem is to take
Gk to be a subgroup of a certain group F such that the group operations in F can be
performed in time polynomial in the size of operands. In the cryptosystems from [11]
and [12] the group F was taken as a free product of abelian groups and a modular group,
respectively. In these cryptosystems the restriction of the mapping fk to the set Rk was

8

known publically and one can produce efficiently random kO(1)-size elements of the group
ker(fk). In fact, the security of these cryptosystems was based on the difficulty of the
membership problem (see below) for special subgroups of the group Gk.

Suppose first that the order of the group Hk is at most kO(1) (e.g. such an assumption
was used in [11]). Then using the generator set Yk of Hk one can list all the elements
h1, . . . , hm of this group in time kO(1) and then find within the same time a set {g1, . . . , gm}
of distinct representatives of right cosets of Gk = ker(fk) in Gk (one can set gi = f−1

k (hi)
for all i). Now if an adversary Charlie could recognize efficiently the elements of G
belonging to Gk, then he would efficiently compute fk(g) for all g ∈ Gk due to the
formulae

fk(g) = fk(gi) ⇔ gg−1
i ∈ Gk

where i ∈ {1, . . . , m}. Thus, in this case the security of our cryptosystem is based on the
intractability of the following problem:

Membership Testing (MT). Given a group F and its subgroup G test whether a given
g ∈ F belongs to G.

Suppose now the order of H = Hk to be arbitrary. Then a quite natural way to
break the cryptosystem is to find an expression of any g ∈ Gk in the terms of generators
belonging to the set Xσ (the attack of this kind was considered in [12]). Indeed, if Charlie
could find efficiently for any element g ∈ Gk an expression g = x1 · · ·xm where xi ∈ X±

k

for all i, then he would efficiently compute fk(g) due to the formulae

fk(g) = fk(x1) · · · fk(xm) = f(x1) · · ·f(xm)

(we recall that the bijection f : Xk → Yk is given publically). Thus, in this case we come
to the presentation problem (see [12]). The MT problem and the presentation problem
are closely related to each other (but generally could be not polynomial-time equivalent)
and one can combine them in the following well-known problem of computational group
theory (see [3]).

Constructive Membership Testing (CMT). Given a group F and its subgroup G
generated by a set X find an expression of a given g ∈ F as a word in X, or determine
that g 6∈ G.

Last two decades a great attention was paid to CMT with different presentations of
the group G. For example, if F is a subgroup of the symmetric group of degree n ≥ 1,
then the CMT can be solved in time nO(1) by the sift algorithm (see e.g. [16]). In the case
of groups F = GL(n,F) where F is an algebraic number field, there exists an effective Las
Vegas algorithm solving CMT [3]. However, for n = 1 and F being a finite field, CMT
is nothing else but the the Discrete Logarithm Problem. In [3] it was conjectured that
CMT is difficult whenever the group G either involves a large abelian group as a quotient

9

of a normal subgroup or has nonabelian composition factors which require large degree
permutation representations. Finally, the problem becomes much more difficult if we take
F = GL(n,R) to be the group of n× n invertible matrices over a ring R. In this case the
problem is undecidable for n = 4 and R = Z (see [19]).

3 Cryptographical generation of groups

3.1 A general scheme. We begin with a general scheme to construct a vast family of
groups and homomorphisms supporting both key agreement protocols of Section 1 and
homomorphic cryptosystems of Section 2. Let G be a class of groups closed with respect to
a set O of group-theoretical operations of different arities (like direct or wreath products).
For an integer s ≥ 1 we denote by Os a set of all operations of arity s belonging to O.
For a set G0 ⊂ G (playing the role of a starting family of groups in the construction) we
define recursively a class P(G0,O) of pairs (G, T) where G ∈ G and T is a rooted labeled
tree, as follows:

Base of recursion: any pair (G, T) with G ∈ G0 and T being the one-point tree with
root labeled by G, belongs to P(G0,O).

Recursive step: given pairs (G1, T1), . . . , (Gs, Ts) ∈ P(G0,O) and an operation o ∈ Os,
the class P(G0,O) contains the pair (G, T) where G = o(G1, . . . , Gs) and T is the tree
obtained from T1, . . . , Ts by adding a new root labeled by o and its sons being the roots
of T1, . . . , Ts.

