
NEARLY SHARP COMPLEXITY BOUNDS FOR

MULTIPROCESSOR ALGEBRAIC COMPUTATIONS

Dima Grigoriev∗

Department of Computer Science and

Department of Mathematics

Penn State University

University Park, PA 16802 USA

email: dima@cse.psu.edu

The complexity lower bound of Ω(
√

log N) was obtained ([MP93],[M94]) for recogniz-

ing a semialgebraic set with N connected components by some parallel computational

models, like the accepting network or the algebraic PRAM. It is unknown whether a

parallel computation has an advantage versus its sequential counterpart for this sort of

problems, i.e. whether it could recognize a semialgebraic set faster than within com-

plexity 0(log N) (the complexity lower bound for sequential algebraic computation trees

[SY82], [B83]). We introduce a computational model and call it multiprocessor algebraic

computation which extends the notions of accepting network and algebraic PRAM. For

this model an Ω(
√

log N) complexity lower bound still holds. We design a multiprocessor

algebraic computation which recognizes a linear complex in R
n (i.e. a set given by a

boolean combination of N linear inequalities) within the complexity 0(
√

log N log log N)

for small n.

Introduction.

The theory of parallel algebraic computations differs in many aspects from its more

common binary (so, based on Turing machines or RAM) counterpart (for a survey see

∗Supported in part by NSF grant CCR-9424358.

Typeset by AMS-TEX

1

2

[G86]). In [MP93] (see also [M94]) a complexity lower bound of Ω(
√

log N) was discovered

for testing membership to a semialgebraic set with N connected components by means

of accepting networks or parallel algebraic computation trees (for the case of linear trees

one could get a similar result from [M88]). Comparing this bound with Ω(log N) (the

complexity lower bound for (sequential) algebraic computation trees [SY82], [B83]), this

shows that for the model of algebraic computation trees the speed-up which could be

achieved by parallel computations, is limited.

On the other hand it still remains unclear, whether this lower bound Ω(
√

log N) could

be attained; in other words, whether parallel algebraic computation trees indeed have ad-

vantages with respect to their sequential counterparts, that is whether they can recognize

a semialgebraic set faster than within complexity O(log N).

In this paper we introduce a computational model and call it multiprocessor algebraic

computation which on the one hand is a special case of the very general concept of arith-

metic network [G86]. On the other hand multiprocessor algebraic computations extend

the usual models of algebraic PRAM ([M88], [M94]) or accepting network ([MP93]). The

crucial new feature for multiprocessor algebraic computation is that we allow the use of

polynomials from a shared pool, these polynomials are computed along with the whole

computation (one can view these polynomials as reserved in the hard disc), and the

number of processors is restricted (one could view the processors as the random access

memory). The processors can be used for control needs, say for branching, in order to

reach some node in the computation, as is usually done in computation trees (e.g. while

recognizing membership to some set).

The main consequences of the paper are that we first show that the lower bound

Ω(
√

log N) on the depth holds as well for our extended model of multiprocessor algebraic

computation (corollary 2 in section 1). Secondly we prove the complexity upper bound

0(
√

log N log log N) for our model for the problem of membership to a linear complex

(i.e. a set given by a boolean combination of N linear inequalities) for small dimensions

3

n (theorem 2 in section 3). Note that the number of connected components of a linear

complex is bounded by Nn (see e.g. [M64] or [G88]). The construction of the multipro-

cessor algebraic computation relevant for this purpose relies on the basic design of one for

the problem of binary search with the depth 0(
√

log N log log N) (theorem 1 in section

2); the latter bound is also close to the complexity lower bound Ω(
√

log N) for binary

search (see corollary 2 in section 1). Thus, multiprocessor algebraic computations can be

faster in recognizing a semialgebraic set than the complexity lower bound Ω(log N) for

the sequential models.

In the last section the recent complexity lower bounds on testing membership to a

polyhedron ([GKV95], [GKMS96]), are extended to multiprocessor algebraic computa-

tions (proposition 1), including the randomized version (proposition 2); thereby, these

lower bounds hold as well for algebraic PRAM’s and for parallel algebraic computation

trees. Observe that corollary 2 in section 1 and other more general topological methods

based on the sum of Betti numbers ([Y94], [MMP96], see also the discussion in section

1) cannot be applied to the problem of membership to a polyhedron because of the triv-

ial topology of a polyhedron. At the end of the paper we introduce a modification of

multiprocessor algebraic computations and call this model the multiprocessor algebraic

decision-maker. It is in similar relation with respect to multiprocessor algebraic compu-

tations as algebraic decision trees are with respect to algebraic computation trees. We

extend the complexity lower bounds for the problem of testing membership to a polyhe-

dron to multiprocessor algebraic decision-makers, (proposition 3) including randomized

ones (proposition 4).

