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Abstract

A probabilistic test for equality a = be for given n-bit integers a,b,c is
designed within complexity n(loglogn)exp{O(log" n)}.
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1 Test for multiplication

Denote by M (n) the complexity of multiplication of two n-bit integers. It is well-
known [4] that
M(n) = n(logn) exp{O(log" n)},

improving upon the algorithm given in [6].!

We consider here probabilistic testing of the equality a = bc for given n-bit
integers a, b, c. In this context, it may be worth mentioning that a probabilistic test
for matrix product A = BC within linear complexity has been described in [3]. A
general concept of a checking problem (vs. a solving one) was suggested in [2].

Lemma 1.1. The complexity of division with remainder of n-bit integer a by m-bit
integer d does not exceed n(logm)exp{O(log*m)}.

Proof. Let a € N* be an n-bit integer and, for 1 < m < n, write the 2™-ary
expansion of a, namely a = > o< /m a;2™ with 0 < a; < 2™ (0 < i < n/m).
Each of remainder u; := Rem(2™,d) € [0,d] may be computed within complexity
O(M (m)) [1]. Subsequently one can calculate each v; := Rem(a;u;,d) (0 <7 < n/m)
again within complexity O(M (m)). Finally, Rem ( }o<ic, Jm Vis d) can be computed
within complexity O(n). 0

To perform a probabilistic test of the validity of the equation a = bc, the

algorithm picks randomly an integer 2 < d < n?, calculates ¢’ := Rem(a,d),

'Recall the definition log* n := min{j > 0 : logm n < 1}, where logm is the j-fold iteration of
the logarithm to the base 2, denoted by log.
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b := Rem(b,d), ¢ := Rem(c,d) and finally tests the equality a’ = Rem(b'¢,d). This
test has complexity less than n(loglogn)exp{O(log*n)} by virtue of Lemma 1.1
and has an error less than 1/2 due to the following result applied to a — be.

Theorem 1.2. Let 6 > 1 —1In2. Then any sufficiently large n-bit integer has at
most on? divisors in the interval [1,n?].

Remark 1.3. More precisely, the bounds established in the next section show that,
for any € > 0, the test can be defined by picking the random divisor d in the interval
[2,nVte], but not by picking d in the interval [2,nVe¢].

2 Bounds for the number of small divisors

We designate by Inj the k-fold iteration of the Neperian logarithm function In = Inj.

Let P(n) denote the largest prime factor of an integer n > 1, with the convention
that P(1) = 1. For z > 1, y > 1, we define S(z,y) := {n < z : P(n) < y} as
the set of y-friable integers not exceeding x, and denote by W¥(x,y) its cardinality.
We designate by ¢ Dickman’s function, which is defined as the unique continuous
solution on R of the difference-differential equation

ug(w)+ou—1)=0  (u>1)

with initial condition g(u) = 1 (0 < w < 1). The function p is strictly decreasing
from 1 to 0 on [0, 00[ and we have

o(u) =™ (4= o0),

For further information and references on the Dickman function, see, e.g., [7], chap-
ter I1L.5.

Given a function Z : [1,00[—]1, 00[ such that In Z(z) = o(Inzlnyx) as © — oo
and a real number ¢ > e, we let Z(¢; Z) denote the smallest solution in |1, co[ of the

equation
Inz
Z(m)g<1n2 t) =1

That such a solution exists follows from the fact that the right hand side is > 1 for
z =Int and tends to 0 as z — oo.
Put

7(n,x) ::Zl (neN*, z>1).
din
d<z
Theorem 2.1. Let Z : [1,00[—]1,00[ be a non-decreasing function satisfying
(1) In Z(z) < (Inz)/(Ing 3z)> (x > 1).

For all € > 0 and sufficiently large n, we have

(2) r>En;(1+¢)Z) = 7(n,x) < z/Z(x).
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Under the extra condition

(3) InZ(z) =o(Vinz) (x — 00),

there exists a strictly increasing integer sequence {ny}p, such that
(4) T(ng, ) > xp/Z (x)) (k > 0),

with i, == E(ng; (1 —)Z).

Before embarking on the proof, we note a simple corollary obtained by consider-
ing the case when Z is a constant. For fixed v > 1, we let z,,(v) denote the smallest
real number such that

T(n,z) < x/v n=>1,z>x,1)).

Theorem 1.2 follows by specializing v = 2 in the next statement, and Remark 1.3
by selecting v = 1/(1 — In 2).
Theorem 2.2. For 1 <v <1/(1 —1In2), w:=exp{l —1/v}, we have

(5) zn(v) < (Inn)*°M  (n - o).

