
AUTHENTICATION SCHEMES

FROM ACTIONS ON GRAPHS, GROUPS, OR RINGS

DIMA GRIGORIEV AND VLADIMIR SHPILRAIN

Abstract. We propose a couple of general ways of constructing authentication
schemes from actions of a semigroup on a set, without exploiting any specific al-
gebraic properties of the set acted upon. Then we give several concrete realizations
of this general idea, and in particular, we describe several authentication schemes
with long-term private keys where forgery (a.k.a. impersonation) is NP-hard. Com-
putationally hard problems that can be employed in these realizations include Graph
Colorability, Diophantine Problem, and many others.

To Nikolai Alexandrovitch Shanin with deepest appreciation

1. Introduction

In this paper, we propose several general Feige-Fiat-Shamir-like [3] constructions
of authentication schemes (with long-term private keys) from arbitrary actions. For
a general theory of public-key authentication (a.k.a. identification) as well as early
examples of authentication protocols, the reader is referred to [10].

Suppose a (partial) semigroup S acts on a set X, i.e., for s, t ∈ S and x ∈ X, one
has (st)(x) = s(t(x)) whenever both sides are defined. For cryptographic purposes, it
is good to have an action which is “hard-to-invert”. We deliberately avoid using the
“one-way function” terminology here because we do not want to be distracted by formal
definitions that are outside of the main focus of this paper. For a rigorous definition of
a one-way function, we just refer to one of the well-established sources, such as [5]. It is
sufficient for our purposes to use an intuitive idea of a hard-to-invert action which is as
follows. Let X and Y be two sets such that complexity (or ”size”) |u| is defined for all
elements u of either set. A function f : X → Y is hard-to-invert if computing f(x) takes
time polynomial in |x| for any x ∈ X (which implies, in particular, that complexity of
f(x) is bounded by a polynomial function of |x|), but there is no known algorithm that
would compute some f−1(y) in polynomial time in |y| for every y ∈ f(X).

In our context of actions, we typically consider hard-to-invert functions of the type
fx : s → s(x); in particular, a secret is usually a mapping s, which makes our ap-
proach different from what was considered before. This idea allows us to construct
several general Feige-Fiat-Shamir-like authentication schemes (with long-term private
keys) from arbitrary actions, see Section 3. Then, in the subsequent sections, we give

Research of the second author was partially supported by the NSF grant DMS-0405105.

1

2

several concrete realizations of this general idea, and in particular, we describe sev-
eral authentication schemes where recovering the prover’s long-term private key from
her public key is an NP-hard problem. We note however that what really matters for
cryptographic security is computational intractability of a problem on a generic set of
inputs, i.e., the problem should be hard on “most” randomly selected inputs. For a
precise definition of the “generic-NP” class, we refer to [11]. Here we just say that
some of the problems that we employ in the present paper, e.g. Graph Colorability, are
likely to be generically NP-hard, which makes them quite attractive for cryptographic
applications.

We also address an apparently easier task of forgery (a.k.a. misrepresentation, a.k.a.
impersonation), and show that in most of our schemes this, too, is equivalent for the
adversary to solving an NP-hard problem. To be more specific, by forgery we mean
the scenario where the adversary enters the authentication process at the commitment
step, and then has to respond to the challenge properly.

Finally, we note that there were other attempts at constructing authentication
schemes based on NP-hard problems (e.g. [1], [2]), but these constructions are less
transparent, and it is not immediately clear how or why they work.

2. When a composition of functions is hard-to-invert

Here we prove a simple but useful proposition about composing a hard-to-invert
function with another function, which is not necessarily hard-to-invert.

Proposition 1. Let A,B and C be sets, and let ϕ : A → B and ψ : B → C be two
functions such that computing ϕ(x) as well as ψ(x) takes time polynomial in |x| for
any x for which the corresponding function is defined.

(a) If ψ is hard-to-invert and the domain of ψ is contained in the range of ϕ, then the
composition ϕψ = ψ(ϕ) is hard-to-invert.

