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Abstract. We consider the problem of constructing continuous
cryptographic primitives. We present several candidates for contin-
uous hard-to-invert functions. To formulate these candidates, we
introduce constructions based on tropical and supertropical cir-
cuits.

1. Introduction

Many important cryptographic applications require the underlying
primitives to possess some continuity properties. This effect is espe-
cially prominent in biometrics: fingerprints, retina scans, and human
voices change a little over time, and the conditions are also never ex-
actly the same. However, the system still needs to let the slightly
changed human being pass and still needs to deny access for other
human beings who have “changed” substantially more. Thus, for bio-
metric applications continuous cryptographic primitives would be of
great interest.

In biometrics, approaches to continuous cryptography have already
been proposed. In [23], a fuzzy vault scheme was put forward. In
fuzzy vault schemes, continuity is understood in a discrete, set-theoretic
sense: a set of features (minutae) is close to another set if their inter-
section is large and their set difference is small; however, the features
themselves remain discrete and must match perfectly, just not all of
them. The fuzzy vault scheme of [23] was recently criticized and found
vulnerable to certain plausible attacks [38, 39]; however, the general
problem of finding continuous primitives remains interesting.

In this work, we propose several candidates for continuous hard-
to-invert functions, as introduced in [16]1. We understand continuity
in the regular mathematical sense: a continuous function maps close
points of a Euclidean space to close points of another Euclidean space.

1We deliberately do not use the term “one-way” here, as it has a precise mathe-
matical meaning [13], which we obviously cannot prove for our candidate functions.
Hard-to-invert functions are functions which are polynomially easy to compute,
but for which there is no known algorithm for inverting them in polynomial time.
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This setting makes perfect sense for biometric applications. For ex-
ample, voice features – spectral and cepstral coefficients and related
characteristics – are multidimensional real vectors; a vault signed by
somebody’s voice should forgive small variations in these integral char-
acteristics.

Our basic cryptographic construction, corresponding to biometric
needs, is an authentication scheme based on a one-way function. There
exist many secure authentication protocols based on one-way functions,
e.g. the Lamport’s scheme and the X.509 mechanism based on digital
signatures, as well as password schemes [32]. Their exact details are
unimportant for our present work; what is important is which function
to use as the underlying hard-to-invert function. Suppose that f :
X → Y is a function which is easy to compute but hard to invert, and
a participant of the authentication protocol Alice has a secret x ∈ X

(her biometric data). We aim to find a continuous function f : X → Y

so that even if Alice’s biometrics changed a little over time to some
x′ ∈ X, the distance ρ(x, x′) being small, the value of f(x′) would
nevertheless be close to f(x), and the other participant of the protocol
would be able to authenticate Alice. On the other hand, an impostor
Charlie with biometrics y ∈ X on a relatively large distance ρ(x, y)
should not be authenticated, and f(y) should be far from f(x) in Y .

Continuous one-way functions (better to say, function candidates)
have already appeared in literature, but examples and discussion have
been limited to the field of physical one-way functions, i.e. hard-to-
invert physical processes and their mathematical models. There are
continuous maps based on the second law of thermodynamics that are
presumably hard to invert [21]; other physical processes, often naturally
continuous, have been proposed as one-way candidates [36, 37]. Our
candidates are much simpler, but still do not allow for known efficient
inversion algorithms although much thought has been spent on their
underlying problems.

For now, no one knows whether there exist functions which are much
harder to invert than to compute, especially in the formal cryptographic
setting of one-way functions. The hardest results we have without
additional assumptions are linear lower bounds (no better explicit lower
bounds exist for circuit complexity anyway) [19, 20]. However, we can
formulate an open question in theoretical cryptography, which may

This is, obviously, not a mathematical definition, as it relies on our state of knowl-
edge rather than formal concepts; nevertheless, this is the best we can hope for at
present.



CONTINUOUS HARD-TO-INVERT FUNCTIONS AND BIOMETRIC AUTHENTICATION3

(or may not, one never knows for sure) turn out to be easier than
overcoming these foundational obstacles.

Open question. Provided that one-way functions exist, does there
exist a continuous one-way function?

The paper is organized as follows. In Section 2, we consider a poly-
nomial mapping as a one-way candidate. In Section 3, we propose a
candidate tropical construction. In Section 4, we give constructions of
interactive protocols based on our candidate functions.