Moreover, in the above upper bound, the exponent w is optimal in the following
sense: given any € > 0, there exists a strictly increasing integer sequence {n j}?io
such that

(6) Ty, (v) > (Inng)* e (7 =0).
Proof. We select Z(z) = v in Theorem 2.1 and note that, since g(u) =1 — Inwu for
1 <u <2, we have Z(n;v) = (logn)* forn > 3 and 1 < v < 1/(1 — log 2). O

Proof of Theorem 2.1. We first establish (2).
(n)

Let pg denote the k-th prime number and {p](n)};):q
sequence of distinct prime factors of an natural integer n. Then the mapping

F: H pi(n)" — H p?j

1 Sw(n) 1 Sw(n)

designate the increasing

is an injection from the set of divisors of n into the subset of p,,,)-friable integers d.
Moreover, F'(d) < d for all d > 1. Therefore

(7) T(TL,ZE) < \Ij(xapw(n)) (n zlz> 1)

Since we have, for any integer n > 1,

H psn,

pgpw(n)

a strong form of the prime number theorem yields
(8) Pu(n) S Ln = {1 + e (2 ")C} Inn

for any ¢ < 3/5 and sufficiently large n.
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. 11/6 . .
If, for instance, Inn < e2(2%) / , we have, as n — oo, by virtue of the uniform

upper bound for ¥(z,y) given in theorem IIL.5.1 of [7],
U(z, L,) < ¥(z,2Inn) < z'~Y/ @220 o ze~5(n2)/(n2a)1/6 _ o(z/Z(x)).

This implies 7(n,z) < x/Z(z) in this case.
If

9) Inn > e2n2o)/®

Hildebrand’s asymptotic formula (see for instance corollary I11.5.19 of [7]) implies

U(z, L) < {1+ 0(1)}:;;@(1}(1“2””) (z — 0).

However, by (8), we have

Inx Inz 11c
_ —(Ing x)11e/6
InL, Ilnan 0 (e ) '

By selecting & < ¢ < 2, and in view of the estimate ¢'(u) < (In2u)o(u) (u > 1)

established for instance in corollary II1.5.14 of [7], we deduce that

< Inx > < Inx >
e InL, e Ins n
as n and z tend to infinity under condition (9). It follows that, in the same circum-
stances, we have 7(n,z) < x/Z(z) as soon as z > =(n, (1 +¢)Z).
This completes the proof of the upper bound (2).

To prove the lower bound (4), we give ourselves a (large) constant D € N*
and put

Up(z,y):= > gp(n),

n<e
pln=p<y

where gp is the indicator of D-free integers, i.e. integers such that p”||n = v < D.
The arithmetical function gp is an s-function in the sense of [5], in other words

gp(n) only depends upon
s(n) := H p”.

p¥||n, v>2

Theorem 1 of [5] may hence be applied, and, writing ((s) for the Riemann zeta
function, yields, for any € > 0,

_ zo(u)
(10) Up(z,y) = 72 gp(n) ~ ¢(D+1)
pln=p<y

as z and y tend to infinity in such a way that exp {(log2 x)5/3+5} <y<z.
Let us then put Ny := ngjgkp? (k> 1). Applying (10) for

(11) pr <z < exp{o((Inpg)?/Ina py) } (k — o0),
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and setting uy := (Inx)/Inpg, we get

zo(ug) |
¢((D+1)

7(Ng,z) = ¥p(z,pr) ~
Now, observe that hypothesis (11) implies
ug In(1 + ug) = o(Inpyg) (k — 00).

Since In Ny ~ Dpy, we therefore have, when z satisfies (11),

(ry) = elip s om) = oo+ 0(55,)

= {1+ 0(%;1"“))}9(%) ~ oluy).

Select = := E(Ng; (1 — €)Z), where € €]0,1 — 1/Z(1)[. From the above, it then
follows that Z(z)(1 —€)o(ur) = 1+ o(1) as k — co. We deduce, on the one hand,
that = > pg, because p(1) = 1, and, on the other hand, in view of the classical
asymptotic estimates for p(u) (see for instance theorem III1.5.13 of [7]), that

upIn(l +uy) <InZ(z) = o(Vinz).

Condition (11) is hence fulfilled. It follows that

TWNew) =¥o(e.pe) > T e p s z@)  Z@ ¢ %)

provided we choose, as we may, D sufficiently large in terms of ¢.
This completes the proof of the second part of our theorem. a

As a further concrete example of application of Theorem 2.1, we state the fol-
lowing corollary.

Corollary 2.3. Let ¢ > 0, ¢ > 0. For sufficiently large n and all

x> (In n){1+5}0(1n3 n)/Ing n

we have 7(n,x) < x/(lnx)¢. This statement is optimal in the sense that one cannot
replace € by —e.
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