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Abstract

The problem of factoring a linear partial differential operator is studied. An algorithm is
designed which allows one to factor an operator when its symbol is separable, and if in addition
the operator has enough right factors then it is completely reducible. Since finding the space of
solutions of a completely reducible operator reduces to the same for its right factors, we apply this
approach and execute a complete analysis of factoring and solving a second-order operator in two
independent variables. Some results on factoring third-order operators are exhibited.

AMS Subjext Classifications: 35A25, 35C05, 35G05.
Keywords: partial differential equations, factorization.

Introduction

An algorithm for factoring a linear ordinary differential operator L ∈ Q(x)[∂x] is described in [15],
it was improved in [5] with a better complexity bound. In [17] an implementation in a computer
algebra system is given. A survey on the factorization problem and further references may be found in
[14]. The structure of all possible factorizations of an ordinary differential operator is known due to a
fundamental theorem of Loewy [12]. An ordinary operator has a unique factorization into completely
reducible factors. Factorization of an operator L is of practical importance because it reduces the
problem of finding solutions of the linear differential equation Lv = 0 to the same problem for its
factors.

Much less is known on factoring linear partial differential operators (LPDO). First of all, the
concept of a completely reducible operator has to be generalized suitably. In the articles by Blumberg
[1] and Miller [13] these problems are discussed, and are illustrated by a few typical examples. In
particular, an example of a third-order operator is given in [1] which has two different factorizations
into completely reducible factors, see Example 4 in Section 4 for a complete discussion. It shows that
the result of Loewy quoted above does not remain true for partial differential operators.

In recent times, due to the growing interest in Computer Algebra, a few papers have appeared
which treat factoring as finding superideals of a left ideal in the ring of LPDO rather than factoring
a single LPDO, see [20, 11]. In [20] a concept of a factorization is developed which makes some
characteristics of factors to be uniquely defined similar to the case of ordinary operators. In [11]
the factorization of systems of LPDO with a finite-dimensional (over the subfield of constants) space
of solutions is studied, then its linear differential subvarieties are viewed as the factors of the input
system.

As in the case of polynomial factoring, an important issue in factoring differential operators is the
choice of a ground differential field F . If one takes F to be universal [10] then in the case of ordinary
operators L ∈ F [∂] of order r where ∂ is a derivative operator, L has always a factorization in r first-
order factors. This reminds of factoring a univariate polynomial in linear factors over an algebraically
closed field. In the case of a LPDO L ∈ D = F [∂1, . . . , ∂m] where ∂i = ∂/∂xi for i = 1, . . . ,m denote
the derivative operators, one can talk about absolute factorization which resembles the multivariable
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polynomial factorization over an algebraically closed field. On the other hand, the conditions for
reducibility of L are rather involved, in general they consist of non-linear partial differential equations.
Consequently a large part of the discussion will assume coefficients from a universal field F of zero
characteristic. Another advantage of this assumption is the duality between differential varieties and
left ideals in D [10]. On the other hand, studying factorization algorithms we will assume that the input
operators are from the ring Q(x1, . . . , xm)[∂1, . . . , ∂m]. The simplest possible equations determining
the factors are obtained, and its solutions either in Q(x1, . . . , xm) or some extension field are discussed.

Now we say few words about the further contents of the paper whose main purpose is to make some
steps towards algorithms for factoring a LPDO and solving the corresponding differential equation.

In Section 1 we study separable LPDO, i. e. one with a separable symbol, and show that one
can factor a separable LPDO by means of a procedure similar to Hensel lifting (we name it Hensel
descent). Also we define a completely reducible LPDO and establish that if a separable LPDO has
enough irreducible right factors then it is completely reducible. The significance of completely reducible
LPDO is justified by the result of [2, 18] (see the Remark 1.8 below) that the space of solutions of a
completely reducible LPDO coincides with the sum of the spaces of its irreducible right factors.

This general approach is applied in Sections 2, 3, 4 to accomplish a complete analysis of factoring
a second- (see Section 3) and third-order LPDO (see Section 4) from F [∂x, ∂y] respectively, and
investigate the solutions of the corresponding differential equations. In Section 2 we consider the
intersection of principal ideals generated by first-order LPDO. In the Appendix we give a description of
the solutions of partial linear and of partial Riccati differential equations. Evidently, since calculations
(even with the aid of a computer) become quite cumbersome, a further theoretical breakthrough in
the LPDO factoring is badly needed.