(b) If ϕ is hard-to-invert, ψ is injective (i.e., one-to-one), and the domain of ψ contains
the range of ϕ, then the composition ϕψ = ψ(ϕ) is hard-to-invert.

Proof. (a) Let f = ψ(ϕ) : A → C. By way of contradiction, suppose there is an
algorithm A that computes some f−1(c) in polynomial time in |c| for every c ∈ f(A).

Now let y ∈ ψ(B). Since the domain of ψ is contained in the range of ϕ, this
implies y ∈ f(A). Then we apply the algorithm A to y to get some a ∈ A. This takes
polynomial time in |y|, and, in particular, the size of a is polynomial in |y|. Then we
apply ϕ to a to get an element b ∈ B. This takes polynomial time in |a|, and therefore
also in |y|. Since now ψ(b) = y, we have found a preimage of y under ψ in polynomial
time in |y|, contradicting the assumption on ψ to be hard-to-invert.

(b) Again, let f = ψ(ϕ) : A→ C and suppose, by way of contradiction, that there is an
algorithm A1 that computes some f−1(c) in polynomial time in |c| for every c ∈ f(A).

Now let y ∈ ϕ(A). Since the domain of ψ contains the range of ϕ, we can apply
ψ to y to get ψ(y) = c ∈ C. This takes polynomial time in |y|. Then we apply the
algorithm A1 to c to obtain some a = f−1(c). This takes polynomial time in |c|, and
therefore also in |y|. Now we claim that ϕ(a) = y, for if it was not the case, we would

3

have y1 6= y such that ψ(y) = ψ(y1) = c (since f(a) should be equal to c), contradicting
the assumption on ψ to be injective.

�

3. Three protocols

In this section, we give a description of three generic authentication protocols (or,
rather, “meta-protocols”, or “primitives”, since we do not give any implementation
details in this section). Here Alice is the prover and Bob the verifier.

3.1. Protocol I. Suppose a set S acts on a set X, i.e., for any s ∈ S and x ∈ X, the
element s(x) ∈ X is well-defined.

(1) Alice’s public key consists of a set X, a (partial) semigroup S, an element
x ∈ X, and an element u = s(x) for some randomly selected s ∈ S; this u is
her long-term private key.

(2) To begin authentication, Alice selects an element t ∈ S and sends the element
v = t(s(x)) ∈ X, called the commitment, to Bob.

(3) Bob chooses a random bit c, called the challenge, and sends it to Alice.
• If c = 0, then Alice sends the element t to Bob, and Bob checks if the

equality v = t(u) is satisfied. If it is, then Bob accepts the authentication.
• If c = 1, then Alice sends the composition ts to Bob, and Bob checks if the

equality v = ts(x) is satisfied. If it is, then Bob accepts the authentication.

3.2. Protocol II. Yet another protocol involving a composition of actions (or map-
pings) is as follows.

(1) Alice’s public key consists of a set X, a (partial) semigroup S whose elements
may act on X, an element x ∈ X, and an element z = r(x) for some randomly
selected r ∈ S; this z is her long-term private key.

(2) To begin authentication, Alice selects an element y ∈ X, together with two
elements s, t ∈ S such that s(x) = y and t(y) = z. She then sends the element
y (the commitment) to Bob.

(3) Bob chooses a random bit c, the challenge, and sends it to Alice.
• If c = 0, then Alice sends the element s to Bob, and Bob checks if the

equality s(x) = y is satisfied. If it is, then Bob accepts the authentication.
• If c = 1, then Alice sends the element t to Bob, and Bob checks if the

equality t(y) = z is satisfied. If it is, then Bob accepts the authentication.

We note that selecting an element y at the commitment step of this protocol may
be non-trivial; later in this paper we show how to implement this step in particular
realizations of Protocol II.

Proposition 2. Suppose that after several runs of steps (2)-(3) of the above Protocol
II, both values of c are encountered. Then successful forgery in such a protocol is
equivalent to compromising Alice’s long-term private key, i.e., to finding r ′ ∈ S such
that z = r′(x).