Let (G, T) ∈ P(G0,O). Then obviously G ∈ G and the derivation tree T of G provides
the constructive proof for this membership. The group G is uniquely determined by T
and we call it the group associated with T . The fact, that a derivation tree is an ordinary
rooted tree the leaves and the internal vertices of which are labeled by elements of G0 and
O, respectively, enables us to choose a random derivation tree of a fixed size.

Suppose from now on that all the groups of G are given in a certain way (e.g., one
can take as G a class of matrix groups given by generator sets). We assume also that for
each operation o ∈ Os and groups G1, . . . , Gs ∈ G, the size L(G) of the presentation of
the group G = o(G1, . . . , Gs) is at most O(L) where L =

∑s

i=1 L(Gi) and the group G
can be constructed from G1, . . . , Gs in time LO(1).

Remark 3.1 Thus the set of generators of G is assumed to be efficiently constructed;
for instance, in the case of semidirect products (including both direct and wreath products
considered below), this set is obtained by means of union of the generator sets of the
operands.

Let us define a size L(T) of a derivation tree T to be the sum of the sizes of all labels
of T ; thus L(T) includes the sizes of the groups assigned to the leaves of T together with

10

the number of edges of T . Then the size of any pair (G, T) ∈ P(G0,O) is O(L(T)), and
the knowledge of T enables us to find G in time polynomial in L(T).

One of the problems arising in constructions of group-theoretical public-key cryptosys-
tems is to find an efficient algorithm to produce a random group (or a collection of groups)
belonging to a special class G and with a given size L of the presentation. Such a group
G must be equipped with a private key providing an efficient solution of a certain com-
putational problem for G that is supposedly difficult in the class G without knowledge of
a private key. Our approach to the above problem is to choose an appropriate class G0

of groups, a set O of group-theoretical operations, and then to generate instances for the
cryptosystem in question as follows:

Step 1: given a security parameter L choose randomly groups G1, . . . , Gt ∈ G0, such that
∑t

i=1 L(Gi) = O(L);

Step 2: choose randomly a rooted labeled tree T of size O(L) and with t leaves being
labeled by G1, . . . , Gt;

Step 3: compute the group G associated with T (i.e. (G, T) ∈ P(G0,O));

Step 4: output the group G as a public key and the labeled tree T as a secret key.

Denote by G∗ the class of groups G such that (G, T) ∈ P(G0,O) for some labeled tree
T . Then the secrecy of the key T is based on the intractability of the following problem:
given G ∈ G∗ find a derivation tree T associated with G. A special case of this problem
will be considered in Section 3.3.

For a homomorphic cryptosystem the above scheme is not sufficient because together
with the group G we have to provide a group H and a secret homomorphism f : G → H .
To this end suppose that each group G ∈ G0 is equipped with a set M(G) of homomor-
phisms f : G → H with H ∈ G0. We also assume that the following property holds:

Compatibility. For any operation o ∈ Os and groups Gi, Hi ∈ G∗, i = 1, . . . , s,
one can efficiently construct monomorphisms ηi : Gi → G and ξi : Hi → H where
G = o(G1, . . . , Gs) and H = o(H1, . . . , Hs) such that given epimorphisms fi : Gi → Hi

there exists an efficiently computed homomorphism f : G → H for which the equality
f ◦ ηi = ξi ◦ fi holds for all i.

The constructed homomorphism is denoted by o(f1, . . . , fs). In this notation the set
M(G0,O) of instances f for a homomorphic cryptosystem can be defined recursively as
follows:

Base of recursion: M(G) ⊂ M(G0,O) for all G ∈ G0.

Recursion step: o(f1, . . . , fs) ∈ M(G0,O) for all o ∈ Os and f1, . . . , fs ∈ M(G0,O).

We observe, that in the process of constructing the homomorphism f : G → H we also

11

produce the derivation trees of the groups G and H . Obviously, these trees are isomorphic

as unlabelled trees. We associate with f its derivation tree
−→
T which is constructed in a

similar way as the derivation tree T of G. In fact,
−→
T is obtained from T by changing the

labels of its leaves: a leaf of T with a label G0 gets the label f0 ∈ M(G0) corresponding
to the choice of the homomorphism in the base of recursion.

