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Abstract

We propose a new geometric approach to describe the qualitative dynam-
ics of chemical reactions networks. By this method we identify metastable
regimes, defined as low dimensional regions of the phase space close to which
the dynamics is much slower compared to the rest of the phase space. These
metastable regimes depend on the network topology and on the or-
ders of magnitude of the kinetic parameters. Benchmarking of the
method on a computational biology model repository suggests that
the number of metastable regimes is sub-exponential in the number
of variables. The dynamics of the network can be described as a sequence
of jumps from one metastable regime to another. We show that a geomet-
rically computed connectivity graph restricts the set of possible jumps. We
also provide finite state machine (Markov chain) models for such dynamic
changes. Applied to signal transduction models, our approach unravels dy-
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dmitry.grigoryev@math.univ-lille1.fr (Dima Grigoriev), weber@cs.uni-bonn.de
(Andreas Weber), nathalie.theret@univ-rennes1.fr (Nathalie Théret),
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namical and functional capacities of signalling pathways, as well as parame-
ters responsible for specificity of the pathway response. In particular, for a
model of TGFβ signalling, we find that the ratio of TGFBR2 to TGFBR1
receptors concentrations can be used to discriminate between metastable
regimes. Using expression data from the NCI60 panel of human tumor cell
lines, we show that aggressive and non-aggressive tumour cell lines function
in different metastable regimes and can be distinguished by measuring the
relative concentrations of receptors of the two types.

Keywords: Tropical Geometry, Cancer Systems Biology, Finite State
Automaton, Metastability

1. Introduction

Networks of biochemical reactions are used in computational biology as
models of signalling, metabolism, and gene regulation. For various appli-
cations it is important to understand how the dynamics of these models
depend on internal parameters, initial data and environment variables. Tra-
ditionally, the dynamics of biochemical networks is studied in the framework
of chemical kinetics that can be either deterministic (ordinary differential
equations) or stochastic (continuous time Markov processes). In order to
cope with qualitative data, boolean or multi-valued networks are used instead
of continuous models. For this reason, many efforts were focused on
coarse graining dynamical networks described by ordinary differ-
ential equations (ODE) to boolean networks (Davidich and Born-
holdt, 2008). However, in spite of their advantages, dynamical
properties of large Boolean or multi-valued networks are still dif-
ficult to study. The difficulty originates from the number of possi-
ble states, which for multi-valued networks with m levels (Boolean
networks correspond to m = 2) is mn. Although there are efficient
methods for computing attractors of Boolean networks (algorithms
based on binary decision diagrams or on satisfiability solvers can
handle synchronous networks with hundreds of variables (Dubrova
and Teslenko, 2011)), more intricate dynamical properties like the
metastable regimes discussed in this paper, ask for comprehensive
analysis of the state transition graph which is hard to perform and
moreover for analysis of the hierarchy of time scales which is even
harder for Boolean and multi-valued networks. The coarse grain-
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ing methods proposed in this paper lead to a drastic reduction of
the number of states. This offers unprecedented possibilities for
qualitative analysis of the dynamics.

In this paper we propose a new method for model analysis that uses coarse
grained descriptions of continuous dynamics as discrete automata defined on
finite states. These states will not be obtained by discretization of network
variables, but by identification of a finite number of collective modes
describing possible coordinated activity of several variables.

For large networks with ordinary differential equations dynamics and mul-
tiple timescales it is reasonable to consider the following property: a typical
trajectory consists in a succession of qualitatively different slow segments sep-
arated by faster transitions. The slow segments, generally called metastable
states or regimes, can be of several types such as attractive invariant mani-
folds (Gorban and Karlin, 2005), Milnor attractors (Rabinovich et al., 2006)
or saddle connections (Rabinovich et al., 2012). The notion of metastability
generalizes the notion of attractor. Like in the case of attractors, distant
parts of the system can have coordinated activity for metastability. The
dynamical states of large networks can be represented as points in
a high dimensional space, called phase space. In this representa-
tion each coordinate represents the concentration of a molecular
species. Coordinated activity means that many of the species con-
centrations are correlated, which can be geometrically represented
by the proximity to a lower dimension hypersurface in the phase space. A
system remains in the proximity of an attractor after entering its basin of
attraction, but can leave a metastable regime after a relatively long time
(much longer than the time needed for transitions between two dif-
ferent regimes). Fig. 1 summarizes this geometrical picture. The
term crazy-quilt was coined to describe such a patchy landscape of
multiscale networks dynamics (Gorban and Radulescu, 2008).

This phenomenon, called itinerancy received particular attention in neu-
roscience (Tsuda, 1991). Itinerant behaviour is shown by mathemat-
ical models with stable heteroclinic sequences (defined as open
chains of saddle fixed points connected by one-dimensional separa-
trices) and was also observed in transient activity of antennal lobe
neurons involved in insect olfaction or in the activity of high vo-
cal centers controlling songbird patterns (Rabinovich et al., 2006).
We believe that similar phenomena occur in molecular biology for chemical
reaction networks. A well studied example sustaining this picture is
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the biochemical and gene expression dynamics guiding the orderly
progression of the cell cycle. The main feature of this dynamics
is the sequential activation of cyclin dependent kinase/cyclin com-
plexes. More than 30 years since cyclins were discovered it is now
well agreed that the main cell cycle control events are well sepa-
rated in time. In addition, studies of periodic gene expression in
synchronized cell division of yeast show the existence of waves of
coordinate expression corresponding to different cell cycle phases
or transitions (Rustici et al., 2004). Furthermore, mathematical
models of cell cycle machinery (currently more than 150 published
models (Weis et al., 2014)) illustrate the stage dependent coor-
dination of biochemical variables. As an example, the structure
of steady state branches of the Wee1-Cdc25 module in yeast lead
Tyson et al. (2002) to consider that the exit from mitosis is a col-
lective phenomenon that can be described as a saddle-node bifur-
cation. Our analysis of such models also showed that branches and
bifurcations of states occur naturally in the context of cell cycle
modelling (Noel et al., 2012). In a more general context, geomet-
ric analysis of single-cell expression data from human and mouse
tissues showed that gene expression is structured in clusters but
also in continua of states within polyhedra whose vertices can be
understood as specialized key tasks (Korem et al., 2015). These
findings were interpreted in terms of multi-objective optimization
solutions, but could also suggest transient behaviour between spe-
cialized states. The idea of associating cell lineage commitment to
collective behaviour of gene networks variables was used in many
other contexts including cancer genomics where it was proposed
that cancer cells are trapped in some abnormal attractors (Huang
et al., 2009).