1. Multiprocessor Algebraic Computation: Concept and Properties

We describe a multiprocessor algebraic computation (MAC), the computational model

which we deal with in the paper. MAC is a special case of an arithmetic network [G86]

(see also [MP93], [MMP96], [CG96]). An algebraic network is a directed acyclic graph

4

which contains nodes of 3 types:

0) with the indegree 0 called input nodes labeled by either one of n input variables

or constants;

(1) with the indegree 1 called sign-nodes and with an output equal to either 0 or 1,

depending on the sign of the incoming node (for the case of a ground field being

a subfield of R the sign is usually defined according to ≥, <, for an arbitrary

ground field the sign is defined according to =, 6=);

(2) with the indegree 2 and labeled by some arithmetic operation.

A node with the outdegree 0 is called an output node and the output of the whole

arithmetic network is defined by a function of its output nodes. If one considers a decision

network then its output could be treated as a boolean function {0, 1}m → {accept,reject},

where m is the number of all the output nodes which are sign-nodes. The number s of

nodes of the network is called its size, the maximal length d of its paths is called the

depth. The depth corresponds to parallel complexity.

If no further restrictions are imposed, the network becomes unrealistic as is illustrated

by the following easy example showing that the knapsack problem could be accepted in

logarithmic parallel time.

Example. Assume for simplicity that n = 2k. Then for ` = 0, . . . , k the `-th level of

the network contains 22` · 2k−` arithmetic nodes which compute the linear forms
∑

i∈I

Xi

for all possible subsets I ⊂ {q · 2` + 1, . . . , (q + 1)2`} and 0 ≤ q < 2k−`. For each of the

computed linear forms f the network computes as an output the sign-node sgn(f 2 − 1)

(using 3 extra levels). So, in this example, in 0(log n) parallel steps we take into account

2n output nodes.

The usual restriction imposed on a network (see e.g. [MP93], [MMP96]) is that it

contains a single output node (this model is called the accepting network model). This

restriction immediately provides a bound on the the size s ≤ 2d. A similar uniform version

5

of this model, namely algebraic PRAM’s (for different sets of involved arithmetic oper-

ations, like {+,−,×} or {+,−}) was studied in [M88]. Another similar computational

model was considered in [M94] .

The model which we introduce, MAC, extends the latter models. We define a MAC

with p processors as a slightly modified arithmetic network of the depth d where each

node consists of two parts: an algebraic part and an indicator. Each node has indegree

either 0 (input node) or 2. The algebraic part contains a certain polynomial and is

computed in the usual way, and an indicator is a boolean variables which could be in

one of two states: “active” or “passive”. To perform the computation, to each node in

a MAC an arithmetic operation is attached (or an input variable or a constant in the

case of an input node) which computes the algebraic part, and an (activating) boolean

function. The value of the activating boolean function is always “passive” when both

incoming nodes are “passive”, otherwise it is actually a value of a boolean function of

(one or two) signs of the algebraic parts of the incoming nodes which are “active”. More

precisely, one could think of 3 boolean functions for 3 possible situations, respectively:

just one incoming node is “active”, the other incoming node is “active”, or both incoming

nodes are “active”. For every input node its indicator (so, “passive” or “active” state) is

assigned. Thus, extra sign nodes are unnecessary, since they are already incorporated.

The main restriction is that for any input the number of “active” nodes at each step

of the computation by a MAC is at most (some parameter) p ≤ 2d. Recall that the

latter bound holds for the usual parallel computations. Here we need to impose some

restriction on p to make the model more realistic.

We assume that the nodes of a MAC are naturally divided into d + 1 levels. Level 0

consists just of the input nodes. The `-th step of the computation is performed at the

`-th level of the MAC and the incoming nodes lie at the (` − 1)-th level.

To complete the description of a MAC we assign an output function which provides

an output (it could be ”accept” or ”reject” when we deal with the decision problems) for

6

each subset of at most p nodes of the last (i.e. d-th) level. The output of the MAC is the

value of the output function for the set of all ”active” nodes.

The informal idea behind the concept of a MAC on the one hand, is to bound the

number p of involved “active” nodes which play the role of the processors (in order

to preclude computations like in the above example for the Knapsack problem where

2n processors were involved), and on the other hand to have access to many functions

computed (as the algebraic parts of the nodes of a MAC) independently from the inputs

as a kind of preprocessing. One could view these functions as being stored in the hard

disc (treated as a reserve) which could be used when necessary, in p processors in the

random access memory. Each processor could be viewed like a node in a computation

tree (where the next node is chosen as in the usual branching according to the signs of

the computed polynomials) and the several processors could be treated as several trees.

The destiny of the processors is eventually to reach the output nodes (in which the MAC

reads an output).