Concerning a presentation of constructed homomorphisms we need to guarantee that
properties (H1), (H2) and (H3) hold. To this end we assume that they hold for homo-
morphisms belonging to M(G) for all G ∈ G0 and that they are preserved by operations
from O.

A realization of the exposed general schemes in finite matrix groups will be considered
in the next subsection.

3.2 Generating matrix groups. Let us define the classes G0,G of groups and the set
O of operations. First, we set

G =
⋃

n,R

{G : G is a subgroup of GL(n,R)}

where n and R run over natural numbers and finite commutative rings, respectively. Thus,
any G ∈ G is a group of n × n invertible matrices with entries belonging to R for some
n ∈ N and some finite commutative ring R. We recall that any such ring is a direct
sum of local commutative rings and each of the latter can be described via appropriate
Galois ring: the Galois ring GR(pm, r) of characteristic pm and rank r is Zpm [x]/(f) where
f ∈ Zpm [x] is a monic polynomial of degree r whose image in Zp[x] is irreducible (see [18]).
We note that GR(pm, r) is a local ring whose radical Rad(GR(pm, r)) equals to (p).

Proposition 3.2 [18, 26] Let R be a finite commutative local ring of characteristic pm

and F = GF(pr) the residue field of R. Then

(1) R× = T × (1R + Rad(R)) where T is a cyclic group isomorphic to F
×,

(2) the subring R0 of R generated by T is a Galois ring GR(pm, r),

(3) R is a homomorphic image of the ring R0[X1, . . . , Xt] where t is the minimal size
of a generator set of the radical of R.

Proposition 3.3 [18] Let p be a prime and m, r be natural numbers. Then

(1) there exists the unique up to isomorphism Galois ring GR(pm, r) of characteristic
pm and rank r,

(2) each element x of GR(pm, r) is uniquely represented in the form x =
∑m−1

i=0 tip
i

where ti ∈ T ∪ {0} for all i,

12

(3) given σ ∈ Aut(F) the mapping x 7→
∑m−1

i=0 tσi p
i where σ is the automorphism of the

group T induced by σ (see statement (1) of Proposition 3.2), is an automorphism
of GR(pm, r).

To construct a pool of finite commutative rings R one can start with the ring R = Zm

(as the recursion base) and to extend it repeatedly, for example, by taking of:

(R1) the group ring R[G] for a finite commutative group G,

(R2) the quotient ring R[X]/(λ) for a univariate polynomial λ ∈ R[X].

In particular, construction (R2) produces all the Galois rings. We also remark that since
the factorization of the characteristic of the resulting ring is not given, the decomposition
in local summands is not presented explicitly.

We define a set G0 ⊂ G to be a class of classical simple (including abelian) subgroups
G of the groups GL(n,F) where n ∈ N and F is a finite field. Any such group G ∈ G0 is
given by a set of generators; for an abelian group of a prime order p one can use, e.g. its
two-dimensional representation

Z
+
p → GL(2, p), x 7→

(

1 x
0 1

)

(3)

In fact, it is not necessary that G0 contains all classical groups; one can form G0 from the
group of special types, e.g. PSL(n,F) or something like that. Since the elements of G0

are parametrized by the tuples of natural numbers, one can efficiently choose a random
group G ∈ G0 with a given size L(G) of presentation.

The choice of the set O of operations was inspired by the Aschbacher theorem [2] on
classifying maximal subgroups of classical groups. Let us describe these operations.

Changing the underlying ring. Let R be a finite commutative ring and R′ be an
extension of R. Then the natural monomorphism

ϕ : GL(n,R) → GL(n,R′)

gives an unary operation in G taking G ∈ G to ϕ(G). This operation can be performed
efficiently whenever e.g. the embedding R to R′ is given explicitly and the number d =
[(R′)+ : R+] is small. As possible constructions of extensions we suggest the extension of
Zm to Zm′ where m is a divisor of m′, and the ones described above in (R1) and (R2).