In this paper we propose a method to compute metastable
dynamical regimes and the transitions between such regimes for
chemical reaction networks. This will provide a precise meaning
to the “crazy-quilt” metaphor illustrated in Fig. 1. To this aim
we will use tropical geometry methods. Tropical methods (Litvinov,
2007; Maclagan and Sturmfels, 2015), also known as idempotent or max-plus
algebras owe their name to the fact that one of the pioneer of the field, Imre
Simon, was Brazilian. These methods found numerous applications to com-
puter science (Simon, 1988), physics (Litvinov, 2007), railway traffic (Chang,
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1998), and statistics (Pachter and Sturmfels, 2004). Recently we have applied
these methods to model order reduction (Noel et al., 2012, 2014; Radulescu
et al., 2015b; Samal et al., 2015b). In these works we have used tropical
methods to rank monomial terms into rate vectors according to their orders
of magnitude and to identify lowest order, dominant terms. When there is
only one dominant term or when the dominant terms have all the same sign,
the dynamics is fast and the system tends rapidly towards a region in phase
space where at least two dominant terms of opposite signs are equilibrated.
We have called the latter situation tropical equilibration (Noel et al., 2014;
Radulescu et al., 2015b; Samal et al., 2015b). In this paper, we use tropical
equilibrations to identify metastable dynamic regimes of chemical reaction
networks. We show that tropical equilibrations can be grouped into branches
and describe the qualitative network dynamics as a sequence of transitions
from one branch to another. The complexity of the qualitative dynamics
depends on the number of branches. Therefore, we would like to know how
this number depends on the number of chemical species. Although there are
theoretical results suggesting that the number of branches should be small,
these results are valid in the average in the probabilistic space of all the mod-
els. In order to test this property numerically we will compute the branches
for a large collection of models of the Biomodels database (Le Novere et al.,
2006). The idea to gather tropical equilibrations into branches was
introduced in our CMSB 2015 conference paper (Radulescu et al.,
2015a). As new work with respect to this paper, we propose the
benchmarking of the method on the Biomodels database. We also
investigate the biological significance of metastable states in the
context of TGFβ signalling in cancer cell lines.

The structure of the paper is as follows. In the Theory and Meth-
ods section we introduce the branches of tropical equilibrations
and discuss briefly how they can be calculated. We also propose
an algorithm to learn Markov state models defined on branches of
tropical equilibrations. The Results section has two parts. First,
we apply the computation of branches to models in the Biomod-
els database. Then, we apply the method to a model of TGFβ
signalling and show how the analysis can be used to interpret bio-
logical data.
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2. Theory and Methods

2.1. Tropical equilibrations of chemical reactions networks with polynomial
rate functions

In this section we introduce the main concepts relating geometry and
dynamics.

We consider chemical reaction networks described by mass action kinetics.
To describe such a reaction network we need the list of components,
A = {A1, ... An} and the list of reactions (the reaction mechanism):∑

i

αjiAi 

∑
k

βjkAk, (1)

where j ∈ [1, r] is the reaction number, αji and βjk are positive inte-
gers defining the reaction stoichiometry.

Then, the mass action kinetics is described by a system of dif-
ferential equations:

dxi
dt

=
r∑
j=1

kjSijx
αj , 1 ≤ i ≤ n, (2)

where kj > 0 are kinetic constants, xi are variable concentrations, Sij =
βji −α

j
i are the entries of the stoichiometric matrix, αj = (αj1, . . . , α

j
n)

are multi-indices, and xαj = x
αj
1

1 . . . xα
j
n
n .

For our reasonings, we can replace the exact values of parameters by their
orders of magnitude that are supposed to be known. Usually, orders of
magnitude are approximations of the parameters by integer powers of ten
and serve for rough comparisons. Our definition of orders of magnitude is
based on the equation kj = k̄jε

γj , where ε is a small positive number. The
exponents γj are considered to be integer or rational. For instance, the
approximation

γj = round(log(kj)/ log(ε)), (3)
produces integer exponents, whereas γj = round(d log(kj)/ log(ε))/d pro-
duces rational exponents, where round stands for the closest integer (with
half-integers rounded to even numbers) and d is a strictly positive integer.
When ε = 1/10, our definition provides the usual decimal orders.

In this study, orders of magnitude of the kinetic parameters are
supposed to be known. In contrast, species orders vary in time and have
to be computed. To this aim, the species concentrations are first represented
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by orders of magnitude defined as

aj = log(xj)/ log(ε). (4)

More precisely, one has xj = x̄jε
aj , where x̄j has zero order (unity).

Because log(ε) < 0, Eq.(4) means that species orders and concentrations are
anti-correlated (large orders mean small concentrations and vice versa).

Then, network dynamics is described by a rescaled ODE system
dx̄i
dt

=
∑
j

εµj(a)−ai k̄jSijx̄
αj , (5)

where µj(a) = γj + 〈a, αj〉 (6), and 〈, 〉 stands for the dot product.
The r.h.s. of each equation in (5) is a sum of multivariate monomials in

the concentrations. The orders µj indicate how large these monomials are
in absolute value. A monomial of order µj dominates another monomial of
order µj′ if µj < µj′ .

To set these ideas down let us use a simple chemical network example,
the Michaelis-Menten kinetics:

S + E
k1


k−1

ES
k2→ P + E,

where S,ES,E, P represent the substrate, the enzyme-substrate complex,
the enzyme and the product, respectively.

After using the two conservation laws E+ES = e0 and S+ES+P = s0,
we find

ẋ1 = −k1x1(e0 − x2) + k−1x2,

ẋ2 = k1x1(e0 − x2)− (k−1 + k2)x2.
(7)

where x1, x2 are the concentrations of S and ES respectively.
Orders of variables and parameters are as follows xi = x̄iε

ai , 1 ≤ i ≤ 2,
k1 = k̄1ε

γ1 , k−1 = k̄−1ε
γ−1 , e0 = ē0ε

γe .
The tropical equilibration problem consists in the equality of the orders of

at least two monomials one positive and another negative in the differential
equations of each species. This condition allows us to compute the concen-
tration orders defined by (4). More precisely, we want to find a vector a such
that

min
j,Sij>0

(γj + 〈a, αj〉) = min
j,Sij<0

(γj + 〈a, αj〉) (8)

The equation(8) is related to the notion of tropical hypersurface. A trop-
ical hypersurface is the set of vectors a ∈ Rn such that the minimun
minj,Sij 6=0(γj + 〈a, αj〉) is attained for at least two different indices j (with
no sign conditions). Tropical prevarieties are finite intersections of tropical
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hypersurfaces. Therefore, our tropical equilibrations are subsets of tropical
prevarieties (Maclagan and Sturmfels, 2015). The sign condition in (8) was
imposed because species concentrations are real positive numbers. A sum
of positive monomials can not be zero for positive real values of
the variables.

The system (8) can be seen as a system of equations in min-plus algebra
(also known as tropical semiring), where multiplication ⊗ is the real num-
bers addition x ⊗ y = x + y and the addition ⊕ is the minimum operation
x ⊕ y = min(x, y). In order to find the solutions of such system we can
explore combinatorially trees of solutions resulting from various choices of
minimal terms and write down inequations for each situation. Because a
set of inequations define a polyhedron, the set of tropical equilibration so-
lutions forms a polyhedron in Rn. As a matter of fact, computing tropical
equilibrations from the orders of magnitude of the model parameters is a
NP-complete problem (Theobald, 2006) and brute force calculation by ex-
ploration of combinatorics has exponential complexity. However, methods
based on the Newton polytope (Samal et al., 2014) or constraint logic pro-
gramming (Soliman et al., 2014) exploit the sparseness and redundancy of
the system and reduce the combinatorics and the time to compute tropical
solutions.