The following observation shows that the concept of a MAC admits some generaliza-

tions. Namely, we could allow the arithmetic operation attached to a node to depend

on the signs of the algebraic parts of the incoming nodes which are ”active” (similar to

the activating function). Thus, the algebraic part would become a piecewise polynomial

function. One could transform such a modified MAC into a MAC as we defined it above

without increasing the depth. Indeed, we start with the nodes at the last d-th level. For

each such node v and every possible arithmetic operation attached to it we construct

a new node with this arithmetic operation attached to it, and an activating function

which makes the new node ”active” if and only if the signs of the algebraic parts of the

”active” incoming nodes correspond to the chosen arithmetic operation and besides, v

was ”active”. Obviously, if v was ”active” then exactly one node among the newly con-

structed ones is ”active” (otherwise, if v was ”passive” then all the constructed nodes are

”passive”), hence the number of ”active” nodes at the d-th level does not increase. After

7

this transformation the algebraic part of each node at the d-th level becomes a polyno-

mial (rather than a piecewise polynomial function as before the transformation) in the

algebraic parts of the incoming nodes from the (d− 1)-th level (which in their turns still

could be piecewise polynomial functions). Reasoning by induction, we can suppose that

for some 1 ≤ ` ≤ d for any ` ≤ `1 ≤ d the algebraic part of each node at the `1-th level

is a polynomial in the algebraic parts of the incoming nodes from the (`1 − 1)-th level.

Now we construct the new nodes for each node at the (`−1)-th level as above, thereupon

for each node at the `-th level duplicate it the necessary number of times linking the

duplicates to the newly constructed nodes at the (`− 1)-th level, respectively, thereupon

duplicate the nodes at the (` + 1)-th level and so on till the d-th level. This proves the

inductive step (for ` − 1).

The size of the transformed MAC (the number of its nodes) could grow considerably,

but first we are interested in bounds on the depth, and secondly we could prune a MAC

diminishing its size (see corollary 1 below).

Notice also that in case when p = 1 we get an extension of the usual (sequential)

algebraic computation tree.

The bound on the size s of a MAC could be considerably greater than 2d as it is

the case for the computational models studied in the papers [MP93], [M94] (see the

constructions in sections 2,3). In order to bound s we make use of the argument from

[MP93], [MMP96] (see also [M94]; for the case of a linear decision trees this argument was

earlier introduced in [M88]). Under the computation pattern of a MAC (for a particular

input) we understand the list of “active” nodes along the computation at all levels for this

input). Since the “active” nodes at any level together with the signs of the polynomials at

these “active” nodes determine uniquely the “active” nodes at the next level, we obtain

the following lemma based on [MP93], [MMP96], [M94], [M88].

Lemma 1. The number of computation patterns does not exceed min{2O(d2n), 2pd}.

8

The idea of the proof of the bound for the first term in the min consists in an obser-

vation that the number of possible sets of “active” nodes at the next level ` + 1 (see the

above discussion) is bounded by (p2`)O(n) due to [M64], herewith 2` is the obvious upper

bound on the degrees of the polynomials computed at `-th level. Then induction on `

and the imposed bound p ≤ 2d proves the lemma for first term in the min. The proof for

the second term is trivial, but sometimes (when p is significantly less than dn) could be

better than the bound for the first term.

Corollary 1. One could prune some nodes from a MAC in such a way that the size of

the resulting equivalent MAC does not exceed min{2O(d2n), 2pd}.

Proof. Observe that in each particular computation pattern at most pd “active” nodes

are involved. For the computation of the algebraic part of each (including “active”) node

at most 2d nodes of the MAC are used. Thus, at most pd2d nodes are involved in each

computation pattern, which is dominated by the number of patterns due to lemma 1. It

remains to notice that if a node of the MAC was not used in any computation pattern

(so, this is a dum node), we could prune it.

Another consequence of lemma 1 which was exploited in [MP93], [M94], is the possibil-

ity to apply “connected components counting” technique (well known for the applications

to complexity lower bounds for the sequential computation trees [SY82], [B83]) to com-

plexity lower bounds for parallel computation trees. Following [MP93], [M94] we get a

complexity lower bound for MAC’s.

Corollary 2. If a MAC accepts a semialgebraic set with N connected components then

its depth d ≥ Ω

(

max

{

√

log N
n , log N

p+n

})

.

The proof is based on the standard counting argument that the semialgebraic set

accepted by a particular computation pattern, could contain at most (pd2d)O(n) connected

components because of [M64]; then we apply lemma 1. A similar bound where N denotes

the sum of Betti numbers obtained in [MMP96] (its sequential version was obtained in

9

[Y94]), could be also literally extended to MAC’s. Thus, the statement of corollary 2 is

valid replacing N by the sum of the Betti numbers.

Comparing corollary 2 with the well known sequential lower bound Ω(log N) [SY92],

[B83]), one sees the gap between
√

log N and log N (ignoring the factor of
√

n). It is an

open question, whether one could attain
√

log N for the depth of the accepting network

[MP93] or an algebraic PRAM [M88], [M94]? In this paper we almost (up to a factor
√

log log N) attain this bound for MAC’s (see sections 2,3). Moreover, for MAC’s which

we design below, both d, p ≤ 0(
√

log N log log N) (the dimension n is a constant), thus

the bounds in corollary 2 are “almost” attained for both terms in the max.