Conversely, any embedding of the ring R′ into the ring Mat(d, R) induces the natural
monomorphism

ϕ′ : GL(n,R′) → GL(nd,R)

taking a matrix of GL(n,R′) to the block matrix of GL(nd,R) with d2 blocks of size n.
As possible constructions of embeddings we suggest the natural embedding of a field of

13

the order qd to Mat(d, q), or the direct sum of d copies of R to Mat(d, R), or the natural
embeddings arising from constructions (R1) and (R2). This produces another unary
operation in G taking G ∈ G to ϕ′(G). In order not to blow up the size of representation
one should assume that d is small.

In both cases the isomorphism type of the group G (as an abstract group) is not
changed, but the operations change it as a linear group.

Direct products. Suppose that groups G1, . . . , Gs ∈ G are such that Gi ≤ GL(ni, R)
where ni ∈ N and R is a finite commutative ring. Then

G = G1 ⊗ · · · ⊗Gs ≤ GL(n,R)

where n =
∏s

i=1 ni, and we obtain an s-ary operation in G. A set of generators for the
group G can be efficiently constructed from the generating sets for G1, . . . , Gs by means
of the Kronecker product of the corresponding matrices. When R is a field the group G
is irreducible iff so are the groups G1, . . . , Gs. (A matrix group G is called irreducible if
the underlying linear space contains no nontrivial G-invariant subspaces.)

Similarly, if m = ni, Gi ∩ G′
i = {Im} and G′

i normalizes Gi for all i = 1, . . . , s where
G′

i is the group generated by Gj , j 6= i, then G1 × · · · × Gs is a subgroup of GL(m,R)
which gives one more s-ary operation.

Wreath products. The wreath product G ≀ Γ of a group G and a permutation group
Γ ≤ Sym(m) is defined to be the semidirect product of the m-fold direct product Gm =
G × · · · × G by the group Γ acting on Gm via coordinatewise permutations. If G ≤
GL(n,R), then the group G ≀ Γ has two natural linear representations obtained from the
natural monomorphisms

Gm → GL(nm,R), Gm → GL(nm, R),

the first of which is induced by them-fold direct sum of the underlying R-module, whereas
the second one is induced by the m-fold tensor product of it. The images of the group
G ≀ Γ under these two monomorphisms are called the imprimitive and the product actions
of the wreath product, respectively. Thus, we obtain two more efficiently computable
unary operations in G for each permutation group Γ. For our purpose it is enough to set
Γ to be the symmetric group Sym(m). (More elaborated way could be based on the fact
that any transitive group is obtained from the action of a group on the set of right cosets
of some subgroup by means of right multiplications.) In the case of R being a field the
resulting groups are always irreducible whenever G is irreducible and Γ is transitive.

Conjugations. An obvious unary operation in G consists in the conjugation of a
group G ⊂ GL(n,R) by means of a randomly chosen matrix from GL(n,R). Such an
operation enables us to hide the form of a generator set of the group G.

14

Let O be the set of the above operations and G∗ ⊂ G be the set of all groups G
such that (G, T) ∈ P(G0,O) for some rooted labeled tree T (see Subsection 3.1). In the
following statement we consider the specializations of the problems MT (see Section 2)
and LTP (see Subsection 1.3) for the class G∗. In both cases we suppose that the group
G ∈ G∗ is given by a set of generators. If G ≤ GL(n,R) for a certain n ∈ N and for
a finite commutative ring R, then in the case of LTP we set V to be the standard free
R-module of dimension n on which the group GL(n,R) acts, whereas for MT problem we
set F = GL(n,R).

Lemma 3.4 Let G ∈ G∗. Then given a derivation tree of G the problems MT and LTP
can be solved in time polynomial in L(G).

Proof. Let T be a derivation tree of G. Then the labels of the leaves of T are the groups
G1, . . . , Gt ∈ G0. Due to the choice of G0 the problems MT and LTP can be solved for the
group Gi in time polynomial in L(Gi) for i = 1, . . . , t. (Indeed, any nonabelian classical
matrix group is given together with a suitable matrix representation which can be used for
testing membership; for an abelian group representation (3) provides a trivial membership
testing algorithm).