The tropical equilibration equations for the Michaelis-Menten example
are obtained by equating minimal orders of positive monomials with minimal
orders of negative monomials in (7):

γ1 + γe + a1 = min(γ1 + a1, γ−1) + a2, (9)

γ1 + γe + a1 = min(γ1 + a1,min(γ−1, γ2)) + a2. (10)

Species timescales. The timescale of a variable xi is given by 1
xi

dxi
dt

= 1
x̄i

dx̄i
dt

whose order is
νi = min{µj|Sij 6= 0} − ai. (11)

The order νi indicates how fast is the variable xi (if νi′ < νi then xi′ is faster
than xi) .

Partial tropical equilibrations. It is useful to extend the tropical equili-
bration problem to partial equilibrations, that means solving (8) only for a
subset of species. This is justified by the fact that slow species do not need
to be equilibrated. In order to have a self-consistent calculation we compute
the species timescales by (11). A partial equilibration is consistent if νi < ν
for all non-equilibrated species i. ν > 0 is an arbitrarily chosen threshold
indicating the timescale of interest.
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Tropical equilibrations, slow invariant manifolds and metastable dynamic
regimes. In dissipative systems, fast variables relax rapidly to some low di-
mensional attractive manifold called invariant manifold (Gorban and Karlin,
2005) that carries the slow mode dynamics. A projection of dynamic equa-
tions onto this manifold provides the reduced dynamics (Maas and Pope,
1992). This simple picture can be complexified to cope with hierarchies
of invariant manifolds and with phenomena such as transverse instability,
excitability and itineracy. Firstly, the relaxation towards an attractor can
have several stages, each with its own invariant manifold. During relax-
ation towards the attractor, invariant manifolds are usually embedded one
into another (there is a decrease of dimensionality) (Chiavazzo and Karlin,
2011). Secondly, invariant manifolds can lose local stability, which allow the
trajectories to perform large phase space excursions before returning in a
different place on the same invariant manifold or on a different one (Haller
and Sapsis, 2010). We showed elsewhere that tropical equilibrations can be
used to approximate invariant manifolds for systems of polynomial differ-
ential equations (Noel et al., 2012, 2014; Radulescu et al., 2015b). Indeed,
tropical equilibration are defined by the cancelling out of dominant forces
acting on the system. The remaining weak non-compensated forces ensure
the slow dynamics on the invariant manifold. Tropical equilibrations are thus
different from steady states, in that there is a slow dynamics. In this paper
we will use them as proxies for metastable dynamic regimes.

More precisely, let us assume that species timescales (defined by Eq.(11))
satisfy the relation ν1 ≤ ν2 ≤ . . . ≤ νn and that not all the timescales are
the same, i.e. there is m < n such that νm+1 − νm > 0. Then, two groups of
variables have separated timescales. The variables Xr = (x1, x2, . . . , xm) are
fast (change significantly on timescales of order of magnitude ε−νm or shorter.
The remaining variables Xs = (xm+1, xm+2, . . . , xn) are much slower (have
little variation on timescales of order of magnitude ε−νm). The metastable
regime means that fast variables have reached quasi-steady state values on a
low dimensional hypersurface of the phase space.

Branches of tropical equilibrations and connectivity graph. For each equa-
tion i, let us define

Mi(a) = argmin
j

(µj(a), Sij > 0) = argmin
j

(µj(a), Sij < 0), (12)

in other words Mi denotes the set of monomials having the same minimal
order µi. We call tropically truncated system the system obtained by pruning
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the system (5), i.e. by keeping only the dominating monomials.

dx̄i
dt

= εµi−ai(
∑

j∈Mi(a)

k̄jνjix̄
αj), (13)

The tropical truncated system is uniquely determined by the index sets
Mi(a), therefore by the tropical equilibration a. Reciprocally, two tropi-
cal equilibrations can have the same index sets Mi(a) and truncated sys-
tems. We say that two tropical equilibrations a1, a2 are equivalent iff
Mi(a1) = Mi(a2), for all i. Equivalence classes of tropical equilibrations are
called branches. A branch B with an index set Mi is minimal if M ′

i ⊂Mi for
all i where M ′

i is the index set of the branch B′ implies B′ = B or B′ = ∅.
Closures of equilibration branches are defined by a finite set of linear inequal-
ities, which means that they are polyhedral complexes. Minimal branches
correspond to maximal dimension faces of the polyhedral complex. The in-
cidence relations between the maximal dimension faces (n − 1 dimensional
faces, where n is the number of variables) of the polyhedral complex define
the connectivity graph. More precisely, minimal branches are the vertices of
this graph. Two minimal branches are connected if the corresponding faces
of the polyhedral complex share a n − 2 dimensional face. In terms of in-
dex sets, two minimal branches with index sets M and M ′ are connected if
there is an index set M ′′ of an existing non-minimal branch such that
M ′

i ⊂M ′′
i and Mi ⊂M ′′

i for all i.
Returning to the Michaelis-Menten example let us analyse the quasi-

equilibrium situation (Meiske, 1978; Segel, 1988; Segel and Slemrod, 1989;
Gorban et al., 2010; Gorban and Shahzad, 2011) when the reaction constant
k−1 is much faster than the reaction constant k2. In terms of orders, this
condition reads γ−1 < γ2. In this case, the two tropical equilibration equa-
tions (9), (10) are identical, because min(γ−1, γ2) = γ−1. Let γm = γ−1 − γ1

denote the order of the parameter Km = k−1/k1. There are two branches of
solutions of (9), namely a2 = γe, a1 ≤ γm and a2 = a1 + γe − γm, a1 ≥ γm
corresponding to min(γ1 + a1, γ−1) = γ1 + a1 and to min(γ1 + a1, γ−1) = γ−1,
respectively. Using the relation between orders and concentrations we iden-
tify the first branch of solutions with the saturation regime x2 ≈ e0 (the free
enzyme is negligible) and x1 >> Km (the substrate has large concentration)
and the second branch with the linear regime x2 << e0 (the concentration
of the attached enzyme is negligible) and x1 << Km (the substrate has low
concentration).

The fast truncated system (obtained after removing all dominated mono-
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mials from (7)) reads

ẋ1 = −k1x1e0 + k−1x2,

ẋ2 = k1x1e0 − k−1x2,
(14)

for the linear regime branch and

ẋ1 = −k1x1(e0 − x2),

ẋ2 = k1x1(e0 − x2),
(15)

for the saturated regime branch.

2.2. Learning a finite state machine from a nonlinear biochemical network

Once the metastable regimes are computed, one can try to
reconstruct the transitions happening between these regimes as
illustrated in Fig. 1. By abstraction, we can consider that the
metastable regimes (patches in the “crazy-quilt” picture in Fig.1)
are represented as nodes of a graph. Two nodes in the graph are
connected if and only if there is at least one transition from one
regime to the other. We call this abstraction a finite state ma-
chine, because the number of regimes is finite. However, given
one regime, there may be several different possibilities to leave
this regime, each leading to a different metastable regime. Which
transition is chosen depends on the initial data. Thus, although the
initial model is deterministic the finite state machine abstraction is
generally stochastic. From one node can leave several transitions
each one having a different probability per unit time. Because
the initial system spends a long time on the metastable regime
and little time on the transitions, it is natural to expect that the
memory of previous transitions is lost and that the stochastic pro-
cess is Markovian. In the following we propose a method to learn
this stochastic, Markov process, from many simulations of the full
model, each one starting from a different, randomly chosen, initial
state. The method is similar to the Markov state models (Bowman
et al., 2009) used to coarse grain phase space for protein folding
molecular dynamics. Contrary to energy landscape in protein fold-
ing, our “crazy-quilt” is not that rugged as it consists in a small
number of patches. Therefore, standard Monte Carlo procedures
function well in our case.