2. Polynomial candidates

2.1. The general idea. Our first candidate is a polynomial mapping
f : Rn → Rm for m > n (for example, m = n + 1) for some ring
R. In theory, we usually take R = R or R = C and assume that f

has integer coefficients; in practice, the corresponding real or rational
numbers will all be rational; we denote the rational points of C by
QC = Q + iQ. Inverting this one-way function is equivalent to solving
a (slightly) overdetermined system of polynomial equations:

f1(x1, . . . , xn) = y1,

f2(x2, . . . , xn) = y2,

. . . . . .

fm(x1, . . . , xn) = ym.

Solving systems of polynomial equations has naturally attracted much
attention in algebraic geometry. It is well known that in the worst
case, solving even a system of multivariate quadratic equations is NP-
complete, both over a finite field in the Turing machine model and in
the Blum-Shub-Smale model over an arbitrary ring or field, including
R and C [2]. It is known that, over a finite field, if m is much larger
than n (the system is very much overdetermined), there are efficient
heuristics for solving such systems based on linearization, namely the
XSL method which was used in a much acclaimed method of breaking
block ciphers [6, 8].

Efficient algorithms for solving overdetermined systems on average
(which are more relevant in the cryptographic setting) are not known to
date. For systems of n homogeneous polynomial equations in exactly
n + 1 variables (functions f : Cn+1 → Cn), Shub and Smale have
developed an ingenious path following (homotopy) method that finds
one of their non-zero solutions in average subexponential time [40–44].

However, this method suffers from several restrictions. First, its
running time is subexponential in the dimension N of the vector space
H(d) of all homogeneous polynomial maps f : Cn+1 → Cn with f =
(f1, . . . , fn), deg fi = di; latest progress in this area brings the average
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complexity down to NO(log log N) [3]. This dimension is polynomial in
the number of variables if the degree is constant, and polynomial in the
degree if the number of variables is constant, but not both. Second,
the path following method is restricted to maps f : Cn+1 → Cn. For
overdetermined systems f : Cn → Cm, m > n, the method does not
work, and we have to fall back on Newton’s method [10], which only
finds a root if one begins in a small enough disc around a zero; see an
estimate of the disc radius in [10, Theorem 1].

In order to obtain a small representation of a polynomial with large
N , we define a polynomial mapping by an arithmetic circuit. In essence,
we allow parentheses in the definition of the polynomial and do not
require the system to open them. Arithmetic circuits are able to “con-
ceal” the number of monomials N , specifying a polynomial with an
exponential number of monomials by a polynomial size circuit. Even
polynomials of exponential degree can sometimes be computed in poly-
nomial time, e.g. the value of (x+ y)2n

is easy to compute by repeated
squaring (in the Blum-Shub-Smale model, in the bit model the re-
sult may have exponential length). Note, however, that many natural
questions about circuits in this representation become computationally
hard. For example, in [29] it is shown that deciding whether a given
polynomial is zero is hard for P#P.

2.2. Continuity modulus. To use a continuous hard-to-invert func-
tion, we also have to specify an estimate on the continuity modulus

ω(f, δ) = sup
|u−v|<δ

|f(u) − f(v)| ,

where δ is the maximum distance from the exact stored “password”
that should still admit legitimate authentication. For a polynomial,
the continuity modulus is bounded only if we restrict our attention
to a compact set. Fortunately, in all practical applications there is a
compact set Ω ⊆ X on which it is meaningful to consider the function
f (e.g., the set of all reasonably possible fingerprint minutae or mel-
frequency cepstral coefficients), so in what follows we assume that all
inputs will come from a compact domain Ω.

There are different approaches for computing the continuity mod-
ulus. It is easy to compute the continuity modulus of a polynomial.
However, we do not know the polynomial’s coefficients, we only know
its circuit (and remember, computing coefficients may be very hard).
We list several ideas.

(1) For a compact set Ω ⊆ X, we can estimate the continuity
modulus inductively. For input variables (resp, constants) the
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continuity modulus is 1 (resp., 0). For a summation gate,
wf+g ≤ wf + wg, so we get a new upper bound by summing
the incoming upper bounds. For a multiplication gate,

wfg ≤ wf sup
x∈Ω

g(x) + wg sup
x∈Ω

f(x).

The supremum can also be estimated inductively in the obvious
way:

sup(f + g) ≤ sup f + sup g, sup(fg) ≤ sup f sup g.

However, this estimate loses precision very fast as the size of the
circuit grows, so in certain cases it can result in an unacceptably
forgiving system.

(2) For a specific x ∈ Ω, exceedingly imprecise supremum estimates
are not necessary, as the continuity modulus reduces to the
derivative at point x which can be computed recursively in the
obvious way:

(f + g)′(x) = f ′(x) + g′(x), (fg)′(x) = f ′(x)g(x) + f(x)g′(x).