2. Multiprocessor algebraic computation for binary search.

Let the reals x1 < · · · < xN . Our purpose is to design a MAC for the binary search

problem. Namely, given an input x ∈ R to find 1 ≤ i ≤ N such that either x = xi, or

xi−1 < x < xi or x > xN (we agree that x0 = −∞, xN+1 = ∞). Actually, a MAC

will have a node distinguishing each of these cases, but as we decided to consider just

accepting problems, we assume that the problem is to accept a set V ⊂ R being a union

of several intervals xi < x < xi+1, 0 ≤ i ≤ N and of the points xi. For simplicity of

notation suppose that N = 2k − 1 where k =
⌊

m2 log
2

m
4

⌋

− 1 for a certain m.

We’ll appeal in the next construction to a (sequential) binary search tree T of the

depth k + 1. We assume that the vertices of the first k levels of T are labeled by the

linear polynomials x− xi, 1 ≤ i ≤ N in x (where x is an input of the binary search) and

the search branches according to the signs of these linear polynomials. Thus, the root

(0 level) is labeled with x − x2k−1 , its two sons (1-st level) are labeled with x − x2k−2

and x − x3·2k−2 , respectively, and so on. Finally, after k levels the vertices of the tree

correspond bijectively to the semi-open intervals of the form xi−1 < x ≤ xi. So, in order

to distinguish also the points xi, at the (k + 1)-st level we label the corresponding vertex

with the linear polynomial xi − x. The linear polynomial attached to the vertex w at

the i-th level we denote by g
(w)
i . Thus, the left subtree of the root corresponds to the

10

(unbounded) interval on the left side from x2k−1 (including this point), the right subtree

corresponds to the open interval on the right side from x2k−1 . Actually, any subtree T (v)

of T (consisting of all the descendants of a vertex v of T , being the root of this subtree),

corresponds to a certain interval I (v) (which is either semi-open up to k-th level except

the right-most unbounded interval being open, or it is either open or a single point for

the (k + 1)-st level).

For any 1 ≤ r ≤ m−1, any vertex v of T at the level ` =
∑

1≤j≤r−1

bj log2 jc and any 0 ≤

t ≤ br log2 rc− 1, the MAC computes the product G
(v)
t of the linear polynomials g

(w)
`+t for

all the vertices w of T at the level `+t which are descendants (in T) of v. Thus deg G
(v)
t =

2t and the MAC can compute each G
(v)
t independently in t step (multiplications).

Simultaneously for any 1 ≤ r ≤ m − 1 at its level L = 3
∑

1≤j≤r−1

dlog2 je the MAC

arranges (by recursion on r) 2` nodes which correspond bijectively to the vertices of T at

the level `. We refer to this as a result of r − 1 rounds of the MAC and describe the r-th

round. At the level L just one node ∂ of the MAC is “active”. This node ∂ corresponds

to a certain vertex v of T at the level ` which would be virtually reached if the binary

search was applied to x.

At the level L+1 the MAC arranges br log2 rc nodes ∂0, . . . , ∂br log
2

rc−1 with algebraic

parts G
(v)
0 , . . . , G

(v)
br log

2
rc−1, respectively. These nodes are just the “active” nodes at the

level L + 1, and they are linked with the node ∂ at the level L. At the level L + 2 the

MAC arranges 2br log2 rc nodes partitioned into pairs. Each pair corresponds to one of

the polynomials G
(v)
j , 0 ≤ j ≤ br log2 rc − 1−1, and both nodes are linked with the node

∂j at the previous level L + 1. Each of these nodes from a pair of nodes corresponds

to one of two possible signs ≤, > of the polynomial G
(v)
j and exactly one of these two

nodes which corresponds to the correct sign, is “active” at the level L + 2. Thereby,

the activating boolean functions (see the previous section) for these 2br log2 rc nodes are

described. Observe that exactly br log2 rc nodes are “active” at the level L + 2.

Now the crucial observation enters the game. Consider a subtree T
(v)
1 of T with the

11

root at v consisting of all its descendants with the levels between ` and `+ b r log2 rc− 1.

Each leaf w of T
(v)
1 corresponds to a certain subinterval I (w). I claim that the partition

of I(v) into 2br log
2

rc intervals of the type I(w) is determined completely by the signs of

the polynomials G
(v)
0 , . . . , G

(v)
br log

2
rc−1. Actually, the claim holds for any q where T

(v)
1 is

replaced by a subtree T (v,q) of T
(v)
1 with the root at v consisting of all the descendants of

v with the levels between ` and ` + q. Then the signs of the polynomials G
(v)
0 , . . . , G

(v)
q

determine the partition of the interval I (v) into 2q+1 subintervals which correspond to

the leaves of the tree T (v,q). The claim can be easily proved by induction on q. The main

point in the proof is that for any leaf w of T (v,q) its interval I(w) is divided at the next

level just by the polynomial G
(w1)
q+1 since all the linear polynomials g

(w1)
`+q+1 occurring in

the product G
(v)
q+1 have constants signs on I(w) except the polynomial g

(w)
`+q+1.