In order to construct the finite state machine, we first need a way
to map the phase space of the continuous model to a finite set of branches.
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First, we compute the branches of tropical solutions as subsets of the euclid-
ian space Rn where n is the number of variables. We are using the algorithm
based on constraint solving introduced by (Soliman et al., 2014) to ob-
tain all rational tropical equilibration solutions a = (a1, a2, . . . , an) within
a box |ai| < b, b > 0 and with denominators smaller than a fixed value d,
ai = pi/q, pi, q are positive integers, q < d. The output of the algorithm is a
matrix containing all the tropical equilibrations within the defined bounds. A
post-processing treatment is applied to this output consisting in computing
truncated systems, index sets, and minimal branches. Tropical equilibra-
tions minimal branches are stored as matrices A1, A2, . . . , Ab, whose lines are
tropical solutions within the same branch. Here b is the number of minimal
branches.

Our method computes numerical approximations of the tropical prevari-
ety. Given a value of ε, this approximation is better when the denominator
bound d is high. At fixed d, the dependence of the precision on ε follows
more intricate rules dictated by Diophantine approximations. For this rea-
son, we systematically test that the number b and the truncated systems
corresponding to minimal branches are robust when changing the value of ε.

Trajectories x(t) = (x1(t), . . . , xn(t)) of the smooth dynamical
system are generated with different initial conditions, chosen uni-
formly. For each time t, we compute the Euclidian distance di(t) =
miny∈Ai

‖y − logε(x(t))‖ , where ‖∗‖ denotes the Euclidean norm and
logε(x) = (log x1/ log(ε), . . . , log xn/ log(ε)). This distance classifies all
points of the trajectory as belonging to a tropical minimal branch. The result
is a symbolic trajectory s1, s2, . . . where the symbols si belong to the set of
minimal branches. In order to include the possibility of transition regions
we include an unique symbol t to represent the situations when the minimal
distance is larger than a fixed threshold. The choice of this threshold
is robust (see discussion in Section 3.2 and Fig.4). We also store the
residence times τ1, τ2, . . . that represent the time spent in each of the state.

Special care should be taken when the model has a number of
conservations laws. A conservation law is a linear combination of
species concentrations that is kept constant during the dynamics,
in other words an equation of the type ci1x1 + ci2x2 + . . .+ cinxn = Ki.
We suppose that the conservation laws are semi-positive (all ci are
positive or nought). Then, several such equations together with
the positivity conditions xi ≥ 0 define a polyhedron. We want to
pick initial conditions for the trajectories x(t) uniformly in such a
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polyhedron. To start, each component j can take its initial concen-
tration in the range [0,min(Ki/c

i
j, such that cij > 0)], but as we set

the initial concentration of one component, the range available for
components which are involved in the same constraint is reduced.
The last component picked for each constraint must take the maxi-
mal value. Thus the sampling depends on the order in which initial
concentrations are selected. To avoid introducing a bias related to
this order, a random ordering of components is selected for each
random initial state. Furthermore, if a component is picked as last
in a constraint, its value is enforced (it must take all what remains).
Conflicts may arise if this component is part of other constraints
as well. To avoid this, we ensure that the last assigned item is spe-
cific to the constraint (not involved in any other constraint). This
step may create problems with highly interdependent sets of con-
straints or constraints with less than two specific components. For
the models considered here, this sampling works well as constraints
have more specific components than overlapping ones.

By this method we generate N symbolic trajectories of length M
defining the vectors of successive states (sj1, s

j
2, . . . , s

j
M) and residence

times (τ j1 , τ
j
2 , . . . , τ

j
M), where j ∈ [1, N ].

The stochastic automaton is learned as a homogenous, finite
states, continuous time Markov process, defined by the lifetime
(mean sojourn time) of each state Ti, 1 ≤ i ≤ b and by the tran-
sition probabilities pi,j from a state i to another state j. We use
the following estimators for the lifetimes and for the transition
probabilities:

Ti = (
N∑
n=1

M∑
m=1

τn1snm=i)/(
N∑
n=1

M∑
m=1

1snm=i) (16)

pi,j = (
N∑
n=1

M∑
m=1

1snm=i,snm+1=j)/(
N∑
n=1

M∑
m=1

1snm=i), i 6= j, (17)

where 1C stands for the indicator function equal to one if condition
C is fulfilled or else equal to nought.
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3. Results and discussion

3.1. Benchmarking metastable branch computation on Biomodels database

Data source. For benchmarking, we selected 36 models from the r25 version
of Biomodels database (Le Novere et al., 2006). We have considered all
the models that have polynomial vector field (mass action kinetics)
and satisfy some technical constraints imposed by our Systems Bi-
ology Markup Language (SBML) parser (no function definitions,
for instance). Models with zero valued parameters or which did
not have at least one positive and one negative monomial per ODE
were also filtered out (there were two of those).

Computation of minimal branches. The model SBML files are parsed and
the polynomial vector fields are extracted. Thereafter, the conservation laws
(that are the sum of the variables whose total concentration is invariant) are
computed. The vector field along with the conservation laws are the input
to an unpublished version of the tropical geometry based algorithm by
Samal et al. (2015a) to compute the minimal branches. It should be noted
here that due to the conservation laws the number of equations may exceed
the number of chemical species.

According to the Eq.(8) and to the geometric interpretation of tropical
equilibrations from Sect. 2.1 the tropical solutions are either isolated points
or bounded or unbounded polyhedra. Changing the parameter ε is just a
way to approximate the position of these points and polyhedra by lattices
or in other words by integer coefficients vectors. Finding the value of ε that
provides the best approximation is a complicated problem in Diophantine
approximation. For that reason, we preferred an experimental approach con-
sisting in choosing several values of ε and checking the robustness of the
results.

A summary of the analysis is presented in Table 1 with seven different
choices for ε values (we wanted to have orders of magnitude close to decimal
ones and to avoid commensurability between different values of ε; the choice
1/5, 1/7, 1/9, 1/11, 1/17, 1/19, 1/23 seemed good enough for this purpose).
In addition, in Fig. 2 we plot the number of minimal branches versus the
number of equations in the model. As can be noticed, this number is much
lower than the number of states of a Boolean network with the same num-
ber of variables, which illustrates the advantage of our coarse graining with
respect to other methods that discretize the values of the variables
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in order to obtain Boolean or multi-value networks (Davidich and
Bornholdt, 2008).

The complete list of models and the corresponding statistics is
provided as Supplementary File 1.