1 Hensel Descent and Completely Reducible Differential Operators

For a derivative ∂J = ∂j11 · · · ∂jmm denote its order ord(∂J) = |J | = j1 + . . .+ jm. For a LPDO

L =
∑
|J |=r

aJ∂
J +

∑
|J |<r

bJ∂
J

of the order ord(L) = r the homogeneous polynomial s(L) =
∑
aJZ

J ∈ F [Z1, . . . , Zm] of degree r,
with Zk new algebraic indeterminates, is named the symbol of L.

Definition 1.1 We call L separable if s(L) is separable.

We observe that if L is separable then in order to factor L one can apply a procedure which we
name Hensel descent and which reduces to polynomial factoring (over F ), rational operations in F
and taking derivatives. This algorithm is close in nature to the well-known Hensel lifting used widely
in polynomial factoring, see e. g. [8], the main difference is that in the case of differential operators
one has to compute the coefficients starting with the highest derivatives going to the lowest because
in the product of operators the coefficients at higher derivatives of factors give a contribution to the
coefficients at lower derivatives of the product.

Thus, let s(L) = gh where g =
∑
J gJZ

J , h =
∑
J hJZ

J ∈ F [Z1, . . . , Zm] are homogeneous polyno-
mials of the degrees deg(g) = k,deg(h) = l, k + l = r. Hensel descent is looking for a factorization in
the form

L = (
∑
|J |=k

gJ∂
J +

∑
0≤j≤k−1

Gj)(
∑
|J |=l

hJ∂
J +

∑
0≤j≤l−1

Hj) (1)
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where Gj =
∑
|J |=j gJ,j∂

J , Hj =
∑
|J |=j hJ,j∂

J contain only the derivatives of order j. Denote the

corresponding homogeneous polynomials of degrees j by gj =
∑
|J |=j gJ,jZ

J , hj =
∑
|J |=j hJ,jZ

J .
Hensel descent runs recursively decreasing the order. Suppose that Gj1 , Hj2 are already constructed

with j1 ≥ max{t − l + 1, 0}, j2 ≥ max{t − k + 1, 0} for a certain 0 ≤ t ≤ r − 1 (at the first step of
the recursion we set t = r − 1). At the current step Hensel descent compares the coefficients at the
derivatives of order t in both sides of (1). Rewriting the right-hand side in terms of the corresponding
homogeneous polynomials of degree t we obtain ght−k + hgt−l + p (provided that t ≥ k, t ≥ l) where
the coefficients of the homogeneous polynomial p are already known being the rational expressions of
the derivatives of the coefficients of the already constructed Gj1 , Hj2 .

Taking into account that t− k < l and that due to the separability of L the polynomials g, h are
relatively prime, we conclude that there exists at most one pair of polynomials gt−l, ht−k which yields
a known polynomial q = ght−k+hgt−l. Hensel descent looks for gt−l, ht−k by means of solving a linear
algebraic system in the coefficients of gt−l, ht−k. If this system is unfeasible then Hensel descent halts
saying that the polynomial factorization s(L) = gh does not lead to a factorization of L. Otherwise,
Hensel descent outputs gt−l, ht−k and continues the recursion.

In case when t < k (or t < l, respectively) the polynomial ht−k is absent (or gt−l is absent,
respectively). Finally, in case when both t < k, t < l Hensel descent verifies whether the coefficients
at the derivatives of the order t in both sides of (1) coincide. And again it halts if this fails.

Let us summarize the properties of Hensel descent in the following proposition.

Proposition 1.2 A separable LPDO L of order r has at most 2r factorizations and Hensel descent
finds all of them starting with factoring the polynomial s(L) and performing rational operations and
derivations in F . For each (including reducible) factor of s(L) there is at most one right factor of L.

Remark 1.3 If s(L) = gh where g, h being relatively prime, one can still apply Hensel descent to (not
necessary separable) L.

For a LPDO L we denote by < L > the left ideal generated by L. Since we consider only left
ideals, the term left in general will be omitted.

In the ring D = F [∂] of ordinary differential operators all ideals are principal. As a consequence the
lcm of any two operators L1, L2 ∈ D is defined uniquely as the operator L generating the intersection
< L1 > ∩ < L2 >. For LPDO the intersection ideal of two principal ideals is not necessarily principal,
that is why we introduce the following concept.