Now following the construction from the example in the previous section, at each level

L+ t+2, 1 ≤ t ≤ dlog2br log2 rce = R we arrange 22tdbr log2 rc/2te nodes in MAC which

correspond bijectively to all possible signs of the polynomials in the block of polynomials

B = {G(v)
q·2t+1, . . . , G

(v)
(q+1)2t} where 0 ≤ q < dbr log2 rc/2te. Each node has two links

with the nodes at the level L + t + 1 which correspond to the signs of the polynomials in

the blocks B1 = {G(v)
2q2t−1+1

, . . . , G
(v)
(2q+1)2t−1} and B2 = {G(v)

(2q+1)2t−1+1
, . . . , G

(v)
(2q+2)2t−1},

respectively. Notice that B = B1 ∪ B2.

The described nodes of the MAC are yielded by induction on t. Remark that in the

described nodes only their indicators matter, the algebraic parts of these nodes we could

ignore. More precisely, the activating boolean function computing the indicator of any

such node is the same for all of them and gives the value ”active” if and only if both

incoming to it nodes are “active”. At the end of this construction, at the level L + R the

MAC contains 22R

nodes which correspond, in particular, to all the possible signs of the

polynomials G
(v)
0 , . . . , G

(v)
br log

2
rc and thereby, to all the leaves of the tree T

(v)
q , as we have

proved above in the claim.

Observe that at the level L + t + 2, 1 ≤ t ≤ R the MAC has dbr log2 rc/2te “active”

12

nodes which correspond to all the compatible signs of the polynomials in each block.

Thus, at the end, at the level L+R, there is just one “active” node which corresponds to

the vertex of the tree T at the level ` + dr log2 re which is reached by the binary search

being applied to x. This completes the description of the r-th round of the MAC.

Now let us prove that the MAC runs correctly and estimate its depth. We start

the next (r + 1)-st round at the level L + 3dlog2 re of the MAC so this additional

3dlog2 re levels would be enough to realize the described r-th round because R + 2 <

3dlog2 re. Besides, before the level L the MAC has enough depth (parallel time) to

compute all G
(v)
0 , . . . , G

(v)
br log

2
rc, taking into account that every G

(v)
q is the product of

2q linear polynomials and q ≤ r log2 r ≤ L. After m − 1 rounds MAC simulates
∑

1≤j≤m−1

bj log2 jc ≥
⌊

m2 log m
4

⌋

= k + 1 levels of the tree T , whence the whole bi-

nary search tree T . Thus, the depth of MAC is bounded by d ≤ O(
∑

1≤j≤m−1

log2 j) ≤

O(m log m) ≤ O(
√

k log k) ≤ O(
√

log N log log N). Notice that the number of processors

p ≤ O(m log m) ≤ O(
√

log N log log N), and the size of the designed MAC s ≤ O(N),

which is close to the bound in corollary 1 from section 1.

To accept a set V ⊆ R (see the beginning of the section) we simply assign the “accept”

or “reject” output in the necessary way to each of the nodes corresponding to every

particular open interval (xi, xi+1) or to a point xi.

Finally, we formulate the main result of this section.

Theorem 1. There exists a multiprocessor algebraic computation which solves the prob-

lem of binary search with depth d ≤ O(
√

log N log log N) and with a similar bound on the

number p of processors.

If we take a set V ⊆ R in such a way that it contains N connected components then

applying corollary 2 from the previous section we obtain the lower bound d > Ω(
√

log N)

on the depth. So, there is still a gap within a factor O(
√

log log N) between the upper

and lower bounds.

13

3. Recognizing linear complexes by multiprocessor algebraic computations.

By a linear complex U ⊂ R
n we mean any language which could be represented by

a quantifier-free formula with linear inequalities as its atomic subformulae. Or in a

geometrical language one could think of a given family of hyperplanes H1, . . . , Hm ⊂ R
n.

Then the number of cells into which H1, . . . , Hm partition R
n is at most mO(n) (e.g. see

[M64], also [G88]). Denote by C(H1, . . . , Hm) the set of all these cells. A linear complex

could be defined as a union of some of the cells from C(H1, . . . , Hm).

In this section we design a MAC which recognizes a linear complex, relying on theorem

1 from the previous section. The complexity bound is nontrivial for small dimensions n.

There are quite sophisticated methods for recognizing linear complexes by means of

(sequential) linear decision trees with complexity O(nO(1) log m) (see [M88], [M93]). This

bound is sharp (due to [SY82], [B83]) ignoring n (so, for small n relative to m). Unfortu-

nately, it is unclear how to adjust these methods for MAC’s. Therefore, we make use of a

much more general method of cylindrical algebraic decomposition [C75], which provides

a worse dependency on the dimension n. But the main issue will be the improvement

of dependency of the depth d on m, we’ll get the bound d ≤ O(
√

log m log log m) (cf.

theorem 1) which is close to the lower bound in corollary 2 from section 1 (for small n).