There are a few theoretical bounds for the number of tropical
branches and metastable regimes. For monomolecular networks
(linear differential equations) there can be at most one branch of
full tropical equilibrations. However, if we allow that slow variables
are not equilibrated in metastable regimes (cf. the notion of par-
tial equilibration in Section 2.1) we showed elsewhere (Radulescu
et al., 2015a) that there can be more than one metastable regime,
but less than n, where n is the number of species. For nonlinear
networks, one upper bound can be obtained by the tropical Bézout
theorem (Richter-Gebert et al., 2005), which says that the number
of tropical equilibrations is exponential in n. However, our numer-
ical experiments show that this bound is largely overestimated.

3.2. Biological significance of metastable branches for TGF-β signalling

As a case study we consider a nonlinear model of dynamic regulation of
Transforming Growth Factor beta TGF-β signalling pathway that we have
recently described by Andrieux et al. (2012). TGF-β signalling occurs
through association of the ligand with TGF-beta type I (TGFBR1)
and type II (TGFBR2) serine/threonine kinase receptors. TGF-β
binding to TGFBR2 induces recruitment and phosphorylation of TGFBR1,
which in turn transmits the signal through phosphorylation of SMAD2 tran-
scription factor. Once phosphorylated, the SMAD2 hetero-dimerizes with
SMAD4 and the complexes then migrate to the nucleus, where they regulate
the transcription of TGF-β-target genes. In that context, the Transcriptional
Intermediary Factor 1, TIF1-γ have been shown to function either as a tran-
scriptional repressor or as an alternative transcription factor that promote
TGF-β signalling. The apparent controversial effect of TIF1-γ on regulation
of the SMAD-dependent TGF-β signalling was solved by a model integrating
a ternary complex associating TIF1-γ with SMAD2 and SMAD4 complexes.
This model has a dynamics defined by n = 18 polynomial differential equa-
tions and 25 biochemical reactions (the full set of ordinary differential
equations can be found in the Appendix 1, the reaction scheme can
be found in by (Andrieux et al., 2012)) or in the SBML model that
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we provide as Supplementary File 2. The computation of the tropi-
cal equilibrations for this model shows that there are 9 minimal branches of
full equilibrations (in these tropical solutions all variables are equilibrated).
The connectivity graph of these branches (defined in Section 2.1) and
the learned finite-state automaton (obtained with the method of Sec-
tion 2.2) are shown in Fig. 3. The Table2 illustrates the convergence
of the estimated transition probabilities when N , the number of
Monte-Carlo samples, is increased. In order to illustrate the ro-
bustness of the classification of the states in the trajectories for
each branch Bi, i ∈ [1, 9] we computed the distribution of probabil-
ity of Euclidian distances between randomly chosen states of the
model, compatible with the conservation laws, and the branches.
In Fig.4 these distributions are compared with the distribution of
minimal distances used to classify states on the model’s trajecto-
ries. The latter distances are smaller and clearly separated from
the random states distances.

The transition probabilities of the automaton are coarse grained proper-
ties of the statistical ensemble of trajectories for different initial conditions
(cf. Section 2.1). Given a state and a minimal branch close to it, it will de-
pend on the actual trajectory to which other branch the system will be close
to next. However, when initial data and the full trajectory are not known,
the automaton will provide estimates of where we go next and with which
probability. For the example studied and for nominal parameter values, the
branch B1 is a globally attractive sink: starting from anywhere, the automa-
ton will reach B1 with probability one. This branch contains the unique
stable steady state of the initial model. This calculation illustrates the basic
properties of minimal branches of equilibrations. Trajectories of the dynam-
ical system can be decomposed into segments that remain close to minimal
branches. Furthermore, all the observed transitions between branches are
contained in the connectivity graph resulting from the polyhedral complex
of the tropical equilibration branches. This result proves the solidity of
our tropical approach, because the geometric connectivity was not
enforced to constrain the possible transitions; the fact that it is re-
ally the case emerges from the analysis of the trajectories. A change
of parameter values can have several consequences: change the connectivity
graph, change of the probabilities of transitions and change of the attractor
position.

In order to understand the significance of the minimal branches and their
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relation with dynamic and physiologic properties of the network we have
performed an analytic study of the tropical equilibration solutions. We show
in the following (see also the Appendix 2) that the most important cause
of the multiplicity of branches is the dynamics of the TGFBR1 and TGFBR2
receptors whose internalization and trafficking regulates TGF-β signalling
(Le Roy and Wrana, 2005). These two receptors belong to a ligand-receptor
module of 6 variables and 12 reactions that is decoupled from the rest of the
network. More precisely, the ligand-receptor module activates the SMAD
transcription factors but receives no feed-back (see Fig. 5) and can be studied
independently from the rest of the variables. This module has been used with
little variation in many models of TGF-β signalling (Vilar et al., 2006; Zi and
Klipp, 2007; Chung et al., 2009).

We show in the Appendix 2 that the tropical equilibration of the
ligand-receptor module form a two dimensional polyhedron conveniently
parametrized by the concentration orders a12 and a13 of the receptors
TGFBR1 and TGFBR2 respectively. The branches can be calculated an-
alytically (Eqs.(25) and (29) in Appendix 2). For the nominal values of
the model parameters one of these branches is empty and the three remaining
branches correspond to B1, B2 and B3. The two other triplets of branches
(B4, B5, B6) and (B7, B8, B9) correspond to the same mutual relations of vari-
ables in the ligand-receptor module. They are distinguished by the values of
the remaining variables (the transcription factors module). Our computation
of the automaton showed that the branches Bi, i ∈ [4, 9] are practically in-
accessible from states in branches Bi, i ∈ [1, 3], therefore we will not discuss
them here.

We have used symbolic computation to determine the steady states of
the ligand-receptor module. This module has an unique steady state corre-
sponding to concentrations orders that can be placed inside the polyhedron
of tropical solutions using the Eq.(4). The minimal branch containing the
steady state is a sink of the coarse grained dynamics. The polyhedron of
tropical solutions, its decomposition into minimal branches, and the position
of the steady states inside it, depend on model parameters. Among model
parameters two are important: k18 and k19 representing the production rate
of the protein receptors TGFBR1 and TGFBR2, respectively. Consequently,
these two parameters are correlated to gene expression and account for pos-
sible variability in mRNA levels of the two types of receptors. Fig. 6 shows
the tropical equilibration branches of the ligand-receptor modules for vari-
ous parameters k19 corresponding to various TGFBR2 expression levels. For
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the nominal parameters used in the model, the branch B1 is a sink i.e.
an attractor (the coarse-grained dynamics shows that the probability to
leave this state is negligible), and the branches B2 and B3 are transient
i.e. metastable. This means that starting in the branch B2 or B3 the
receptor module will reach the branch B1 after a certain time and will re-
main there. However, over-expression of TGFBR2 modelled by changing the
parameter k19 and illustrated in the Fig. 6a-c can tilt the balance in favor
of large concentrations of receptor of type 2 corresponding to branches B2,
B3 of tropical solutions in the model. Interestingly, this change occurs by a
displacement of the position of the steady state from B1 to B2 and B3 and
not by a change of the concentration values allowed for these branches.

