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1 IntroductionThe minimum depth of decision trees has been extensively studied for many computationalproblems in the literature. However, another natural complexity measure, the minimumsize of decision trees is much less understood. For business applications (e.g. [GS79]) andfor some computational problems, the size of decision trees gives a reasonable measureof the space required to implement the corresponding algorithms. For example, considerthe membership problem for a given polyhedron in n dimensions. Unless the polyhedronhas a highly-structured description, it is reasonable to expect that many decision trees(especially those with optimized depth) have to be stored in order for the membershipqueries to be processed with an e�ciency reecting the depths of the trees.We focus our attention to computations in IRn that can be modeled by algebraicdecision trees; these include many geometric and searching-sorting problems. Clearly, thesize of a decision tree is no less than its depth, and thus a lower bound to the depthof all decisions trees for solving a problem is also a lower bound to the size of all suchtrees. Other than this obvious observation, the only lower bounds known are those forlinear decision trees (where only linear functions are used for branching, see e.g., [DL75],[BLY92]), typically exponential in the depth. For higher degree algebraic decision trees,no superpolynomial lower bounds are known for natural problems, except with furtherconstraints on the test polynomials.In this paper we investigate the size complexity of algebraic decision trees for MAX, theproblem of �nding the maximum of n real numbers, which was studied extensively in theliterature (cf., e.g., [K73], [R72], [TY94]). We use the standard degree-d ternary algebraicdecision tree model in which each internal node performs a test p(x1; x2; � � � ; xn) : 0 (wherep is any real polynomial of degree d) with <;=; > as the possible outcomes. Rabin [R72]established the sharp lower bound n�1 on the depth of any binary algebraic decision tree(for any d) solving this problem (see also [MPR94]). Rabin's depth lower bound holdsalso for ternary algebraic decision trees. Except for linear decision trees (d = 1) and forcases with special restricted forms of polynomial tests (see Remark 1), no nonlinear lowerbound was known on the size.Let \MAX=" denote the problem of verifying x1 � xk for all 1 � k � n. The mainresult of the present paper is to show that, for any �xed d, the size of any degree-dalgebraic decision tree for solving MAX= (and hence MAX) is at least 2c0(d)n for somepositive constant c0(d). We will also establish an interesting connection between thislower bound and the maximum number of minimal cutsets for any rank-d hypergraphs onn vertices. This connection enables us to obtain better values of c0(d). There are manyinteresting open problems suggested by our work, some of which are mentioned in the2



remarks below and at the end of Section 2.Remark 1. A direct motivation for the present study is the close relation betweenthe size of decision trees for MAX and the depth of decision trees for selecting the ilargest elements. Let ad;n be the minimum size of any degree-d algebraic decision tree forsolving MAX for almost all inputs (i.e., except for a measure-0 set). Then any degree-dalgebraic decision tree for selecting the i largest elements must have depth greater thanlog2(ad;n� ni�1�). This approach to the selection problem was �rst formulated in [FG79]for the case d = 1. It is well known that Farkas Lemma implies ad;n = 2n�1 for d = 1.In [Y89] and [F93], it was proved that ad;n = 2n�1 if the test polynomials are restrictedto (xj � xk)(xh � xs) and products of linear forms, respectively, leading to lower boundsn+(i� 1) log2 n+O(1) or the selection problems under such constraints (the depth lowerbounds hold for both binary and ternary algebraic decision trees).Conjecture 1: ad;n = 2n�1 for all d; n.A proof of this conjecture