We design by recursion on n a MAC for C(H1, . . . , Hm), which outputs a cylindrical

algebraic decomposition for C(H1, . . . , Hm), i.e. a certain partition of R
n into polyhedra

(so, there is a node in the MAC for each of these polyhedra), being finer than the partition

C(H1, . . . , Hm). Denote by π : R
n → R

n−1 a linear projection. We assume for simplicity

that R
n−1 = π(Rn) is embedded in R

n and π is the orthogonal projection onto R
n−1.

The pairwise projections π(Hi ∩ Hj), 1 ≤ i < j ≤ m provide a family of hyperplanes

in R
n−1 (choosing π in a suitable way we could suppose that dim π(Hi ∩ Hj) = n − 2,

1 ≤ i < j ≤ m). Then for any cell C ∈ C(H1, . . . , Hm) its projection π(C) is a union of

several cells from C({π(Hi ∩ Hj)}1≤i<j≤m) [C75].

To design MAC for C(H1, . . . , Hm) with an input x ∈ R
n first we design (recursively

14

on n) a MAC for C({π(Hi ∩Hj)}1≤i<j≤m) with an input π(x). Let the point π(x) reach

an element c of the cylindrical algebraic decomposition for C({π(Hi ∩ Hj)}1≤i<j≤m),

thus the MAC reaches some node ∂ for the input π(x). Then the intersections h1 =

H1 ∩ π−1(c), . . . , hm = Hm ∩ π−1(c) are pairwise either disjoint or coincide and hence

linearly ordered hi1σ1hi2 · · ·σm−1him
with respect to the coordinate in R

n orthogonal

to π(Rn) where each sign σj , 1 ≤ j ≤ m − 1 is either > or = (for an appropriate

permutation {i1, . . . , im} of {1, . . . , m}). The elements into which hi, . . . , him partition

the cylinder π−1(c) constitute just the elements of the cylindrical algebraic decomposition

for C(H1, . . . , Hm) [C75]. Thereupon, to the node ∂ we paste a MAC which performs a

binary search among hi1 , . . . , him
; so the linear functions (considered as functions in the

coordinate orthogonal to π(Rn) determining the hyperplanes Hi1 , . . . , Him
, play the role

of the linear functions x−x1, . . . , x−xN in the construction of the MAC in the previous

section. Actually, the latter MAC cares as well of the situation we encounter in the

present section, when some pairs of adjacent points could coincide, i.e. xi−1 = xi. The

resulting MAC has a node for every element of the cylindrical algebraic decomposition,

thus at least one node for each cell from C(H1, . . . , Hm). To complete designing the MAC

which accepts a linear complex V ⊂ R
n, attach “accept” or “reject” output to each of

these nodes.

To estimate the complexity of the designed MAC observe that the number of hyper-

planes in R
n−1 after the projection π is bounded by m2. Hence after (n− 1) projections

it could increase as m2n−1

. Thus, the application of theorem 1 from section 2 gives the

bound on the depth and the number of processors of the designed MAC. We summarize

in the following theorem the results obtained in the present section.

Theorem 2. There is a multiprocessor algebraic computation which accepts a linear

complex given by m hyperplanes in R
n with depth and number of processors both d, p ≤

O((n 2n)1/2
√

log m log log m).

15

Thus, there is still a gap within the factor
√

log log m with the lower bound provided by

corollary 2 from section 1 (for small n), taking into account that the number of connected

components in a linear complex could be mΩ(n). It would be interesting to obtain similar

(to theorem 2) bounds for nonlinear cylindrical algebraic decomposition ([C75]).

4. Complexity lower bounds on testing membership to a polyhedron by a

MAC and a MAD.

The known topological methods for obtaining complexity lower bounds for decision

and computation algebraic trees, based on the number of connected components ([SY82],

[B83], [MP93], [M94], see also the discussion in section 1) or more generally, the sum of

Betti numbers ([Y94], [MMP96]), cannot be applied to the problem of membership to a

polyhedron because of the trivial topological structure of the latter.

Therefore, alternative approaches were developed, which allowed one to obtain com-

plexity lower bounds for testing membership to a polyhedron by algebraic decision and

computation trees [GKV95], and for randomized algebraic decision trees [GKMS96]. No-

tice that the similar question for randomized algebraic computation trees remains open

(see the discussion in [GKMS96]). The lower bounds in both papers have the form

Ω(log N) where N is the number of the faces of all the dimensions of a polyhedron, the

similar lower bound in the case of the linear decision trees was ascertained in [YR80].

The purpose of this section is to extend the mentioned results to MAC’s (as well

as randomized MAC’s) and to the weaker computational model of the multiprocessor

algebraic decision-maker.

First consider a MAC with the depth d and p processors, which tests membership

to a polyhedron P ⊂ R
n with N faces. As we have shown in lemma 1 of section 1

there are at most min{2O(d2n), 2pd} computation patterns. Each pattern either accepts

or rejects a semialgebraic set W ⊂ R
n. Let a pattern accept W , then W ⊂ P . In

[GKV95] we say that W “touches” a face F of P if dim(W ∩ F) = dim F . Theorem 2

[GKV95] implies that the number of faces “touched” by W does not exceed (n2d)O(n) .