While Vilar et al. (2006) have speculated that the ligand-receptor mod-
ule is responsible for the versatility of the response of the TGF-β pathway, no
experimental evidence support this hypothesis. Here, we now demonstrate
that there are correlations between dynamical specificity characterized by
membership to a particular branch of equilibration and cell phenotype. We
illustrate such a comparison for the NCI-60 panel of cancer cell lines, a well
established tool for tumor comparison and drug screening provided by the
National Cancer Institute. Based on microarray analysis, these cell lines
were found to cluster into two classes: epithelium-like (non-aggressive) and
mesenchymal-like (aggressive) cell lines (Ross et al., 2000).

Using the global proteome analysis of this NCI-60 panel (Gholami et al.,
2013) we extracted the protein expression levels of TGFBR1 and TGFBR2
and showed that mesenchymal-like (aggressive) cell lines can be distin-
guished from epithelial-like (non-aggressive) cell lines by the increased level
of TGFBR2 (Fig 6d.

The proteome data was compared to membership to tropical branches.
According to Eq.(4) there is a linear relation between opposite concentration
orders −ai and logarithms of concentrations, −ai ≈ b log(xi), i = 1, . . . , n
(b = −1/ log(ε) > 0). We used opposite concentration orders −ai instead of
ai because they change in the same direction as the concentrations (small op-
posite orders mean small concentrations and large opposite orders mean large
concentrations). Therefore, in Fig 6a-c the relation TGFBR1 = TGFBR2 is
verified on the bissector of the first quadrant, whereas TGFBR2 > TGFBR1
and TGFBR2 < TGFBR1 are valid above and below the bissector, respec-
tively. When compared the proteome results with the membership to a par-
ticular branch of equilibration, we found that the distribution of concentra-
tion orders in branches place non-aggressive cancer cell lines in a range cov-
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ered by branch 1, whereas the aggressive cancer cell lines are placed in a range
covered by branches 2 and 3 (Fig 6d). Indeed, the ratio TGFBR2/TGFBR1
is small for the branch B1 and in non-aggressive cancer cell lines, and is much
larger for B2, B3 and in aggressive cell lines.

Furthermore, we validated the association of up-regulation of TGFBR2
with mesenchymal-like appearance in an independent dataset of 51 breast
cancer cell lines (Neve et al., 2006). As we have recently described (Ruff et al.,
2015), comparative analyses between Basal B cell lines with mesenchymal-
like phenotype and Basal A and Luminal cell lines with epithelial morphol-
ogy permitted to identify more than 600 differentially expressed genes that
include TGFBR2. Gene expression data were now extracted for TGFBR1
and TGFBR2 and we showed that TGFBR2 gene expression is significantly
induced in mesenchymal-like cell lines while TGFBR1 did not vary (Supple-
mentary Fig.1). In accordance with our observation, Parker et al. (Parker
et al., 2007) have previously reported the association of low TGFBR2 ex-
pression with a lower aggressive tumor phenotype.

In summary, the tropical geometry analysis of the TGFβ sig-
nalling model first shows that the multiplicity of branches is due
to the dynamics of TGFβ receptors. The more important pa-
rameters in this ligand-receptor module are the concentration of
TGFBR1 and TGFBR2 and three main tropical branches are dis-
tinguished by the value of TGFBR2/TGFBR1 ratio (small in B1,
intermediate in B2, large in B3). Importantly, we showed that
the TGFBR2/TGFBR1 ratio is associated with tumor cell lines
phenotype (high and low TGFBR2/TGFBR1 ratio for aggressive
and non aggressive cell lines, respectively). Together these data
demonstrated that tropical geometry analysis permits to discrim-
inate between cellular states based on the evaluation of TGFβ re-
ceptors concentration. The importance of such up-regulation of
TGFBR2 in aggressive cancer cell lines might be related to its
implication in SMAD-independent signalling that includes PI3K-
Akt, JNK, p38MAPK and Rho-like GTPases and which highly con-
tribute to epithelial-mesenchymal transition (Zhang, 2009; Mous-
takas and Heldin, 2012).

Together these observations suggest that metastable regimes defined by
branches of minimal tropical equilibrations are associated with cell pheno-
types. The idea of associating tropical minimal branches with clinical phe-
notype is similar to the idea of cancer attractors (Huang et al., 2009) where
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the idea is that cancer cells are trapped in some abnormal attractors.

4. Conclusion

We have presented a method to coarse grain the dynamics of a smooth
biochemical reaction network to a discrete symbolic dynamics of a finite
state automaton. The coarse graining was obtained using a tropical geome-
try approach to compute the states. These states correspond to metastable
dynamic regimes and to relatively slow segments of the system trajectories.
The coarse grained model can be used for studying statistical properties of
biochemical networks such as occurrence and stability of temporal patterns,
recurrence, periodicity and attainability problems.

Further improvement and evolution is possible for this approach. First,
the coarse graining can be performed in a hierarchical way. For the nonlinear
example studied in the paper we computed only the full tropical equilibra-
tions that stand for the lowest order in the hierarchy (coarsest model). As
discussed in Section 2.1 we can also consider partial equilibrations when slow
variables are not equilibrated and thus refine the automaton. Generally,
there are more partial equilibrations than total equilibrations and learning
an automaton on the augmented state set will produce refinements. Sec-
ond, and most importantly, the dynamics within a branch could be also
described. As shown elsewhere, reductions of the systems of ordinary differ-
ential equations are valid locally close to tropical equilibrations (Noel et al.,
2012, 2014; Radulescu et al., 2015b; Samal et al., 2015b). Furthermore, the
same reduction is valid for all the equilibrations in a branch. This suggests
that a hybrid approach, combining reduced ODE dynamics within branch
with discrete transitions between branches is feasible. The transitions can be
autonomously and deterministically commanded by crossing the boundaries
between branches that are perfectly determined by our approach.

The most important result of this paper is the extension of the notion of
attractor to metastable regimes of chemical reaction networks and the propo-
sition of a practical recipe to compute metastability. Metastable regimes cor-
respond to low-dimensional hypersurfaces of the phase space, along which the
dynamics is relatively slower. Most likely, metastable regimes have biological
importance because the network spends most of its time in these states. The
itinerancy of the network, described as the possibility of transitions from one
metastable regime to another is paramount to the way neural networks com-
pute, retrieve and use information (Tsuda, 1991) and can have similar role
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in biochemical networks. Our approach based on tropical geometry provides
an algorithmic method to test these ideas further. The extension of this
approach i.e. making use of statistical methods to compute the association
of the tropical minimal branches with clinical phenotypes based on “-omics”
data remains a topic of future research.
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G., Hayles, J., Brazma, A., Nurse, P., Bähler, J., 2004. Periodic
gene expression program of the fission yeast cell cycle. Nature
Genetics 36 (8), 809–817.
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Appendix 1: Description of the TGFb model used in this paper.