Since L(G) = L(T)O(1), it suffices to verify that by means of the construction of the
tree T the problems can be reduced in time L(T)O(1) to the corresponding problems for
G1, . . . , Gt. For this purpose let us consider, for instance, the reduction in the case of
the primitive wreath product G = H ≀ Γ with H ≤ GL(n,R) and Γ = Sym(m) (other
operations from O on groups are treated in a similar way). Then G ≤ GL(nm, R) and
since T is given, we know the decomposition

V = U ⊗ · · · ⊗ U (m times)

where V and U are the standard R-modules for groups GL(nm, R) and GL(n,R), respec-
tively. Any element g ∈ G can be represented as a pair (h, k) ∈ Hm × Sym(m) such
that

(u1, . . . , um)
g = (u

hi1

i1
, . . . , u

him

im
) (4)

where h = (h1, . . . , hm) and ij = jk
−1

for j = 1, . . . , m. Now the permutation k can be
efficiently computed from the elements of the form (0R, . . . , 1R, . . . , 0R)

g (with 1R being
the unique nonzero component in a certain place). So, the element h = gg−1

k also can
be found efficiently where gk is the element of GL(V) = GL(nm, R) corresponding to k
(this element acts on V exactly by permuting coordinates according to k). In particular,
this provides a polynomial time reduction of the MT problem for G to the corresponding
problem for H .

Next, proceeding to the LTP problem let v ∈ uG for some u, v ∈ V . Denote by D
the bipartite graph with parts being the multisets {u1, . . . , um} and {v1, . . . , vm} and the

15

edges being the pairs (ui, vj) for which vi ∈ (uj)
H . Then from (4) it follows that there is a

one to one correspondence between the matchings {(ui, vji) : i = 1, . . . , m} of the graph
D and the set {k ∈ Γ : v = ug with g = (h, k) ∈ G for some h ∈ Hm}. Since the problem
of finding a matching of a bipartite graph can be solved efficiently, we see that the LTP
problem for G is polynomial time reducible to the corresponding problem for H .

A natural way to apply our construction to the key agreement protocol is to choose a
random group G ∈ G∗ of a prescribed size and then choose random subgroups GA and GB

of G (see (1)). These groups can be specified by sets of generators constructed as follows:

Step 1. Let L be the set of leaves of the derivation tree T of the group G. For each l ∈ L
take random subsets XA(l) and XB(l) of the group Hl associated with l.

Step 2. Construct the trees TA and TB obtained from T only relabelling of the leaves: the
leaf l ∈ L is labeled by the groupHA(l) = 〈XA(l)〉 in TA and by the groupHB(l) = 〈XB(l)〉
in TB respectively.

Step 3. Set GA and GB to be the groups the derivation trees of which are TA and TB

(the generator sets XA of GA and XB of GB are obtained in accordance with Remark 3.1
on constructing the generators).

Thus, the constructing of the groups GA and GB is performed simultaneously with the
constructing the group G. (In fact, all we need, is the embedding of each group assigned
to a leaf of the derivation tree of the group G into G.) In this way it is possible to control
some properties of the groups, for instance, to avoid the situation when GA centralizes
GB (then the common key coincides with 1G and so is not secure).

Applying our construction to design homomorphic cryptosystems is more delicate.
First of all we define the set M(G) for each group G ≤ GL(n,R) for some n ∈ N and
some finite commutative ring R (note that this covers the case G ∈ G0 and also allows
one to produce homomorphisms in one more way: replacing G0 by a bigger subclass of
G). Namely, any automorphism σ ∈ Aut(R) induces a homomorphism

fσ : G → Gσ, A 7→ Aσ

where the matrix Aσ ∈ GL(n,R) is obtained from the matrix A ∈ GL(n,R) by entry-wise
applying of σ. To choose σ we observe that R = ⊕i∈IRi where each Ri is a finite local
commutative ring. Any automorphism of the residue field of the ring Ri can be lifted to
the automorphism of this ring (statement (3) of Proposition 3.3). In the representation of
the Galois ring as a quotient ring of a ring of polynomials this lifting can be done efficiently.
Taking any collection {σi}i∈I one can construct the automorphism σ ∈ Aut(R) such that
σ|Ri

= σi for all i. The set of such automorphisms we denote by Aut0(R) (in the case of
R being a field this group coincides with Aut(R)). Set

M(G) = f0 ∪ {fσ : σ ∈ Aut0(R)} (5)

16

where f0 is a trivial homomorphism taking any element of G to the identity matrix of
GL(n,R). We assume that each f ∈ M(G) is given by the images of generators of the
group G and hence conditions (H1), (H2) hold trivially, while condition (H3) is obvious
for fσ and follows from the choice of presentation of G (by generators) for f0. Then
assuming that the ring R is given explicitly, one can choose a random element of M(G)
in time polynomial in L(G).