(3) The continuity modulus can be estimated even better with the
ideas of interval analysis developed by Moore [34], Hansen [18],
and Matiyasevich [30]; see also recent surveys of the subject
[7, 11]. Application of interval analysis to this particular case,
especially in the (super)tropical case, may warrant a separate
study, so we do not go into details here and note it as an inter-
esting open problem.

In what follows we do not choose a specific approach to computing
the continuity modulus but assume that some approach is chosen, and
wf is computed at each node and propagated through the entire circuit.

2.3. Random key generation. In order to randomly generate a spe-
cific hard-to-invert function candidate, we have to generate a random
directed acyclic graph with at least n vertices of indegree zero (inputs
and field constants), m vertices of outdegree zero (outputs), and in-
ternal vertices with indegree 2 labeled by either “+” or “×”. There
exist generation models for random directed acyclic graphs, both uni-
form [31] and based on the ordered graphs model [26]. For use with our
protocols, we prefer the latter model for random ordered graph gen-
eration, especially given that arithmetic circuits are naturally random
ordered graphs. However, in order to keep the output polynomial-sized
and to control the continuity modulus we want to produce polynomi-
als of degree nO(1), and random circuits, as noted above, may have
exponential degree.



6 DIMA GRIGORIEV AND SERGEY NIKOLENKO

Therefore, we modify the generation model of [26] in order to control
the degree. Fix a number n of inputs, a number m of outputs, a degree
upper bound D, a number of constant inputs c (all constant inputs
in the circuit equal either 1 or −1, and larger constants should be
generated from them), and an upper bound on the outdegree K ≥ 2.
The indegree of each non-input vertex is 2 (all gates represent either
+ or ×), and the outdegree is generated randomly when the node is
generated. We build a random circuit node by node. Each node is
labeled by a pair (s, d), where s is one of xi, +, or ×, and d is a natural
number representing the “formal degree” of this node. The generation
proceeds as follows.

(1) Generate the graph (G,E) with n + c vertices – n with labels
(xi, 1) and c with labels (±1, 0) (the sign is chosen uniformly) –
and no edges. Choose outdegrees ki uniformly from 1..K for
each vertex and initialize ki “stubs” for each potential outgoing
edge (see [26] for a detailed discussion of these “stubs”).

(2) Until m outputs are generated:
(a) Add a new node x, G := G∪{x}, select its label uniformly

from {+,×}, select two parents y and z uniformly from the
“stubs” available at previous vertices, add the correspond-
ing edges E := E ∪ {(y, x), (z, x)}, and delete one “stub”
from y and z each.

(b) Compute the formal degree fdeg(x):

fdeg(x) =

{

max{fdeg(y), fdeg(z)}, if x is a +-vertex,

fdeg(y) + fdeg(z), if x is a ×-vertex.

(c) Compute the continuity modulus wx (see 2.2).
(d) If fdeg(x) ≥ ⌊D

2
⌋ + 1, mark x as an output and do not

generate outgoing “stubs” for it. Otherwise, generate k

outgoing “stubs”, where k is chosen uniformly from 1..K.
(3) Delete remaining “stubs” and output (G,E).

Obviously, this generation model will, with overwhelming probability,
generate m outputs of formal degree from D

2
to D in time polynomial

in n + m + c.
Note that the “formal degree” fdeg(x) is merely an upper bound on

the actual degrees of the generated polynomials; the actual degree may
be much lower due to cancellations. However, each output will have a
degree deg fi ≤ D; the worst case is a product of two gates of degree
⌊D

2
⌋.
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In what follows, we assume that there exists a polynomial-time proce-
dure Gen(n,m,D) that produces an arithmetic circuit for a polynomial
map f : Qn

C
→ Qm

C
of degrees deg fi ≤ D.

2.4. The resulting protocol. To make a precise example, let us spec-
ify a simple secret-key authentication protocol. Suppose that agent A

(Alice) wants to authenticate with a server S using her biometric data.
At the beginning of the protocol, S stores the biometric data x, and
Alice possesses her data x′, presumably close to x. The algorithm
parameters include n (dimension) and ǫ (authentication precision).

(1) A initiates the protocol and represents her biometric data as a
vector x′ ∈ Qn

C
.

(2) S randomly selects an arithmetic circuit f with n input vari-
ables as shown in 2.3 and sends a representation of this circuit
to A.

(3) A randomly selects a vector r ∈ Qn
C

and a scalar α ∈ QC (this is
analogous to random padding), computes f(r +αx′) and trans-
mits (r, α, y) for y = f(r + αx′).

(4) S computes ω, the continuity modulus at point r+αx, with any
method from Section 2.2 and checks that ||y−f(r+αx)|| ≤ ωǫ.
If so, S accepts the authentication of A.