would imply that the depth complexity of algebraic decisiontree for selecting the i largest elements among n is n+(i�1) log2 n+�(1), which has beenan open problem for some time. Even a proof of the conjecture for d = 2 will be of muchinterest.Remark 2 All the known exponential lower bounds on decision tree size for MAX,as discussed in Remark 1, were proved with the following approach: show that everybranch of the tree has to be of length n � 1 or more. This is no longer possible for thegeneral case even for d = 2, since a degree-2 decision tree with the root node testingp = x1 � x22 � � � � � x2n � 1 : 0 has a branch of length 1 (the branch with p(x) > 0 at theroot). To our knowledge, no lower bound better than n � 1 is known before this paper.Remark 3We consider in the paper standard ternary decision trees (cf. [SY82], [B83])branching according to the signs >;=; <. Notice that for binary decision trees studied in[R72] (branching according to the signs �; >), MAX= has an (n � 1)-size linear decisiontree, namely the tree which successively tests x1 � x2; x1 � x3; : : : ; x1 � xn�1.(More generally, this construction shows that the membership problem for any polyhedronde�ned by k inequalities has a linear decision tree of size k + 1 in this binary tree model;compare this with the lower bound on the depth 
(logN) of [GKV95] where N is thenumber of all the faces of a polyhedron). On the other hand, MAX does not seem to haveany polynomial-size trees in the binary tree model.Conjecture 2: Any binary algebraic decision tree (of any degree) for MAX must havesize 2
(n).It is not hard to see that Conjecture 1 implies Conjecture 2. We also mention that for the3



membership problem to a union of k hyperplanes S1�i�k aiX = bi, there is a ternary (aswell as binary) algebraic decision tree of the size k. It simply tests (a1X � b1)2, then, ifthe sign is >, tests (a2X � b2)2, etc. Notice that this tree is nonlinear.Remark 4 A more re�ned way to model space requirement is to consider branchingprograms (see e.g., [BFKLT81], [BFMUW87]) in which \equivalent" nodes are permittedto be merged together. Very little is known about branching programs with algebraicdecision elements (however, see [Y82]).2 Summary of ResultsConsider an input n-tuple of real numbers (x1; : : : ; xn) 2 IRn. An Algebraic Decision Tree(ADT) T of degree d and dimension n for MAX (MAX=) is a ternary tree with eachinternal node performing a ternary test p(x1; x2; � � � ; xn) : 0 where p is a polynomials ofdegree at most d, and branching according to the outcomes (<;=; or >). Each leaf ofthe tree is either labeled by a certain index i 2 f1; : : : ; ng (MAX), or by a label \yes"or\no" (MAX=). We say that the decision tree T solves MAX (MAX=) in dimension nif, for an arbitrary input vector (x1; : : : ; xn) 2 IRn, the path traversed in T terminates ina leaf labeled by i (\yes") if and only if xi = maxfx1; : : : ; xng (x1 = maxfx1; : : : ; xng,respectively). The size (resp. depth) of T is the number of its leaves (resp. the maximumlength of its paths). It is well-known [R72] that the depth of an ADT for MAX is at leastn� 1. This bound is optimal as one can easily construct T with the depth n� 1 and size2n�1.We prove an exponential lower bound on the size.Theorem 1 Any algebraic decision tree of degree d solving MAX (MAX=) in dimensionn has size at least 
(2c0(d)n) where c0(d) > 0 depends only on d.A hypergraph F on vertex set f1; : : : ; Ng is a family of subsets of f1; : : : ; Ng. Therank of F is the maximum size of any member of F . A minimal cutset of F is a setV � f1; : : : ; Ng which intersects every member set of F and no proper subset of V hasthis property. Let us denote by mF the number of minimal cutsets of F . Let md;N bethe maximum mF for any hypergraphs F of rank d or less on N vertices. For d = 2,a hypergraph becomes a graph, and m2;N is equal to the maximum number of maximalcliques of any N -vertex graph, which by a result of Moon and Moser [MM65] is equal to�(3N=3).A slight variation of the proof of Theorem 1 leads to an interesting connection of ourlower bound to the combinatorial quantity md;N .4