4

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with
the commitment step by sending her own commitment y ′ ∈ X to Bob, such that
s′(x) = y′ and t′(y′) = z for some s′, t′ ∈ S. Since she should be prepared to respond
to both challenges c = 0 and c = 1, she should be able to produce s′ as well as t′.
Therefore, she is able to also produce their composition t′s′. The result now follows
from: z = t′(y′) = t′(s′(x)) = (t′s′)(x), so that r′ = t′s′. �

3.3. Protocol III. In this protocol, the hardness of obtaining the long-term private
key for the adversary can be based on “most any” search problem; we give some concrete
examples in the following sections, whereas in this section, we give a generic protocol.

(1) Alice’s public key consists of a set S that has a property P. Her long-term
private key is a proof (or a “witness”) that S does have this property. We are
also assuming that the property P is preserved by isomorphisms.

(2) To begin authentication, Alice selects an isomorphism ϕ that can be applied to
S, and sends the set S1 = ϕ(S) (the commitment) to Bob.

(3) Bob chooses a random bit c and sends it to Alice.
• If c = 0, then Alice sends the isomorphism ϕ to Bob, and Bob checks (i) if
ϕ(S) = S1 and (ii) if ϕ is an isomorphism.

• If c = 1, then Alice sends a proof of the fact that S1 has the property P
to Bob, and Bob checks its validity.

The following proposition says that in the Protocol III, successful forgery is equivalent
for the adversary to finding Alice’s private key from her public key, which is equivalent,
in turn, to giving a proof (or a “witness”) that S does have the property P. The latter
problem can be selected from a large pool of NP-hard problems (see e.g. [4]).

Proposition 3. Suppose that after several runs of steps (2)-(3) of the above Protocol
III, both values of c are encountered. Then successful forgery in such a protocol is
equivalent to finding a proof of the fact that S has the property P.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with the
commitment step by sending her own commitment S ′

1
to Bob. Since she should be

prepared to respond to the challenge c = 0, she should know an isomorphism ϕ′ : S →
S′

1
. On the other hand, since she should be prepared for the challenge c = 1, she should

know a proof of the fact that S ′

1
has the property P. Therefore, since ϕ′ is invertible,

this implies that she can produce a proof of the fact that S has the property P. This
completes the proof in one direction.

The other direction is trivial. �

Remark 1. We note that finding a proof of the fact that a given S has a property P is
not a decision problem, but rather a search problem (sometimes also called a promise
problem), so we cannot formally allocate it to one of the established complexity classes.
However, we observe that, if there were an algorithm A that would produce, for any S
having a property P, a proof of that fact in time bounded by a polynomial P (|S|) in
the “size” |S| of S, then, given an arbitrary S ′, we could run the algorithm A on S ′,
and if it would not produce a proof of S ′ having the property P after running over the

5

time P (|S ′|), we could conclude that S ′ does not have the property P, thereby solving
the corresponding decision problem in polynomial time.

4. Subgraph isomorphism (Protocol II)

There is a classical realization of the Protocol I from Section 3 (actually, it also
fits in with the Protocol III), based on the Graph Isomorphism problem, see [6]. We
note that this decision problem is in the class NP, but it is not known to be NP-hard.
Moreover, generic instances of this problem are easy, because two random graphs are
typically non-isomorphic for trivial reasons. However, the problem that is actually used
in [6] is a promise problem: given two isomorphic graphs, find a particular isomorphism
between them. This is not a decision problem; therefore, if we are to allocate it to one
of the established complexity classes, we need some kind of “stratification” to convert
it to a decision problem. This can be done as follows. Any isomorphism of a graph Γ
on n vertices can be identified with a permutation of the tuple (1, 2, . . . , n), i.e., with
an element of the symmetric group Sn. If we choose a set of generators {gi} of Sn, we
can ask whether or not there is an isomorphism between two given graphs Γ and Γ1,
which can be represented as a product of at most k generators gi. To the best of our
knowledge, the question of NP-hardness of this problem has not been addressed in the
literature, but it looks like a really interesting and important problem.