To provide the recursive step in constructing a homomorphism f ∈ M(G0,O) it suffices
to verify the compatibility property for the set O of the operations (see Subsection 3.1) and
to verify that the operations preserve properties (H2) and (H3) (see Section 2). However,
the compatibility property is obviously fulfilled if the required monomorphisms ηi for f
are chosen to be

• identical in case of the operation changing the underlying ring,

• the embedding gi 7→ 1G1
⊗· · ·⊗gi⊗· · ·⊗1Gs

in case of the operation direct product,

• the embedding g 7→ (g, . . . g; 1Γ) in case of the operation wreath product,

• the isomorphism g 7→ a−1ga in case of the operation of conjugation by a.

(The monomorphisms ξi are defined in a similar way.)
Concerning properties (H2) and (H3) we note that they are obvious for the operations

changing the underlying ring and conjugation. In the case of the direct product it suffices
to note that a generator 1G1

⊗ · · ·⊗ gi ⊗ · · ·⊗ 1Gs
of the group G (where gi is a generator

of Gi) is mapped under f to 1G1
⊗ · · · ⊗ fi(gi) ⊗ · · · ⊗ 1Gs

, and ker(f) = ker(f1) ⊗
· · · ⊗ ker(fs). In the case of the wreath product generators (1G1

, . . . , gi, . . . , 1Gs
; 1Γ) and

(1G1
, . . . , 1Gs

; γ) (where γ is a generator of Γ) of the group G are mapped under f to
(1G1

, . . . , fi(gi), . . . , 1Gs
; 1Γ) and to (1G1

, . . . , 1Gs
; γ), respectively, and finally ker(f) =

(ker(f1), · · · , ker(fs); 1Γ).
Thus, in all the cases, the resulting homomorphism is efficiently computable. The

above discussion shows that the following statement holds.

Lemma 3.5 Let f : G → H be a homomorphism constructed in the above way where

G,H ∈ G∗. Then given a derivation tree
−→
T of f (see the end of Subsection 3.1) one can

find f(g) for g ∈ G in time polynomial in L(G) and in the size of g.

3.3 Secure generation. Let us fix the classes G0,G,G
∗, the set O of operations and the

sets M(G) for G ∈ G0 as in Subsection 3.2. Then due to Lemmas 3.4 (resp. Lemma 3.5)
one can construct groups G ∈ G∗ (resp. homomorphisms f ∈ M(G0,O)) to realize key
agreement protocols (resp. homomorphic cryptosystems) in which the group G (resp. the

homomorphism f) and the derivation tree T of G (resp.
−→
T of f) play the roles of public

17

and secret keys, correspondingly. The security of such systems is based on the difficulty
of the following problem.

Decomposition Problem. Given a group G ∈ G∗ (resp. a homomorphism f ∈

M(G0,O)) find a derivation tree T of G (resp.
−→
T of f).

This problem arises in connection with a computational version of the above mentioned
Aschbacher’s theorem. A number of practical algorithms (without complexity bounds)
for Decomposition Problem are known (see [15]), but in general this problem seems to be
difficult. Indeed, suppose that R = Zm where m = pq with p and q being two different
primes. Denote by Gp the cyclic matrix group of the order p in GL(2, p) (see (3)).
Similarly, the group Gq is defined. Then Gp, Gq ∈ G0 and

G = G′

p ×G′

q ≤ GL(2, R)

where G′
p and G′

q are the images of the groups Gp and Gq with respect to the natural
embeddings GL(2, p) and GL(2, q) into GL(2, R). Thus, the group G can be constructed
in two steps: first one constructs the groups G′

p and G′
q (the operation of changing the

underlying ring), and then one sets G = G′
1 × G′

2 (the operation of the direct product).
This implies that G ∈ G∗. This shows that the integer factoring problem is a special case
of the Decomposition Problem.