The model is described by the following system of differential equations
dx1

dt
= k2x2 − k1x1 − k16x1x11

dx2

dt
= k1x1 − k2x2 + k17k34x6

dx3

dt
= k3x4 − k3x3 + k7x7 + k33k37x18 − k6x3x5

dx4

dt
= k3x3 − k3x4 + k9x8 − k8x4x6

dx5

dt
= k5x6 − k4x5 + k7x7 + 2k11x9 − 2k10x

2
5 − k6x3x5 + k16x1x11

dx6

dt
= k4x5 − k5x6 + k9x8 + 2k13x10 − 2k12x

2
6 − k17k34x6 + k31k36x8 − k8x4x6

dx7

dt
= k6x3x5 − x7(k7 + k14)

dx8

dt
= k14x7 − k9x8 − k31k36x8 + k8x4x6

dx9

dt
= k10x

2
5 − x9(k11 + k15)

dx10

dt
= k15x9 − k13x10 + k12x

2
6

dx11

dt
= k23x14 − k30x11

dx12

dt
= k18 − x12(k20 + k26) + k30x11 + k27x15 − k22k35x12x13

dx13

dt
= k19 − x13(k21 + k28) + k30x11 + k29x16 − k22k35x12x13

dx14

dt
= k22k35x12x13 − x14(k23 + k24 + k25)

dx15

dt
= k26x12 − k27x15

dx16

dt
= k28x13 − k29x16

dx17

dt
= k31k36x8 − k32x17

dx18

dt
= k32x17 − k33k37x18 (18)
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These variables are as follows:

• Receptors on plasma membrane: x12 = RI (receptor 1), x13 = RII
(receptor 2), x14 = LR (ligand-receptor complex).

• Receptors in the endosome: x11 = LRe, x15 = RIe, x16 = RIIe.

• Transcription factors and complexes in cytosol: x1 = S2c, x3 = S4c,
x5 = pS2c, x7 = pS24c, x9 = pS22c, x18 = S4ubc.

• Transcription factors and complexes in the nucleus: x2 = S2n, x4 =
S4n, x6 = pS2n, x8 = pS24n, x10 = pS22n, x17 = S4ubn.

Appendix 2: Calculation of tropical equilibration branches for the
ligand-receptor module.

Tropical equilibration solutions for the variables x11,x12, x13, x14, x15, x16

(the submodel in Fig. 5) can be computed independently from the rest of
the variables of the TGFβ model. The ordinary differential equations for
these variables form a subsystem that is decoupled (receives no feed-back)
from the rest of the equations.

We can reduce the system of 6 tropical equations to a simplified system
of 3 tropical equations using the following two general properties.

Property 4.1 (binomial species). Y is a binomial species if the ordinary
differential equation defining its rate of variation contains only one positive
monomial term and only one negative monomial term

dY

dt
= M1(X)Y n1 −M2(X)Y n2 ,

where X denotes the other variables. We further assume that n1 < n2. Then,
the species Y can be eliminated and the resulting simplified tropical system has
the same tropical equilibration solutions as the full system. The simplification
is performed by eliminating the equation for Y and replacing everywhere Y
by (M1/M2)1/(n2−n1).

Proof of Property 4.1. The proof follows from the fact that the tropical
equation for the order a of Y has the unique solution a = 1

(n2−n1)
(µ1 − µ2).
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Property 4.2 (dominated first order reactions). If a species Y is con-
sumed by several first order reactions of kinetic constants k1, k2, . . . , kr and if
γ1 ≤ γ2 ≤ . . . ≤ γp < γp+1 ≤ γp+2 ≤ . . . ≤ γr, then the reactions kp+1, . . . , kr
can be eliminated and the resulting simplified tropical system has the same
tropical equilibration solutions as the full system.

Proof of Property 4.2. The proof follows from the following obvious
property of the min operation min(γ1, . . . , γp, . . . , γr) = min(γ1, . . . , γp).

Using γ26 < γ20, γ28 < γ21 (a condition satisfied by the nominal model
parameters and meaning that internalization is more rapid than degradation
for both receptors 1 and 2) and the Properties 4.1,4.2 we can justify the
reduction illustrated in Fig. 7. Because the reduced model has the same
tropical solutions as the full, larger model, it is enough to solve the tropical
equilibration problem for the reduced model. This reads

min(γ18, a14 + γ23, a12 + γ26) = min(a12 + a13 + γ22 + γ35, a12 + γ26)(19)

min(γ19, a14 + γ23, a13 + γ28) = min(a12 + a13 + γ22 + γ35, γ28 + a13)(20)

min(γ24, γ25, γ23) + a14 = a12 + a13 + γ22 + γ35 (21)

Suppose now that the following condition is true

min(γ24, γ25, γ23) = γ23. (22)

This condition is satisfied by the nominal parameters and, like the previous
condition, means that receptors have relatively large life-times. Then from
(21) we got a14 = a12 + a13 + γ22 + γ35 − γ23 and the equations (19),(20)
become

min(γ18, a14 + γ23, a12 + γ26) = min(a14 + γ23, a12 + γ26) (23)

min(γ19, a14 + γ23, a13 + γ28) = min(a14 + γ23, a13 + γ28) (24)

The solutions of (23), (24) can be easily found and form the following poly-
hedron

({a12 + a13 + γ22 + γ35 ≤ γ18} ∪ {γ26 + a12 ≤ γ18}) ∩
({a12 + a13 + γ22 + γ35 ≤ γ19} ∪ {γ28 + a13 ≤ γ19}),

a14 = a12 + a13 + γ22 + γ35 − γ23. (25)

The orders of the remaining variables can be found as indicated in Prop. 4.1:

a15 = a12 + γ26 − γ27, (26)

a16 = a13 + γ28 − γ29, (27)

a11 = a12 + a13 + γ22 + γ35 − γ30. (28)
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The polyhedron of tropical solutions defined by Eq.(25) can be partitioned
into minimal branches (also polyhedra). This can be done by checking which
term is dominant in the ordinary differential equations for the variables x12,
x13 and x14 (see Eqs. (18)). The result is that there are at most four minimal
branches defined by one of the conditions

{a12 + γ26 < a12 + a13 + γ22 + γ35} ∩ {a13 + γ28 < a12 + a13 + γ22 + γ35}
{a12 + γ26 < a12 + a13 + γ22 + γ35} ∩ {a13 + γ28 > a12 + a13 + γ22 + γ35}
{a12 + γ26 > a12 + a13 + γ22 + γ35} ∩ {a13 + γ28 < a12 + a13 + γ22 + γ35}
{a12 + γ26 > a12 + a13 + γ22 + γ35} ∩ {a13 + γ28 > a12 + a13 + γ22 + γ35}(29)
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Supplementary material captions.

Supplementary File 1. The complete list of models from the Biomodels
database with the results of the tropical branches calculations.

Supplementary File 2. SBML version of the TGFβ model used in this
study.

Supplementary Fig. 1. Gene expression levels for TGFBR2 and TGFBR1
in breast cancer cell lines from (Neve et al. 2006).
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Table 1: Summary of analysis on Biomodels database. The benchmarked models have a
number of dimensions (i.e. number of variables along with number of conservation laws)
ranging from 2 to 41. Model BIOMD0000000289 has tropical branches at ε value 1/5, 1/7,
1/9, 1/11 but none at 1/17, 1/19, 1/23.