Anyway, in this section, we describe a realization of the Protocol II from Section 3,
based on the Subgraph Isomorphism problem. It is very similar to the Graph Isomor-
phism problem, but unlike the Graph Isomorphism problem, it is known to be NP-hard,
see e.g. [4, Problem GT48]. We also note that this problem contains many other prob-
lems about graphs, including the Hamiltonian Circuit problem, as special cases. The
Subgraph Isomorphism problem is: given two graphs Γ1 and Γ2, find out whether or
not Γ1 is isomorphic to a subgraph of Γ2.

(1) Alice’s public key consists of two graphs, Γ and Γ2. Alice’s private key is a
subgraph Γ1 of Γ2 and an isomorphism ϕ : Γ → Γ1.

(2) To begin authentication, Alice selects an “intermediate” graph Λ, which is
a subgraph of Γ2, and an isomorphic embedding ψ : Γ → Λ, with ψ(Γ) =
Γ1. Then she sends the graph Λ (the commitment) to Bob, while keeping the
embeddings ψ : Γ → Λ and τ : Λ → Γ2 to herself.

(3) Bob chooses a random bit c and sends it to Alice.
• If c = 0, then Alice sends the embedding ψ to Bob, and Bob checks if ψ is

actually an embedding of Γ into Λ.
• If c = 1, then Alice sends the embedding τ to Bob, and Bob checks if τ is

actually an embedding of Λ into Γ2.

We point out here the following corollary to our Proposition 2:

Corollary 1. Suppose that after several runs of steps (2)-(3) of the above protocol, both
values of c are encountered. Then successful forgery in such a protocol is equivalent to
compromising Alice’s long-term private key, i.e., to finding an embedding ϕ ′ of Γ into
Γ2.

6

We note that the problem alluded to at the end of this corollary (the Subgraph
Isomorphism problem) is NP-complete, see e.g. [4, Problem GT48].

A few more comments are in order.

• As it is usual with Feige-Fiat-Shamir-like authentication protocols, steps (2)-(3)
of this protocol have to be iterated several times to prevent a successful forgery
with non-negligible probability.

• When we say that Alice “sends” (or “publishes”) a graph, that means that Alice
sends or publishes its adjacency matrix. Thus, the size of Alice’s public key is
roughly 2n2, where n is the number of vertices in Γ.

• When we say that Alice “sends a subgraph” of a bigger graph, that means
that Alice sends the numbers {m1,m2, . . . ,mn} of vertices that define this sub-
graph in the bigger graph. When she sends such a subgraph together with
an isomorphism from another (sub)graph, she sends a map (k1, k2, . . . , kn) →
(m1,m2, . . . ,mn) between the vertices.

• Alice can construct the “intermediate” graph Λ at Step 2 of the protocol by sim-
ply discarding some randomly selected vertices (together with incident edges)
of the graph Γ2 that do not belong to Γ1. Since Alice knows an embedding of
Γ into Γ2, she will then know an embedding of Γ into Λ, too.

5. Graph homomorphism (Protocol I)

In this section, we use the Graph Homomorphism problem that is known to be
NP-complete, see [4, Problem GT52]. We have to briefly describe this problem first.

Given two graphs, Γ1 and Γ2, the Graph Homomorphism problem asks whether or
not there is a homomorphism f : Γ1 → Γ2, i.e., a mapping from the vertex set of Γ1

onto the vertex set of Γ2 such that for any two adjacent vertices v1, v2 of Γ1, their
images f(v1) and f(v2) are adjacent in Γ2. We note that the Graph Homomorphism
problem remains NP-complete even if Γ2 is a triangle, see [4, Problem GT52].

Now the authentication protocol is as follows.

(1) Alice’s public key consists of two graphs, Γ1 and Γ2. Alice’s long-term private
key is a homomorphism α : Γ1 → Γ2.

(2) To begin authentication, Alice selects a graph Γ together with a homomorphism
β : Γ → Γ1 and sends the graph Γ (the commitment) to Bob, while keeping β
to herself.