A passive adversary in this protocol is faced with the problem of
solving a system of polynomial equations f(r + αx) = a with respect
to the unknown x for f specified as an arithmetic circuit. If a passive
adversary has observed k runs of this protocol for the same server and
agent, he faces a problem of solving a system

f 1(r1 + α1x) = a1, f 2(r2 + α2x) = a2, . . . , fk(rk + αkx) = ak.

Note that it is hard for an adversary to apply the methods of [6, 8]
because the monomials of the polynomial f are unknown, and there
are a lot of them.

It would be desirable for the server S to store only images of f , i.e., y

rather than x; this would reduce the danger of identity theft. However,
in this simple protocol it is near impossible

3. Supertropical candidates

Exact algebraic approaches to solving a system of nonlinear equa-
tions include the resultant approach and Gröbner bases. Computing
the resultant, despite recent advances [5], is impractical for large mul-
tivariate cases [24, 25]. Gröbner bases provide a more practical frame-
work [12,25], but still, the complexity of exact (symbolic) methods for
solving large systems of polynomial equations is too large.
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However, in our case it would suffice to find an approximate solu-
tion; for approximate solutions, there are also Newton’s method (the
homotopy continuation method is based on it), and optimization ap-
proaches (see, e.g., [35] that combines several of these methods). To
spoil Newton’s method, it is enough, in theory, to make the number of
equations not equal to the number of variables, and we have done so in
the previous section. However, to avoid both Newton’s method in prac-
tice and optimization approaches, one would like the system’s function
f to have many local minima; it would be even better if the function
had many kinks and/or breaks so that there would be no gradient to
follow or it would be misleading.

Both of these properties come together in tropical constructions [4,
22,33]; moreover, counterparts of symbolic methods are not known for
the tropical case. Tropical algebras are based on the tropical semiring

(also known as the min-plus algebra) which is a subset of reals with an
infinity point closed under addition, with two operations:

x ⊕ y = min(x, y), x ⊗ y = x + y.

A tropical monomial m = a⊗xi1⊗. . .⊗xin = a+xi1 +. . .+xin , 1 ≤ ij ≤
n, is simply a linear function, while a tropical polynomial p = m1⊕. . .⊕
mk = min(m1, . . . ,mk) is a minimum of several linear functions, i.e., a
concave piecewise linear function with several discontinuity regions.

Several cryptographic constructions based on tropical algebras have
been recently presented in [17]. For the purposes of continuous cryp-
tographic constructions, however, we would like to extend the tropical
semiring by one more operation, namely regular multiplication (we do
not introduce a special symbol for it and use · and juxtaposition).
We call the resulting extended semiring (A, ·,⊗,⊕), A ⊆ R ∪ {∞},
a supertropical algebra. In the supertropical algebra, a supertropical
monomial is in fact a polynomial

m(x1, . . . , xn) = xi11
1 xi12

2 . . . xi1n

n ⊗ . . . ⊗ xim1

1 xim2

2 . . . ximn

n ,

and a supertropical polynomial

p(x1, . . . , xn) = m1(x1, . . . , xn) ⊕ . . . ⊕ mk(x1, . . . , xn)

is a minimum of several polynomial functions, i.e., a piecewise polyno-
mial function which is not necessarily concave anymore and still has a
lot of discontinuity regions.

We represent a supertropical polynomial system of n variables with
a directed acyclic graph with at least n vertices of indegree zero (inputs
and field constants), m vertices of outdegree zero (outputs), and inter-
nal vertices with indegree 2 labeled by either “·”, “⊕”, or “⊗”. The
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generation protocol remains the same with the following additions: for
an ⊕-gate x with parents y and z that compute functions f and g,
respectively,

fdeg(x) = max{fdeg(y), fdeg(z)},

wf⊕g = max{wf , wg};

the multiplication and ⊗-gates (i.e., the usual addition) are treated
in the same way as their polynomial counterparts. The protocol from
Section 2.4 works in a similar fashion. The continuity modulus compu-
tation and random key generation are done similar to the algorithms
presented in subsections 2.2 and 2.3, respectively.