Theorem 2 Any algebraic decision tree of degree d solving MAX (MAX=) in dimensionn has size at least 2n�1=md;n�1.>From the fact m2;N = �(3N=3), it follows then that any degree-2 algebraic decisiontree for MAX (MAX=) must have size 
(2c0(d)n) with c0(2) = 1� (log2 3)=3 � 0:47. Thisimproves over the value 1� 11+ 12 log2( 43 ) � 0:18 for c0(2) obtained in the proof of Theorem1 (see Section 3); it also improves all the c0(d) for d > 2, since the proof of Theorem 1de�nes c0(d) recursively.Remark 5 An interesting open combinatorial question is to determine as small aspossible function �(d) for which md;N � O(2�(d)N). By Theorem 2, we can then choosec0(d) in Theorem 1 to be 1 � �(d). To our knowledge, even the best �(3) has not beendetermined.3 Proof of Theorem 1Clearly every decision tree for MAX can be easily converted into a decision tree for theMAX= by relabeling a leaf \yes" whenever it is originally leabled as \x1 is maximum".Thus we only need to prove Theorem 1 for MAX=.For any f1g � I � f1; : : : ; ng consider the following (`wall') set MI = f(x1; : : : ; xn) :xi > xj for all i 2 I; j =2 I and xi1 = xi2 for all i1; i2 2 Ig. Denote the plane PI =f(x1; : : : ; xn) : xi1 = xi2 for all i1; i2 2 Ig. Then dimPI = n � jI j+ 1 and MI is an openpolyhedron in PI . Note that Pf1g = IRn and all PI are pairwise distinct. Obviously, thesets MI are pairwise disjoint and form a partition of the set x1 = maxfx1; : : : ; xng with2n�1 elements. Observe that the Euclidian closure MI has a non-empty intersection withMJ if and only if I � J . Moreover, if MI TMJ 6= ; then MI � MJ , and if I�6=J then@MI � MJ . Thus, fMIg form a cellular decomposition of the set x1 = maxfx1; : : : ; xngand the boundary @MI = SJ �6= IMJ in the plane PI (this property is called the frontiercondition and a corresponding decomposition is called a cellular decomposition).The method of our proof is based on the analysis of a \touching frequency" of the setscomputed along the branches of a tree T with the `wall sets' MI .Consider any branch B (i.e., a path from the root to some leaf) of the tree T , andlet the testing polynomials together with their signs along this branch be f1 = � � � =fk = 0; g1 > 0; : : : ; gl > 0. Let WB � IRn denote the (semialgebraic) set of all x =(x1; x2; � � � ; xn) satisfying ff1(x) = � � � = fk(x) = 0; g1(x) > 0; : : : ; gl(x) > 0g. We saythat WB touches MI if dim(WBTMI) = dimMI = n � jI j + 1. Observe that if WBtouches MI then the label of B is \yes". Since for every MI there exists B such that WB5



touches MI , Theorem 1 follows immediately from the Main Lemma below.Main Lemma. For any branch B of T , WB can touch at most 2c(d)n sets MI forsome constant c(d) < 1 dependent only on d.De�ne c(d) recursively as follows. Let c(1) = 0, and c(d) = c(d � 1) +(1�c(d�1))21�c(d�1)+ 1d log2( 2d2d�1 ) for d � 2. It is straightforward to verify that 0 � c(d) < 1 forall d.We now prove the Main Lemma by a series of Propositions.Proposition 1. WB cannot touch MI ;MJ such that I�6=J .Proof. Assume the contrary. Let fj1; : : : ; jn�jJ jg = f1; : : : ; ng n J . For anypolynomial f 2 IR[X1; : : : ; Xn] denote f (J)(X1; Xj1 ; : : : ; Xjn�jJj) = f jXj=X1;j2J 2IR[X1; Xj1 ; : : : ; Xjn�jJj ]. (From now on, we sometimes use the notation Xi instead ofxi when they are considered as formal variables instead of numbers.) One could considerf (J) as the restriction of f on the plane PJ with the coordinatesX1; Xj1 ; : : : ; Xjn�jJj , whereX1 = Xj for each j 2 J . Then f (J)1 ; : : : ; f (J)k vanish identically because these polynomialsvanish on the semialgebraic set WBTMJ of full dimension in the plane PJ .By assumption there exists a point x 2 MI such that g1(x) > 0; : : : ; g`(x) > 0. Thereexists a ball Bx(r) with a radius r > 0 centered in x such that g1; : : : ; gl are positiveeverywhere on Bx(r). As x 2MI � @MJ there exists a point x0 2 (Bx(r)TPJ )nMJ . Thedecision tree T being applied to x0 goes through the branch B, since x0 = (x01; : : : ; x0n) 2WB. Since branch B leads to a \yes" leave, the input x0 is accepted by the decision tree.This is a contradiction, as max(x01; : : : ; x0n) is not x01 (x0 =2MJ ). 