(3) Bob chooses a random bit c and sends it to Alice.
• If c = 0, then Alice sends the homomorphism β to Bob, and Bob checks

whether β(Γ) = Γ1 and whether β is a homomorphism (i.e., whether β
takes adjacent vertices to adjacent ones).

• If c = 1, then Alice sends the composition αβ = β(α) to Bob, and Bob
checks whether αβ(Γ) = Γ2 and whether αβ is a homomorphism.

We now give a couple of comments on the above protocol.

• To generate her public key, Alice starts with a random graph Γ2 and constructs
Γ1 as follows. She selects randomly a subset V ′ of the vertex set of Γ2, and for
each vertex v from V ′ does the following. First, she replaces v by several new

7

vertices u1, . . . , uk. These vertices are going to be mapped onto the vertex v
by the homomorphism that Alice is trying to construct. Thus, Alice arbitrarily
connects each ui to some other vertices adjacent to v. She repeats this proce-
dure with each vertex from V ′ and obtains her private homomorphism α as a
composition of intermediate homomorphisms.

The same way Alice can construct a graph Γ from Γ1 at the commitment
step.

• We note that, instead of trying to find a homomorphism between given graphs,
Eve can try to find any graph Γ′ that would map homomorphically onto both
Γ1 and Γ2, together with the corresponding homomorphisms. Then she can
interfere at the commitment step and send this Γ′ to Bob, which will allow
her to respond to either challenge by Bob successfully. The problem of finding
such a graph Γ′ (a “common multiple” of two given graphs, so to speak) is of
independent interest. We do not know whether it has been previously addressed
in the literature.

6. Graph colorability (Protocol III)

Graph colorability (more precisely, k-colorability) appears as problem [GT4] on the
list of NP-complete problems in [4]. We include an authentication protocol based on
this problem here as a special case of the Protocol III from Section 3. We note that
a (rather peculiar) variant of this problem was shown to be NP-hard on average in
[16] (the latter paper deals with edge coloring though). As we have pointed out in our
Section 3, “most any” search problem can be used in Protocol III; we choose the graph
colorability problem here just to illustrate this point, i.e., we do not claim that this is
the best choice of underlying problem in terms of security, say.

(1) Alice’s public key is a k-colorable graph Γ, and her private key is a k-coloring
of Γ, for some (public) k.

(2) To begin authentication, Alice selects an isomorphism ψ : Γ → Γ1, and sends
the graph Γ1 (the commitment) to Bob.

(3) Bob chooses a random bit c and sends it to Alice.
• If c = 0, then Alice sends the isomorphism ψ to Bob. Bob verifies that ψ

is, indeed, an isomorphism from Γ onto Γ1.
• If c = 1, then Alice sends a k-coloring of Γ1 to Bob. Bob verifies that this

is, indeed, a k-coloring of Γ1.

Again, a couple of comments are in order.

• It is obvious that if Γ is k-colorable and Γ1 is isomorphic to Γ, then Γ1 is
k-colorable, too.

• When we say that Alice “sends a k-coloring”, that means that Alice sends a set
of pairs (vi, ni), where vi is a vertex and ni are integers between 1 and k such
that, if vi is adjacent to vj, then ni 6= nj.

• Alice’s algorithm for creating her public key (i.e., a k-colorable graph Γ) is as
follows. First she selects a number n of vertices; then she partitions n into a
sum of k positive integers: n = n1 + . . .+nk. Now the vertex set V of the graph

8

Γ will be the union of the sets Vi of cardinality ni. No two vertices that belong
to the same Vi will be adjacent, and any two vertices that belong to different
Vi will be adjacent with probability 1

2
. The k-coloring of Γ) is then obvious: all

vertices in the set Vi are colored in color i.

Proposition 4. Suppose that after several runs of steps (2)-(3) of the above protocol,
both values of c are encountered. Then successful forgery is equivalent to finding a
k-coloring of Γ.