16

Hence N ≤ min{2O(d2n), 2pd}(n2d)O(n). This entails the inequality N ≤ 2O(d2n)nO(n),

therefore, there exists a constant c1 > 0 such that if N ≥ nc1n then d ≥ Ω

(

√

log N
n

)

(cf.

corollary 2 in section 1). Also, the inequality entails that N ≤ nO(n)2O(p+n)d and hence

d ≥ log N
p+n . Thus, we obtain the proposition (cf. corollary 2 in section 1).

Proposition 1. Let a MAC with depth d and number p of the processors accept a poly-

hedron in R
n with N faces. There exists a constant c1 > 0 such that if N ≥ nc1n then

d ≥ Ω(max{
√

log N
n , log N

p+n }).

Denote by m the number of faces of P of the highest dimension n−1, so the hyperfaces.

Comparing proposition 1 with the upper bound in theorem 2 from the previous section,

we see that the upper and lower bounds differ by a factor of
√

log log N (for small n),

taking into account the obvious inequalities m ≤ N ≤ mn.

Now consider a randomized MAC which could be defined as a family {Mα} where each

MAC Mα is chosen with a probability pα ≥ 0,
∑

α
pα = 1. For any input a randomized

MAC should give a correct output with a probability > 2
3
. Applying [GKMS96] we take

as inputs a finite set of sample (infinitesimal) points of a special type, and choose Mα0
in

such a way that Mα0
gives the correct outputs for > 2

3 deal of these inputs. As above the

number of computation patterns of Mα0
does not exceed min{2O(d2n), 2pd}. For each

pattern the number of faces of P which this pattern represents (in [GKMS96] the pattern

represents a face by means of a flag, i.e. a sequence of the hyperplanes being the highest

dimension faces of P , whose intersection coincides with this face; more precisely, this flag

could contain at most 1
3 deal of gaps in a sequence of hyperplanes due to the probabilistic

origination of Mα0
), is bounded from above by mO(n) ·

(

2d

n

)
O(1)

[GKMS96]. Observe that

a constant c hidden in the notation mO(n) (i.e. mcn) depends on the error (in the above

setting 1
3) of the randomized MAC. One could make the error to be a constant arbitrarily

close to zero (at the expense of increasing randomized MAC [M85]) and thereby, to make

c also to be arbitrarily close to zero.

17

Thus, N ≤ min{2O(d2n), 2pd}mO(n)
(

2d

n

)O(1)
. Because of the latter remark it suffices

to impose a condition N ≥ mc2n for arbitrary small c2 > 0. This condition implies the

lower bound d ≥ Ω

(

√

log N
n

)

≥ Ω(
√

log m). Also we get the bound d ≥ Ω
(

log N
p+n

)

≥

Ω
(

n log m
p+n

)

. Let us summarize the obtained above in the follow proposition.

Proposition 2. Let a randomized MAC with depth d and number P of processors accept

a polyhedron in R
n with N faces including m faces of the highest dimension n − 1. For

any constant c2 > 0 if N ≥ mc2n then d ≥ c
′

2

(

max
{√

log m , n log m
p+n

})

for a suitable

constant c
′

2 depending on c2.

Observe that proposition 2 implies proposition 1 when m ≤ nO(1).

Now we introduce a modification of MAC and call it the multiprocessor δ-algebraic

decision-maker (δ-MAD). It relates to MAC in the similar manner how decision trees

relate to computation trees. δ-MAD is defined similarly to MAC (see section 1) with

the difference that the polynomials in the algebraic parts of the nodes have degrees less

of equal to δ. Since we discuss lower bounds we can assume that these polynomials are

not actually computed by δ-MAD, but rather are preprocessed in the nodes (it is a usual

assumption for the algebraic decision trees). It is reasonable to suppose that δ ≤ 2d.

Observe that the device from the example in section 1 could be viewed as 1-MAD. Let

δ-MAD accept a polyhedron P . Then the number of computation patterns of δ-MAD

does not exceed min{(δp)O(dn), 2pd} (cf. lemma 1 in section 1). The semialgebraic set

accepted by any computation pattern cannot “touch” more than (δpdn)O(n) faces of P

due to theorem 2 [GKV95] (see the above discussion before proposition 1). Therefore,

N ≤ min{(δp)O(dn), 2pd}(δpdn)O(n) and we get the following lower bound.

Proposition 3. Let a multiprocessor δ-algebraic decision-maker with depth d and number

p of the processors accept a polyhedron P with N faces. Then there exists a constant c3 > 0

such that

a) d > Ω
(

log N
n log(δp)

)

, provided that N ≥ nc3n;

18

b) d > Ω
(

log N
p

)

, provided that N ≥ (δpn)c3n.

Notice that plugging δ = 2d (which is, we remind, the upper bound on the degrees of

the algebraic parts in a MAC), we get proposition 1.