Definition 1.4 A LPDO L is called completely reducible if < L >=< L1 > ∩ · · · ∩ < Lk > for
suitable irreducible LPDO L1, . . . , Lk. In this case we say that L is the least common left multiple
L = lcm{L1, . . . , Lk}. More generally, we call a left ideal I ⊂ D completely reducible if I =< L1 >
∩ · · · ∩ < Lk >.

Theorem 1.5 If a LPDO L has right factors L1, . . . , Lk such that lcm{s(L1), . . . , s(Lk)} = s(L) then
< L >=< L1 > ∩ · · · ∩ < Lk >.

Proof. Clearly < L >⊂< L1 > ∩ · · · ∩ < Lk >. We need to prove the inverse inclusion.
Making an appropriate linear (over the subfield of constants of F ) transformation of ∂1, . . . , ∂m,

one can assume that the derivative ∂r1 occurs in L (cf. Lemma 2.3 [18] or Lemma 4 [6]).
Take any P ∈< L1 > ∩ · · · ∩ < Lk > and divide it from the left with the remainder by L with

respect to ∂1, then P = QL + R where ord∂1(R) < r. Since R ∈< L1 > ∩ · · · ∩ < Lk > we have
s(L) = lcm{s(L1), . . . , s(Lk)}|s(R) and we get a contradiction because r = degZ1

(s(L)) > degZ1
(s(R))

unless R = 0. 2
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Corollary 1.6 1) If L has irreducible right factors L1, . . . , Lk such that lcm{s(L1), . . . , s(Lk)} =
s(L) then < L >=< L1 > ∩ · · · ∩ < Lk > is completely reducible.

2) If L is separable and for each irreducible factor gi of s(L) it has a right factor Gi with s(Gi) = gi
then < L >= ∩i < Gi > is completely reducible (with Gi being irreducible).

Proposition 1.7 For an ideal I =< P1, . . . , Pl >⊂ D with at least one separable element, say P1,
one can test whether I is completely reducible, by means of factoring polynomials over F, performing
rational operations and derivating in F.

Proof. Trying all the factors (including reducible) of the polynomial s(P1) the algorithm finds
all the irreducible right factors L1, . . . , Lk of P1 with the help of Proposition 1.2. If the ideal I is
completely reducible then

I =< Li1 > ∩ · · · ∩ < Lin > (2)

for appropriate 1 ≤ i1 < · · · < in ≤ k.
To verify (2) the algorithm repeatedly makes use of the following procedure which finds the Janet

base ([16]) of the intersection of two differential ideals I1, I2 and which extends the similar well-known
procedure for finding Groebner base of the intersection of polynomial ideals [3].

Introduce the field F (u) of rational functions imposing the commutativity conditions: u∂i =
∂iu, 1 ≤ i ≤ m (thus, u plays the role of a constant in D). Find the Janet base [16] of the ideal
< uI1, (1 − u)I2 > with respect to the lexicographical ordering in which u is higher than all other
variables and derivative operators. Thereupon (similar to the case of polynomial ideals [3]) all the
elements of the Janet base which do not contain u, constitute the Janet base of I1 ∩ I2. 2

Remark 1.8 1) For an ideal I ⊂ D denote by VI ⊂ F its space of solutions [10]. The relation

VI1∩I2 = VI1 + VI2

(see Proposition 3.1 and Theorem 4.1 [18], cf. also Proposition 2 [2]) allows one to reduce
solving a completely reducible LPDO to solving its factors.

2) If < L >=< L1 > ∩ < L2 > then ord(L) ≤ ord(L1) + ord(L2).

This follows from Theorem 4.1 [18], taking into account that ord(L) coincides with the leading
coefficient of the Hilbert-Kolchin polynomial of the ideal < L >. Moreover, ord(L) = ord(L1) +
ord(L2) if and only if the typical differential dimension ([10]) of the gcd ideal < L1, L2 >⊂
F [∂1, . . . , ∂m] is less than m− 1.

The next proposition treats the case of commuting LPDO.

Proposition 1.9 Let L1L2 = L2L1 and < L >=< L1 > ∩ < L2 >.

1) If ord(L) = ord(L1) + ord(L2) then L = L1L2.

2) If the polynomials s(L1), s(L2) are relatively prime then L = L1L2.