2Remark 6. In fact we proved a stronger statement. Namely, if WB touches MJ thenWB TMI = ; for any I �6=J .Proposition 2. If WB touches MI then I is a minimal subset (with respect tothe inclusion) among the subsets f1g � J � f1; : : : ; ng such that f (J)1 ; : : : ; f (J)k vanishidentically.Proof. Firstly, as we have seen in the proof of Proposition 1, f (I)1 ; : : : ; f (I)k vanishidentically since WB touches MI . Secondly, assume that there exists J �6=I such thatf (J)1 ; : : : ; f (J)k vanish identically. As WB touches MI , there exists a point x 2 MI TWB ;by de�ntion, g1(x) > 0; : : : ; gl(x) > 0. Then g1; : : : ; gl are positive everywhere in a ballBx(r) for a suitable r > 0. Since x 2 MI � @MJ , the open set Bx(r)TMJ in PJ isnonempty (and of dimension n � jJ j + 1), and Bx(r)TMJ � WB by de�nition of WB .6



Thus, WB touches MJ and we get a contradiction with Proposition 1, which proves theproposition. 2The Main Lemma follows immediately from Proposition 2 and the following proposi-tion.Proposition 3. For any polynomials h1; : : : ; hm 2 IR[X1; : : : ; Xn] with degreesdeg(hi) � d, the number of sets minimal (with respect to the inclusion) among the subsetsf1g � I � f1; : : : ; ng such that h(I)1 ; : : : ; h(I)m vanish identically, does not exceed 2c(d)n.We prove the proposition by induction on d. For d = 1, each hi = P1�j�n �ijXj +�i; 1 � i � m, is a linear polynomial. Let f1g � I � f1; : : : ; ng be a minimal set for whichh(I)1 ; : : : ; h(I)m vanish identically. Then for each 1 � i � m, �i = 0, P1�j�n �ij = 0, and Imust contain all j with �ij 6= 0. Thus, either no such I exists, or there is a unique such Iconsisting of f1g and all j 2 f1; : : : ; ng for which there exists 1 � i � m such that �ij 6= 0.This proves the proposition for the induction base d = 1.Inductive step. Let d > 1. Consider two cases. Denote 0 < c = 1�c(d�1)1�c(d�1)+ 1d log2( 2d2d�1 ) <1. A set V � fX2; : : : ; Xng is called a cover set if each monomial X�11 ; : : : ; X�nn occurringin at least one of the polynomials h1; : : : ; hm contains a variable from V [ fX1g.1. In the �rst case there does NOT exist a cover set V of size jV j � cn. We con-struct a set fb1; b2; : : : ; blg of monomials occurring in at least one of h1; : : : ; hm suchthat they are pairwise disjoint in the variables and contain only the variables fromfX2; : : : ; Xng. We add b1; b2; � � � sequentially until no additional monomial can beadded without violating the property stated above. Clearly, b1; : : : ; bl contain atmost dl variables among fX2; : : : ; Xng, and that these variables constitute a coverset. By assumption, we must have dl > cn.Observe that for any set f1g � I � f1; : : : ; ng such that h(I)1 ; : : : ; h(I)m vanish iden-tically, the set fXi; i 2 Ig should have a common variable with each monomialb1; : : : ; bl. Therefore, the number of all such sets (taking into account that themonomials b1; : : : ; bl are pairwise disjoint, and each has the degree at most d) I doesnot exceed 2n  2d � 12d !l � 2n 2d � 12d ! cnd : (1)2. In the second case there exists a cover set V with jV j � cn. Consider any min-imal f1g � I such that h(I)1 ; : : : ; h(I)m vanish identically. Let I0 = V n fXi; i 2Ig and I1 = V \ fXi; i 2 Ig. We uniquely expand h(I1[f1g)j = X1hj;X1 +7