Proof. Suppose Eve wants to impersonate Alice. To that effect, she interferes with
the commitment step by sending her own commitment Γ′

1
to Bob. Since she should

be prepared to respond to the challenge c = 0, she should know an isomorphism ψ ′

between Γ and Γ′

1
. On the other hand, since she should be prepared for the challenge

c = 1, she should be able to produce a k-coloring of Γ′

1
. Since she knows ψ′ and since

ψ′ is invertible, this implies that she can produce a k-coloring of Γ. This completes the
proof in one direction.

The other direction is trivial. �

7. Endomorphisms of groups or rings (Protocol I)

In this section, we describe a realization of the Protocol I from Section 3 based on
an algebraic problem known as the endomorphism problem, which can be formulated
as follows. Given a group (or a semigroup, or a ring, or whatever) G and two elements
g, h ∈ G, find out whether or not there is an endomorphism of G (i.e., a homomorphism
of G into itself) that takes g to h.

For some particular groups (and rings), the endomorphism problem is known to be
equivalent to the Diophantine problem (see [12, 13]), and therefore the decision problem
in these groups is algorithmically unsolvable [9], which implies that the related search
problem does not admit a solution in time bounded by any recursive function of the
size of an input.

We also note at this point that there is evidence (see e.g. [14]) that finding an iso-
morphism (or a nontrivial homomorphism) between (finite-dimensional) algebras over
Q is hard.

Below we give a description of the authentication protocol based on the endomor-
phism problem, without specifying a platform group (or a ring), and then discuss
possible platforms.

(1) Alice’s public key consists of a group (or a ring) G and two elements g, h ∈ G,
such that ϕ(g) = h for some endomorphism ϕ ∈ End(G). This ϕ is Alice’s
private key.

(2) To begin authentication, Alice selects an automorphism ψ of G and sends the
element v = ψ(h) (the commitment) to Bob.

(3) Bob chooses a random bit c and sends it to Alice.
• If c = 0, then Alice sends the automorphism ψ to Bob, and Bob checks

whether v = ψ(h) and whether ψ is an automorphism.
• If c = 1, then Alice sends the composite endomorphism ψϕ = ψ(ϕ) to Bob,

and Bob checks whether ψϕ(g) = v and whether ψϕ is an endomorphism.

9

Here we point out that checking whether a given map is an endomorphism (or an
automorphism) depends on how the platform group G is given. If, for example, G is
given by generators and defining relators, then checking whether a given map is an
endomorphism of G amounts to checking whether every defining relator is taken by
this map to an element equal to 1 in G. Thus, the word problem in G (see e.g. [8] or
[11]) has to be efficiently solvable.

Checking whether a given map is an automorphism is more complex, and there is no
general recipe for doing that, although for a particular platform group that we describe
in subsection 7.1 this can be done very efficiently. In general, it would make sense for
Alice to supply a proof (at the response step) that her ψ is an automorphism; this proof
would then depend on an algorithm Alice used to produce ψ.

Proposition 5. Suppose that after several runs of steps (2)-(3) of the above protocol,
both values of c are encountered. Then successful forgery is equivalent to finding an
endomorphism ϕ such that ϕ(g) = h, and is therefore NP-hard in some groups (and
rings) G.

The proof is similar to that of Proposition 4. We also note that in [7], a class of rings
is designed for which the problem of existence of an endomorphism between two given
rings from this class is NP-hard.

A particular example of a group with the NP-hard endomorphism problem is given
in the following subsection.

7.1. Platform: free metabelian group of rank 2. A group G is called abelian (or
commutative) if [a, b] = 1 for any a, b ∈ G, where [a, b] is the notation for a−1b−1ab. This
can be generalized in different ways. A group G is called metabelian if [[x, y], [z, t]] = 1
for any x, y, z, t ∈ G. The commutator subgroup of G is the group G ′ = [G,G]
generated by all commutators, i.e., by expressions of the form [u, v] = u−1v−1uv, where
u, v ∈ G. The second commutator subgroup G′′ is the commutator of the commutator
of G.

Definition 1. Let Fn be the free group of rank n. The factor group Fn/F
′′

n is called
the free metabelian group of rank n, which we denote by Mn.