Proof. To show 1) we note that L1L2 ∈< L >. Besides, 1) entails 2). 2

Below we illustrate the methods described above for the second and the third-order LPDO.
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2 The Structure of Ideal Intersections

In this section the possible ideal intersections which may occur if the LPDO’s under consideration
are from D = F [∂x, ∂y] and their orders are not higher than three are discussed. This discussion is
independent of the base field F which may be Q(x, y), some finite extension of it or a universal field F ,
all of characteristic zero.

Theorem 2.1 Let the principal ideals I1 =< ∂x+a1∂y+b1 >, I2 =< ∂x+a2∂y+b2 >⊂ D be different.
There are three alternative cases for their intersection.

1) I1∩I2 =< L = ∂xx+q1∂xy+q2∂yy+q3∂x+q4∂y+q5 > and I1 +I2 =< 1 > if and only if a1 = a2.
In this case L is non-separable. Conversely, if L is a non-separable second-order LPDO having
two different first-order right factors L1, L2 then < L >=< L1 > ∩ < L2 >.

2) I1 ∩ I2 is principal and generated by a LPDO L of second-order as in the previous case and
I1 + I2 6=< 1 >, then

I1 + I2 =< ∂x +
a1b2 − a2b1
a1 − a2

, ∂y +
b1 − b2
a1 − a2

> .

This case occurs if and only if ( b1 − b2a1 − a2
)x = (a1b2 − a2b1

a1 − a2
)y with a1 6= a2. In this case L is

separable. Conversely, if L is a separable second-order LPDO having two different first-order
right factors L1, L2 then < L >=< L1 > ∩ < L2 >.

3) I1 ∩ I2 is not principal, then

I1 ∩ I2 =< ∂xxy + q1∂xyy + q2∂yyy + q3∂xx + q4∂xy + q5∂yy + q6∂x + q7∂y + q8,

∂xxx + p1∂xyy + p2∂yyy + p3∂xx + p4∂xy + p5∂yy + p6∂x + p7∂y + p8 >

and I1 + I2 =< 1 > if the preceding two cases do not apply.

Proof. In accordance with [3], Theorem 11 on page 186, an auxiliary parameter u is introduced
and the operators u(∂x + a1∂y + b1) and (1 − u)(∂x + a2∂y + b2) are considered (see the previous
section). In order to compute generators for the intersection ideal, a Janet base [16] with u as the
highest variable has to be computed. To this end, computationally it is more convenient to find the
Janet base with respect to the differential indeterminate z and a new indeterminate w = uz with
w > z in a lexicographic term ordering. This yields the differential polynomials wx + a1wy + b1w and
wx + a2wy + b2w − zx − a2zy − b2z. If a1 6= a2 autoreduction leads to

wy + b1 − b2
a1 − a2

w + 1
a1 − a2

(zx + a2zy + b2z),

wx + a1b2 − a2b1
a1 − a2

w − a1
a1 − a2

(zx + a2zy + b2z).

(3)

The integrability condition between these two elements has the form

b1 − b2
a1 − a2

wx −
a1b2 − a2b1
a1 − a2

wy +

(
(
b1 − b2
a1 − a2

)x − (
a1b2 − a2b1
a1 − a2

)y

)
w + terms in z.

The first derivatives wx and wy may be eliminated by a further reduction without changing the
coefficient of w. If it vanishes, the remaining expression containing only terms in z is the lowest
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element of a Janet base. The vanishing of the coefficient of w yields the condition of case 2), the
corresponding second-order operator generates the intersection ideal. If the coefficient of w does not
vanish, this expression must be applied to eliminate w in (3). It yields the two third-order operators
in case 3) with leading terms ∂xxy and ∂xxx. Finally, if a1 = a2 autoreduction leads in a single step to

wx + a1wy + b1w, w +
1

b1 − b2
(zx + a1zy + b2z).

Substituting w into the first expression yields the second-order operator in case 1).
To establish the last claim in case 2) apply directly Theorem 1.5.
To prove the last claim in case 1) let L1 = ∂x+a∂y+b1 6= L2 = ∂x+a∂y+b2 and L = L3L1 = L4L2.