Another strategy of an adversary Charlie could be to avoid solving the Decomposition
Problem and to try to solve the problems like LTP, SCSP or CMT directly. To prevent
such an attack one can choose the leaves of a derivation tree of the group G to be the
groups of the size exponential with respect to L(G). Then from the construction it follows
that these groups will appear as the composition factors of G. However, for the groups
with large composition factors all the problems like LTP, SCSP or CMT seem to be
difficult (cf. Subsection 1.3 and Section 2).

We mention one more attack of Charlie for the case of a homomorphic cryptosystem.
Suppose we construct in the above way the homomorphism f : G → H with G,H ∈ G∗.
We call the homomorphism linear if it induces the ring homomorphism f ′ : A(G) → A(H)
where A(G) (resp. A(H)) is the subring of the underlying full matrix ring generated by
G (resp. H). For a linear homomorphism the corresponding homomorphic cryptosystem
can be easily broken whenever G ≤ GL(n,R) where R = Zn for some n ∈ N or R is a
finite field (or, more generally, a direct sum of Galois rings). Indeed, in this case Charlie
can find f(g) for g ∈ G as follows. Take random generators g1, . . . , gs of the group G
and find a decomposition g =

∑s

i=1 cigi with ci ∈ R just involving linear algebra. Then
f(g) =

∑s

i=1 cif(gi) due to the linearity of f . To prevent this attack one can take some
initial homomorphisms at the leaves of the derivation tree to be elements of the group
Aut0(R) (see (5)). Then the constructed homomorphism is not linear in general (e.g. if
g ∈ GL(n,F) with F being a field, and σ ∈ Aut(F), then generally (ag)σ 6= agσ).

18

We conjecture that two-party key agreement protocol and homomorphic public-key
cryptosystem based on the constructed class of matrix groups over finite commutative
rings are secure (as mass problems). If the latter was true, then one could construct
encrypted simulation of a boolean circuit of the logarithmic depth (the details can be
found in [11]).

Final remarks

One of the main problems in constructing homomorphic public-key cryptosystems con-
sists in finding appropriate trapdoor functions. However, in the natural presentations of
homomorphisms of algebraic structures the problem of breaking such a system is reduced
to some variants of the CMT problem. On the other hand, there is the following result
for matrix groups over finite fields.

Theorem 3.6 [13, Theorem 6.1] Given K = 〈X〉 ≤ GL(d, pe) where X ⊂ GL(d, pe),
there is a Las Vegas algorithm that given any g ∈ GL(d, pe), decides whether g ∈ K, and
if g ∈ K, then the algorithm produces a straight-line program with the input X, yielding
g. The algorithm uses an oracle to compute discrete logarithms in fields of characteristic
p with sizes up to ped. In case when all of those composition factors of Lie type in
characteristic p are constructively recognizable with a Discrete Log oracle 1, the running
time is a polynomial in the input length |X|d2e log p, plus the time required for polynomially
many calls to the Discrete Log oracle.

This theorem shows that having an oracle for the Discrete Logarithm, the membership
problem can be solved in probabilistic polynomial time for matrix groups over finite fields.
This means that at least for homomorphic public-key cryptosystems over such groups
there is a little hope to find a trapdoor function different from functions the difficulty of
inversion of which is based on the intractability of the Discrete Logarithm. However, only
a little is known on the computational complexity of the membership problem for matrix
groups over rings. So, constructions over such groups seem to be more perspective from
the point of view of algebraic (non-commutative) cryptography.

References

[1] I. Anshel, M. Anshel, D. Goldfeld, An algebraic method for public-key cryptography,
Mathematical Research Letters, 6 (1999), 287–291.

1The current list of groups of Lie type recognizable with a Discrete Log oracle is given in [13]; this list
includes the groups of series A, B, C, D.

19

[2] M. Aschbacher, On the maximal subgroups of the finite classical groups, Invent. Math.
76 (1984) 469–514.