P=(���i ���)(Qi2I0 Xii )Pj; ; 1 � i � m, where the polynomials Pj; ; hj;X1 are in thevariables Xi =2 V . Note that Pj; ; hj;X1 depend on variables in I0. Since V is a coverset, deg Pj; � d� 1 for each multi-index ; obviously deg(hj;X1) � d� 1.Since h(I)j vanishes identically, the polynomials P (InI1)j; also vanish identically, andfurthermore, the polynomial h(InI1)j;X1 vanishes identically as well. Thus, I n I1 is aminimal set for which the polynomials P (InI1)j; ; h(InI1)j;X1 , 1 � j � m, vanish identically,due to the minimality property of I .By inductive hypothesis there are at most 2c(d�1)(n�jV j) possible choices of I n I1.Since there are at most 2jV j possibilities for the choice of I1, we have in all at most2c(d�1)(n�jV j)2jV j � 2c(d�1)n2(1�c(d�1))cn: (2)minimal sets I .By the de�nition of c, it is straightforward to verify from (1), (2) that the number ofminimal sets are no greater than 2c(d)n in both cases. This completes the inductive step.We have thus proved Proposition 3, and hence Theorem 1. 24 Proof of Theorem 2Let T be any degree-d algebraic decision tree for deciding whether n� 1 input real num-bers x2; x3; � � � ; xn are all less than or equal to 0. We show that the size of T is atleast 2n�1=md;n�1. This implies Theorem 2, as any decision tree for MAX= with inputsx1; x2; � � � ; xn can be converted into a decision tree for the above problem by setting x1 = 0.The proof is analogous to the �rst half of the proof of Theorem 1. For each I �f2; 3; : : : ; ng, let MI = f(x2; x3; : : : ; xn) : xi = 0 for i 2 I , xj < 0 for j 62 Ig. Let B be anybranch of T , with f1 = � � � = fk = 0; g1 > 0; : : : ; gl > 0 being the set of constraints alongB; let WB � IRn denote the set of inputs (x2; x3; : : : ; xn) satisfying these constraints. Wesay that WB touches MI if dim(WBTMI) = dimMI = n� 1� jI j.For any J � f2; 3; : : : ; ng and a polynomial h 2 IR[X2; : : : ; Xn], de�ne the polynomialh(J)(Xj ; j 62 J) = hjXj=0;j2J 2 IR[Xj; j 62 J ].Similar to Proposition 2, we have the following.Proposition 20 If WB touches MI , then I is a minimal subset among all subsets Jsatisfying f (J)i � 0 for 1 � i � k.The proof of Proposition 20 is virtually identical to that of Proposition 2. Note that ifWB touchesMI , then all the polynomials fj have vanishing constant terms (i.e., fj(0) = 0).8



We want to rephrase Proposition 20 in terms of hypergraphs. To do this, we �rst relatethe \minimal subsets" to minimal cutsets for hypergraphs. For any h 2 IR[X2; : : : ; Xn], letGh denote the family of nonempty subsets fi1; : : : ; iqg for which there exists a monomialof h with the set of variables fXi1 ; : : : ; Xiqg. Given a family H of polynomials, let GH =Sh2H Gh. Note that Gh and GH are hypergraphs.Let H = fh1; : : : ; hmg where hi 2 IR[X2; : : : ; Xn] are polynomials with no constantterms.Proposition 4. For any J � f2; : : : ; ng, h(J)1 � 0; : : : ; h(J)m � 0 if and only if J is acutset of GH .Proof. If J is a cutset of GH , then setting Xj to 0 for all j 2 J kills all the monomialsin hi. Hence h(J)i � 0 for all i. If, on the other hand, h(J)i � 0 for all i, then for each ino monomials in hi can be free from all Xj ; j 2 J , since otherwise h(J)i is not identicallyequal to 0. Thus, J is a cutset of Ghi , and since GH is a union of all Ghi , J is a cutset ofGH . 2Proposition 4 implies that the sets minimal among I such that the polynomialsh(I)1 ; h(I)2 ; : : : ; h(I)m vanish identically are exactly the minimal cutsets of GH .Using Proposition 4, we can rephrase Propositions 20 as follows: If WB touches MI ,then I is a minimal cutset of GF where F = ff1; : : : ; fkg. Since GF is of rank d or less,there are at most md;n�1 such cutsets. This proves that WB can touch at most md;n�1MI 's. To touch all 2n�1 MI 's, at least 2n�1=md;n�1 branches B are needed. Thus, T musthave size at least 2n�1=md;n�1. This completes the proof of Theorem 2.References[B83] M. Ben-Or, Lower Bounds for Algebraic Computation Trees, Proc. 15th ACMSTOC (1983), pp. 80{86.[BFMUW87] A. Borodin, F. Fich, F. Meyer auf der Heide, E. Upfal, and A. Wigderson,A Time-Space Tradeo� for Element Distinctness, SIAM J. on Computing 16(1987), pp. 97-99.[BFKLT81] A. Borodin, M. Fischer, D. Kirkpatrick, N. Lynch, and M. Tompa, A Time-Space Tradeo� for Sorting on Oblivious Machines, J. of Computer and SystemSciences 22 (1981), pp. 351-364.[BKL93] P. Buergisser, M. Karpinski, T. Lickteig, On Randomized Algebraic Test Com-plexity, J. of Complexity 9 (1993), pp. 231-251.9
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