Clearly, L ∈< L1 > ∩ < L2 >. Now take any P ∈< L1 > ∩ < L2 > and divide it from the left with
the remainder by L with respect to ∂x (cf. the previous Section), then P = QL+R where R = A∂x+B
for certain A,B ∈ F [∂y]. Since R = L5L1 = L6L2 we get L5 = A = L6. The achieved contradiction
completes the proof of the last claim in case 1). 2

Remark 2.2 a) In cases 1) and 2) of the Theorem if L = L1L2 then one can verify that L1L2 =
L2L1 (the converse follows from Proposition 1.9).

b) Cases 1) and 2) of the Theorem show that the second-order LPDO L posesses the unique Loewy
decomposition (which is known for the linear ordinary differential operators [12]), i.e. L =
L1 · · ·Lk (of course, k ≤ 2) where each Li is the lcm of its irreducible right factors. Namely, in
both cases 1) and 2) we have k = 1, the same holds if L is irreducible. Finally, if L has a unique
factorization in two first-order factors L = L1L2 then k = 2.

The above Theorem 2.1 shows that in general the lcm of two LPDO’s does not exist. In fact, its
existence even for first-order operators is highly exceptional as it is obvious from the constraints for
cases 1) and 2). It is interesting to note that in accordance with a theorem due to Stafford [19] in those
cases where the lcm does not exist, the intersection ideals are generated by exactly two operators, see
also the discussion in [7].

The intersection of ideals generated by a LPDO of order higher than one becomes increasingly
complicated and the number of alternatives increases rapidly. For an ideal I ⊂ D we denote by
LTI ⊂ D the leading terms ideal generated by the highest derivatives of all LPDO’s from I with respect
to gradlex ordering in which x > y (cf. [3]). The leading terms ideal LTI1∩I2 of the intersection of two
ideals with LTI1 =< ∂x >, LTI2 =< ∂xx > may be of different forms: for example, < ∂xxxy, ∂xxxx > ,
< ∂xxxyy, ∂xxxx >, < ∂xxx > etc. In the subsequent theorem the case of a principal ideal intersection
will be described in some detail because it is relevant for the applications in Section 4.

Theorem 2.3 Let the principal ideals

I1 =< ∂x + a1∂y + b1 >, I2 =< ∂xx + a2∂xy + b2∂yy + c2∂x + d2∂y + e2 >⊂ D

be given and define

p ≡ a1,x − a1,ya1 − 2a1b1 + a2(a1,y + b1) + a1c2 − d2,

q ≡ b1,x − b1,ya1 − b21 + a2b1,y + b1c2 − e2, r ≡ a1a2 − a2
1 − b2.

Then LTI1∩I2 =< ∂xxx > if at least one of the following set of conditions (4) or (5) is satisfied.

a1,yy − a1,y
p

r
+ 2b1,y = (

p

r
)x + a1(

p

r
)y, b1,yy + b1,y

p

r
− 2a1,y

q

r
= (

q

r
)x + a1(

q

r
)y, r 6= 0. (4)

(
q

p
)x − (

q

p
)y = b1,y, r = 0. (5)
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The proof is similar to that of Theorem 2.1 dealing with the intersection of first-order ideals and is
therefore omitted. The conditions (4) or (5) are sufficient for the existence of a principal intersection.
It is not excluded however, that there may be other cases involving more complicated coefficient
constraints leading to a principal intersection as well.

If a third-order operator is factorized there may occur a problem of calculating the intersection of
three ideals, each of which is generated by a first-order operator L1, L2 and L3. Its intersection may
be obtained by applying first Theorem 2.1 to the three pairs < Li > ∩ < Lj > with i = 1, j = 2;
i = 1, j = 3 and i = 2, j = 3. If a principal ideal is generated by some choice of i and j, Theorem 2.3
may be applied to determine its intersection with the remaining ideal < Lk >, k 6= i, j.

3 Factorization of Second-Order Differential Operators

From now on the coefficients of a given second-order operator are assumed to be from the base field
Q(x, y). This is necessary if the goal is to obtain constructive answers allowing to factorize large
classes of operators.

Theorem 3.1 (Miller 1932) Let a second-order LPDO

L = ∂xx +Q1∂xy +Q2∂yy +Q3∂x +Q4∂y +Q5 (6)

be given with Qk ∈ F for all k. A first order right factor ∂x+S1∂y+S2 with S1, S2 ∈ F may exist only
if there is a solution of S2

1 −Q1S1 +Q2 = 0 for S1. The following two cases have to be distinguished.