As for the hardness of the resulting protocol, little is known, but
there are reasons to believe that it is hard to solve systems of polyno-
mial tropical equations. In [17], it has been shown that it is NP-hard
to find a solution of a system of tropical polynomial equations. This
does not mean that there are no algorithms efficient on average, in the
generic case, or for our particular choice of key generation, but it is
usually an indicator that this is indeed a hard problem. For example,
only very recently D. Grigoriev has presented an algorithm for solv-
ing a system of linear tropical equations [14]; this problem is known
to be in NP∩co-NP, and it is suspected to have polynomial complex-
ity, but Grigoriev’s algorithm has been recently shown to require su-
perpolynomial time in the worst case [9]. In an independent result,
Akian, Gaubert, and Guterman presented several weakly polynomial
algorithms for this problem [1]. Many important invariants of trop-
ical systems (varieties) are hard to compute [27, 28, 45]. As for the
supertropical case, the outlook is even bleaker; we do not know of any
works in this direction, but it is obvious that solving a supertropical
system is at least as hard as solving a tropical system and at least as
hard as solving a polynomial system. Based on all of the above, we
recommend our supertropical candidate for use with the protocol of
Section 2.4.

4. An interactive protocol

In this section, we describe one more class of protocols that can be
implemented in a continuous fashion with polynomial and supertropical
circuits. The basic protocol relies upon the hardness of the matrix
conjugation problem. The protocol has been presented in [15]; it is an
interactive authentication scheme that goes, for an underlying matrix
ring G, as follows.



10 DIMA GRIGORIEV AND SERGEY NIKOLENKO

(1) Alice’s public key is a pair of matrices (A,X−1AX), where A ∈
G, X ∈ G; Alice’s secret key is the matrix X.

(2) For his challenge, Bob selects a random matrix B ∈ G and
a random non-invertible endomorphism ϕ of the ring G. Bob
sends B and ϕ to Alice.

(3) Alice responds with random positive integers p and q and asks
Bob to send back random nonzero constants c1, c2, and c3 so
that the new (better randomized) challenge is B′ = c1A+c2B+
c3A

pBq.
(4) Alice responds with ϕ(X−1B′X).
(5) Bob selects a random word w(x, y) (without negative expo-

nents), evaluates

M1 = w (ϕ(A), ϕ(B′)) , M2 = w
(

ϕ(X−1AX), ϕ(X−1B′X)
)

,

and computes their traces. If tr(M1) is sufficiently close to
tr(M2), Bob accepts authentication, otherwise he rejects.

In [15], Grigoriev and Shpilrain propose to use the ring of n × n

matrices over sparse truncated k-variate polynomials over a finite field
(in [15], Z11 is suggested). We propose to use the key generation process
of Section 2.3 to generate matrices over k-variate polynomials over an
infinite field F. Note that for an infinite field itself, there would be
another way for the adversary: compute the private key X from the
public key (A,C), find the space of solutions for the equation AX =
XC and sample a matrix X ′ at random; with probability 1, X ′ will be
nondegenerate. Thus, the protocol in this section would be insecure
for infinite fields. For polynomial rings, this is not a problem because
a matrix can be invertible only if the determinant of the matrix is a
constant polynomial (has degree zero), an event of probability zero.
Note also that this protocol does not work over the (super)tropical
semiring at all since the only invertible tropical matrices are monomial
matrices, i.e., products of a diagonal and a permutation matrix, which
would make the break trivial [4].

Each matrix element can be represented as an arithmetic circuit; ma-
trix products involve a linear number of additions and multiplications
and can be implemented without significantly increasing the circuit
size. The following remarks should be made about this process.

(1) In the protocol, the matrices A and B do not have to be in-
vertible, so no problems arise with its generation. The matrix
X, however, has to be invertible, and therefore we propose to
generate it as a product of elementary matrices, i.e., matrices
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that have exactly one non-zero element. The non-zero element
is generated as in Section 2.3.

(2) To generate a random endomorphism, one can generate ϕ :
xi → fi, where fi are random truncated k-variate polynomials
over F with zero constant term.

(3) To define what “sufficiently close” means on step 5 of the proto-
col, Bob uses the continuity moduli for each element of M1 and
M2 and computes ωtr(M1) and ωtr(M2) as the continuity moduli
of the corresponding sums of elements.

To break this protocol, an adversary would have to solve a system
of n2 polynomial equations given as arithmetic circuits. Note that it
would be hard even for an infinite field because the size of a linearization
grows exponentially and, as shown in [15], even for a reasonable choice
of protocol parameters the linear system becomes too large to solve.

5. Conclusion

In this paper, we have presented two hard-to-invert candidates that
share a common desirable property: they are continuous. When pre-
served in an authentication protocol, this property allows for small
changes in the secret information so that a sufficiently close authenti-
cation request (e.g., slightly modified biometrics) is still accepted. We
have also introduced supertropical algebras as a platform for crypto-
graphic protocols.

We have presented the ideas of two protocols. Further work about
these protocols should deal with their specific implementations and
tuning the parameters in order to test their properties and modify
them to be as secure and efficient in practice as possible.
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