Observe that the lower bounds in proposition 3 remain valid replacing a polyhedron P

by an arbitrary semialgebraic set and replacing N by the number of connected components

even in a stronger setting in which we get rid of the supposition N ≥ nc3n in both a)

and b) (one could treat this statement as an analogue of corollary 2 in section 1 for the

multiprocessor algebraic decision-makers).

Finally, we proceed to considering randomized δ-MAD’s, {Dα}. As above applying

again [GKMS96] we choose Dα0
and bound the number of its computation patterns by

min{(δp)O(dn), 2pd}. The number of the faces of P represented by a computation pattern

(by means of the flags, see above) does not exceed mO(n) ·
(

δpd
n

)O(1)
[GKMS96]. Arguing

as in the proof of proposition 2 we get the following lower bound (taking into account

the inequality
(

a
b

)

≤
(

3a
b

)b
).

Proposition 4. Let a randomized multiprocessor δ-algebraic decision-maker with depth

d and number p of the processors accept a polyhedron P with N faces, including m faces

of the highest dimension n − 1. For any constant c4 > 0 if N ≥ mc4n then

a) d > c
′

4

(

log m
log(δp)

)

;

b) d > c
′

4

(

min
{

n log m
p , N1/n

})

, provided that N ≥
(

3δp
n

)n

,

for an appropriate constant c
′

4 depending on c4.

Notice (like after proposition 3) that plugging δ = 2d leads to proposition 2.

Remark. 1) Propositions 1–4 remain true replacing a polyhedron by an arrangement

of m hyperplanes with N faces. Then propositions 1,3 follow in fact from corollary 2

(section 1), the proofs of propositions 2,4 for arrangements are the same as above for

polyhedra (see [GKMS96]).

19

2) Proposition 1 holds a fortiori for the weaker (than MAC) computational models of

the algebraic PRAM and accepting network ([M88], [MP93], [M94], see also the discussion

in section 1). Proposition 2 holds for the randomized version of these computational

models (cf. [M94]). By the same token proposition 3 (respectively, 4) holds for the

parallel algebraic decision trees (respectively, randomized).

Acknowledgements. The author is thankful to Felipe Cucker and Vitya Pan, who

encouraged him to look at parallel computations.

References

[B83] M. Ben-Or, Lower bounds for algebraic computation trees, Proc. ACM Symp. on Th. Com-

put., 1983, p. 80–86.

[C75] G.Collins, Quantifier elimination for real closed fields by cylindrical algebraic decomposition,
Lect. Notes Comput. Sci. v. 33, 1975, p. 134–183.

[CG96] F. Cucker, D. Grigoriev, On the power of real Turing machines over binary inputs, SIAM J.

Comput., v. 26, 1, 1997, p. 243–254.
[G86] J. von zur Gathen, Parallel arithmetic computations: a survey, Lect. Notes Comput. Sci., v.

233, 1986. p. 93–112.
[G88] D. Grigoriev, Complexity of deciding Tarski algebra, J. Symb. Comput., v. 5, 1988, p. 65–108.

[GKV95] D. Grigoriev, M. Karpinski, N. Vorobjov, Improved lower bound on testing membership to a

polyhedron by algebraic decision trees, Proc. IEEE FOCS, 1995, p. 258–265.
[GKMS96] D. Grigoriev, M. Karpinski, F. Meyer auf der Heide, R. Smolensky, A lower bound for

randomized algebraic decision trees, Proc. ACM STOC, 1996, p. 612–619.

[M93] S. Meiser, Point location in arrangements of hyperplanes, Information and Computation, v.
106, 1993, p. 286–303.

[M85] F. Meyer auf der Heide, Simulating Probabilistic by Deterministic Algebraic Computation

Trees, Theor. Comput. Sci., 1985, 41, p. 325-330.

[M88] F. Meyer auf der Heide, Fast algorithms for N-dimensional restrictions of hard problems, J.

ACM, v. 35, 1988. p. 740–747.
[M64] J. Milnor, On the Betti numbers of real varieties, Proc. AMS , v. 15, 1964, p. 275–280.

[MP93] J. Montana, L. Pardo, Lower bounds for arithmetic networks, Appl. Algebra in Eng., Com-

munic. and Comput., v. 4, 1993, p. 1–24.
[MMP96] J. Montana, J. Morais, L. Pardo, Lower bounds for arithmetic network II: sum of Betti

numbers, Appl. Algebra in Eng., Communic. and Comput., v. 7, 1996, p. 41–51.
[M94] K. Mulmuley, Lower bounds for parallel linear programming and other problems, Proc. ACM

Symp. on Th. Comput., 1994, p. 603–614.

[SY82] M. Steele, A. Yao, Lower bounds for algebraic decision trees, J. Algorithms, v. 3, 1982, p.
1–8.

[Y94] A. Yao, Decision tree complexity and Betti numbers, Proc. ACM Symp. Th. on Comput.,

1994, p. 615–624.
[YR80] A. Yao, R. Rivest, On the polyhedral decision problem, SIAM J. Comput., v. 9, 1980, p.

343–347.