Roman’kov [13] showed that, given any Diophantine equation E, one can efficiently
(in linear time in the “length” of E) construct a pair of elements u, v of the group M2,
such that to any solution of the equation E, there corresponds an endomorphism of
M2 that takes u to v, and vice versa. Therefore, there are pairs of elements of M2 for
which the endomorphism problem is NP-hard (see e.g. [4, Problem AN8]). Thus, if a
free metabelian group is used as the platform for the protocol in this section, then, by
Proposition 5, forgery in that protocol is NP-hard.

7.2. Platform: Z∗

p. Here the platform group is Z∗

p, for a prime p. Then, since Z∗

p−1

acts on Z∗

p by automorphisms, via the exponentiation, this can be used as the platform
for the Protocol II. In this case, forgery is equivalent to solving the discrete logarithm
problem, by Proposition 5.

10

Acknowledgement. The first author is grateful to Max Planck Institut für Mathematik,
Bonn for its hospitality during the work on this paper.

References

[1] P. Caballero-Gil and C. Hernández-Goya, Strong Solutions to the Identification Problem, in:
7th Annual International Conference COCOON 2001, Lecture Notes Comp. Sc. 2108 (2001),
257–262.

[2] P. Caballero-Gil and C. Hernández-Goya, A Zero-Knowledge Identification Scheme Based on
an Average-Case NP-Complete Problem, in: Computer Network Security, MMM-ACNS 2003,
St. Petersburg, Russia. Lecture Notes Comp. Sc. 2776 (2003), 289–297.

[3] U. Feige, A. Fiat and A. Shamir, Zero knowledge proofs of identity, Journal of Cryptology 1

(1987), 77–94.
[4] M. Garey, J. Johnson, Computers and Intractability, A Guide to NP-Completeness, W. H.

Freeman, 1979.
[5] O. Goldreich, Foundations of cryptography, Cambridge University Press, 2001.
[6] O. Golderich, S. Micali, A. Wigderson, Proofs that yield nothing but their validity, or all lan-

guages in NP have zero-knowledge proof systems, J. ACM 38 (1991), 691–729.
[7] D. Grigoriev, On the complexity of the “wild” matrix problems, of the isomorphism of algebras

and graphs, Notes of Scientific Seminars of LOMI 105 (1981), 10–17 (in Russian) [English
translation in J. Soviet Math. 22 (1983), 1285–1289].

[8] R. C. Lyndon, P. E. Schupp, Combinatorial Group Theory, Ergebnisse der Mathematik, band
89, Springer 1977. Reprinted in the Springer Classics in Mathematics series, 2000.

[9] Yu. Matiyasevich, Hilbert’s 10th Problem (Foundations of Computing), The MIT Press, 1993.
[10] A. Menezes, P. van Oorschot, S. Vanstone, Handbook of Applied Cryptography, CRC-Press

1996.
[11] A. G. Myasnikov, V. Shpilrain, and A. Ushakov, Group-based cryptography, Birkhäuser 2008.
[12] V. A. Roman’kov, Unsolvability of the problem of endomorphic reducibility in free nilpotent

groups and in free rings, Algebra and Logic 16 (1977), 310-320.
[13] V. A. Roman’kov, Equations in free metabelian groups, Siberian Math. J. 20 (1979), 469-471.
[14] L. Rónyai, Simple Algebras Are Difficult, Proceedings of the Annual ACM Symposium on Theory

of Computing (1987), 398–408.
[15] A. Seress, Permutation Group Algorithms, Cambridge University Press, 2002.
[16] R. Venkatesan, L. Levin, Random Instances of a Graph Coloring Problem are Hard, Proceedings

of the Annual ACM Symposium on Theory of Computing (1988), 217–222.

CNRS, Mathématiques, Université de Lille, 59655, Villeneuve d’Ascq, France
E-mail address: dmitry.grigoryev@math.univ-lille1.fr

Department of Mathematics, The City College of New York, New York, NY 10031
E-mail address: shpil@groups.sci.ccny.cuny.edu