ε
value

Total
mod-
els
con-
sidered

Models
without
tropical
branches

Models
with
tropical
branches

Average
running
time (in
secs)

Average
num-
ber of
minimal
branches

Min
num-
ber of
minimal
branches

Max
num-
ber of
minimal
branches

1/5 36 0 36 200.76 15.08 1 423
1/7 36 0 36 177.01 14.41 1 406
1/9 36 0 36 195.01 13.02 1 340
1/11 36 0 36 169.59 12.36 1 322
1/17 36 1 35 175.56 11.02 0 287
1/19 36 1 35 187.42 11.08 0 287
1/23 36 1 35 184.80 11.08 0 287
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Table 2: Estimation of the transition probabilities between branches of the TGFβ model,
for different values of N , the number of Monte-Carlo samples.

N 1→1 1→4 2→1 2→3 2→5 3→2 3→6 4→1 5→1 5→2 5→3
100 1.0000 0.0000 0.9836 0.0164 0.0000 1.0000 0.0000 1.0000 0.0233 0.2791 0.0233
200 1.0000 0.0000 0.9675 0.0325 0.0000 1.0000 0.0000 1.0000 0.0222 0.2444 0.0111
500 1.0000 0.0000 0.9609 0.0391 0.0000 1.0000 0.0000 1.0000 0.0217 0.2391 0.0174
1000 1.0000 0.0000 0.9684 0.0266 0.0050 0.9978 0.0022 1.0000 0.0260 0.2256 0.0087
2000 1.0000 0.0000 0.9579 0.0362 0.0059 0.9989 0.0011 1.0000 0.0239 0.2174 0.0087
3000 1.0000 0.0000 0.9561 0.0382 0.0056 0.9992 0.0008 1.0000 0.0290 0.2328 0.0085
5000 0.9996 0.0004 0.9554 0.0393 0.0053 0.9996 0.0004 1.0000 0.0338 0.2448 0.0094

N 5→4 5→6 6→3 7→4 8→4 8→5 8→6 8→7 8→9 9→6
100 0.3953 0.2791 1.0000 1.0000 0.1346 0.5000 0.0769 0.0769 0.2115 1.0000
200 0.4111 0.3111 1.0000 1.0000 0.1100 0.5300 0.0700 0.0600 0.2300 1.0000
500 0.4130 0.3087 1.0000 1.0000 0.1020 0.5333 0.0824 0.0980 0.1843 1.0000
1000 0.4252 0.3145 1.0000 1.0000 0.1018 0.5316 0.0957 0.0916 0.1792 1.0000
2000 0.4457 0.3043 1.0000 1.0000 0.1113 0.5322 0.1042 0.0868 0.1655 1.0000
3000 0.4416 0.2880 1.0000 1.0000 0.1109 0.5305 0.1016 0.0956 0.1614 1.0000
5000 0.4219 0.2901 1.0000 1.0000 0.1158 0.5264 0.0998 0.0966 0.1615 1.0000
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Figure 1: Abstract representation of metastability as itinerant trajectory in a
patchy phase space landscape. Dominant vector fields (red arrows) confine the
trajectory to low dimensional patches on which act weak uncompensated vector
fields (blue arrows). A typical trajectory contains slow segments within patches
where dominant vector fields cancel, and transitions between patches in the fast
direction of uncancelled dominant vector fields. Continuous (but non smooth) con-
nections are also possible, corresponding to role reversal between dominant and
dominated vector fields. The term crazy-quilt was coined to describe such a patchy
landscape (Gorban and Radulescu, 2008).
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Figure 2: Semi-log plot of the minimal branches versus the number of equations in the
models from Biomodels repository for ε = 1/5. Comparison with a binary network number
of states 2n suggests sub-exponential scaling.
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Figure 3: Summary of tropical geometry analysis of the TGFβ model. a) Connec-
tivity graph of tropical minimal branches; b) finite state automaton; c) a single trajectory
of the system (starting from initial data chosen randomly close to the branch B3) is rep-
resented by plotting the concentration of different species vs. time (upper sub-figure);
the distances to different branches of solutions vs. time (lower sub-figure) shows that the
sequence of branches for this trajectory is B3, B2, B1 (all points of the trajectory are
close to one of these three branches and significantly more distant to the other branches).
d) The different branches of solutions are defined by allowed concentrations of different
variables, represented here by orders of magnitudes ai; the opposite concentration orders
−ai are proportional to the logarithms of concentrations −ai ∼ log(xi). All the order
calculations were performed using ε = 1/11. The most used branches B1, B2, B3

are shown in projection onto sets of three variables. The variables RI, RII, LR are plasma
membrane receptors and ligand-receptor complex (signalling input layers), whereas pS2n,
S4n, pS24n are nuclear transcription factors and complexes (effectors). The structure of
tropical branches shows that composition of input layers is more flexible (varies on planar
domains that are disjoint for different branches) than the concentrations of effectors (vary
on linear intervals that overlap for different branches).
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Figure 4: Distribution of distances to tropical branches of the TGFβ model.
For each branch Bi, i ∈ [1, 9] we represent the probability density function of
Euclidian distances between randomly chosen states of the model, compatible
with the conservation laws, and the branches. The minimal distances used
to classify states on the model’s trajectories are smaller and clearly separated
from the random states distances.
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Figure 5: Graphic representation of the ligand-receptor module of the TGF-β full model.
The different variables mean: x12 : RI (TGBR1), x13 : RII (TGFBR2), x14 : LR (ligand-
receptor complex), x15 : RIe (TGFBR1 in endosome), x16 : RIIe (TGFBR2 in endosome),
x11 : LRe (LR in endosome).
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Figure 6: Tropical equilibrations of the ligand-receptor modules for various values of
TGFBR2 (R2) gene expression are represented in projection in the plane (aR1, aR2) (a
point in this plane provides the orders of concentrations of the protein receptors) (a,b,
and c) and comparison with proteomics data from (Gholami et al., 2013) (d). Branches of
tropical equilibrations are calculated for a) nominal value k19 (TGFBR2 expression) (this
is the same as Fig. 3d in projection onto the plane (aR1, aR2)), b) ×2 TGFBR2 overex-
pression , and c) ×10 TGFBR2 overexpression. The circle represents the position of the
stable steady state and the branch containing is an attractor of the finite-state automaton.
Like in Fig. 3 large opposite concentration orders −ai indicate large concentra-
tions. All order calculations were performed using ε = 1/11. d) Proteomic data
from NCI-60 cancer cell lines. Aggressive lines cover ratios of receptor concentrations
intervals (indicated as bars at the right side of the sub-figure) corresponding
to branches B3 (red) and B2 (yellow), whereas non-aggressive lines correspond
to low expression of TGFBR2 in branch B1 (green). The receptors concentra-
tion ratios are well separated in the two classes (Mann-Whitney test, p-value
0.0006).
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Figure 7: In order to compute the branches of tropical equilibration of the
ligand-receptor module we use a reduced model. The reduced model is not
necessarily a good approximation of the full dynamics, but has exactly the
same tropical solutions as the full model. The different variables mean: x12 : RI
(TGBR1), x13 : RII (TGFBR2), x14 : LR (ligand-receptor complex), x15 : RIe (TGFBR1
in endosome), x16 : RIIe (TGFBR2 in endosome), x11 : LRe (LR in endosome).
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