[3] R. Beals, L. Babai, Las Vegas algorithms for matrix groups, Proc. 34th IEEE FOCS,
1993, 427–436.

[4] A. Chistov, G. Ivanyos, M. Karpinski, Polynomial time algorithms for modules over
finite dimensional algebras, Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation (Kihei, HI), 68–74, ACM, New York, 1997.

[5] Do Long Van, A. Jeyanthi, R. Siromoney, K. G. Subramanian, Public key cryptosys-
tem based on word problems, ICOMIDC Symp. Math. of Computation, Ho Chi Minh
City, April, 1988.

[6] B. Eick, D. Kahrobaei, Polycyclic groups: a new platform for cryptology?,
arXiv.math.GR/0411077.

[7] J. Feigenbaum, M. Merritt, Open questions, talk abstracts, and summary of discus-
sions, DIMACS series in discrete mathematics and theoretical computer science, 2
(1991), 1–45.

[8] S. Goldwasser, M. Bellare, Lecture Notes on Cryptography, http://www-cse.ucsd.-
edu/users/mihir/papers/gb.html, 2001.

[9] S. Goldwasser. S. Micali, Probabilistic encryption, J.Comput.Syst.Sci., 28 (1984),
270–299.

[10] D. Grigoriev, Public-key cryptography and invariant theory., J. Math. Sci., 126
(2005), 1152–1157.

[11] D. Grigoriev, I. Ponomarenko, Homomorphic public-key cryptosystems and encrypt-
ing boolean circuits, to appear in Appl. Alg. Eng. Communic. Comput., 2006.

[12] D. Grigoriev, I. Ponomarenko, Homomorphic public-key cryptosystems over groups
and rings, Quaderni di Matematica, 13 (2004), 305–325.

[13] W. M. Kantor, A. Seress, Computing with matrix groups, Groups, combinatorics &
geometry (Durham, 2001), 123–137, World Sci. Publishing, River Edge, NJ, 2003.

[14] K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang, C. Park, New public-key
cryptosystem using braid groups, Lecture Notes in Computer Science, 1880 (2000),
166–183.

20

[15] C. R. Leedham-Green, The computational matrix group project, pp. 229–247 in:
Groups and Computation III (eds. W. M. Kantor and A. Seress), The Ohio State
Univ. Math. Res. Inst. Publ. 8, Walter deGruyter, BerlinNew York 2001.

[16] E. M. Luks, Permutation groups and polynomial-time computation, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science, 11 (1993), 139–175.

[17] W. Magnus, A. Karrass, D. Solitar, Combinatorial group theory: Presentations of
groups in terms of generators and relations, Interscience Publishers, New York-
London-Sydney, 1966.

[18] B. R. MacDonald, Finite Rings with Identity, New York, Marcel Dekker, 1974.

[19] K. A. Mihailova, The occurrence problem for a direct product of groups, Dokl. Akad.
Nauk, 119 (1958), 1103–1105. (in Russian)

[20] T. Miyazaki, Polynomial-time computation in matrix groups, Ph.D. dissertation,
Tech. Rep. CISTR9911, Department of Computer and Information Science, Uni-
versity of Oregon, Eugene, 1999.

[21] D. Naccache, J. Stern, A new public-key cryptosystem based on higher residues,
Proc. 5th ACM Conference on Computer and Communication Security, 1998, 59–66.

[22] S.-H. Paeng, D. Kwon, K.-C. Ha, J. H. Kim, Improved public-key cryptosystem using
finite non-abelian groups, IACR ePrint 2001/066.

[23] R. Rivest, L. Adleman, M. Dertouzos, On data banks and privacy homomorphisms,
Found. of Secure Computations, Academic Press, 1978, 169–179.

[24] V. Shpilrain, A. Ushakov, The conjugacy search problem in public-key cryptography:
unnecessary and insufficient, to appear in Appl. Alg. Eng. Communic. Comput.,
2006.

[25] D. A. Suprunenko, Matrix groups, AMS, Providence, 1976.

[26] Z.-X. Wan, Lectures on finite fields and Galois rings, World Scientific Publishing Co.,
Inc., River Edge, NJ, 2003.

21