1) Q2 6= 1
4Q

2
1, i.e. L is separable. The two values for S1 are S1 = 1

2Q1 ±
√

1
4Q

2
1 −Q2, then S2 is

uniquely determined from

(S1 −
1

2
Q1)S2 =

1

2
S1,x −

1

2
(S1 −Q1)S1,y +

1

2
Q3S1 −

1

2
Q4. (7)

In addition the following condition must be satisfied.

S2,x − (S1 −Q1)S2,y − S2
2 +Q3S2 −Q5 = 0. (8)

2) Q2 = 1
4Q

2
1, i.e. L is non-separable. There is a single value S1 = 1

2Q1, in this case S2 has to be
obtained from

S2,x +
1

2
Q1S2,y − S2

2 +Q3S2 −Q5 = 0. (9)

In addition there must hold

Q1,x +
1

2
Q1Q1,y +Q1Q3 − 2Q4 = 0. (10)

If there are two first-order right factors, their lcm exists and generates the same ideal as the operator
(6).

Proof. Dividing the given operator (6) by ∂x +S1∂y +S2, the condition that this division be exact
leads to the following set of equations between the coefficients.

S2
1 −Q1S1 +Q2 = 0,

S1,x + (Q1 − S1)S1,y +Q3S1 + (Q1 − 2S1)S2 = Q4,

S2,x + (Q1 − S1)S2,y − S2
2 +Q3S2 = Q5.
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The first equation determines always S1. If Q1 6= 2S1, the second equation determines S2, and the
third equation is a constraint (8) for the coefficients of (6). This is case 1). If Q1 = 2S1 there holds

Q2 = 1
4Q

2
1 and the first equation has the double root S1 = 1

2Q1. The coefficient of S2 in the second
equation vanishes, upon substitution of S1 it becomes constraint (10). S2 has to be determined from
the last equation which is (9) being a partial Riccati equation for S2.

If there are two factors, in case 1) a straightforward but tedious calculation shows that they always
obey the constraint given in case 2) of Theorem 2.1. In case 2), if two factors exist, they have identical
coefficients of ∂y and therefore by case 1) of the same theorem the lcm exists. 2

Remark 3.2 In the separable case 1), reducibility may always be decided, and the possible factors
may be obtained by algebraic operations. Its coefficients are either from Q(x, y) or from a quadratic
extension of Q(x, y). In case 2), absolute reducibility may always be decided by testing condition (10).
If the answer is positive, the coefficient S2 may be obtained by solving the partial Riccati equation (7).
The latter is discussed in Lemma 5.3 in the Appendix.

Example 1. Let the operator ∂xx− 2y
x ∂xy+ y2

x2 (1−x4y2)∂yy+ 2y
x2 ∂y be given. Because 1

4Q
2
1−Q2 =

x2y4 6= 0, case 1) of Theorem 3.1 applies. It yields S1 = −yx ±xy
2 and S2 = ∓xy. Both choices satisfy

condition (8). Consequently there exist the two first-order right factors ∂x − (yx ± xy
2)∂y ± xy.

Example 2. Consider the operator

∂xx + 1
x(x2y2 + x− y)∂xy + y

x(x2y − 1)∂yy

−x(y − 1)∂x + 1
x2 (x4y2 + x3y + x2y2 − x2y − x+ y)∂y − x2y − x− y.

Because 1
4Q

2
1 − Q2 = 1

4x2 (x2y2 − x − y)2 6= 0, case 1) of Theorem 3.1 applies. The first alternative

S1 = y
x(x2y − 1) and S2 = −xy satisfies condition (8). The other alternative is S1 = 1 and a

fairly complicated expression for S2 which does not satisfy (8) and therefore have to be discarded.
Consequently there is a single first-order right factor which leads to the factorization

(∂x + ∂y + x)(∂x − (
y

x
− xy2)∂y − xy) (11)

of the given operator. The right factor coincides with one of the factors in the preceding example.

Example 3. (Miller 1932) Let the operator

∂xx +
2y

x
∂xy +

y2

x2∂yy +
1

x
∂x +

y

x2∂y −
1

x2

be given. Because 1
4Q

2
1 − Q2 = 0, case 2) of Theorem 3.1 applies. It yields S1 = y

x and leads

to the equation S2,x + y
xS2,y − S2

2 + 1
xS2 + 1

x2 = 0 for S2. According to Lemma 5.3, its general

solution is S2 = 1
x

1 + x2Φ(φ)
1− x2Φ(φ)

where φ = y
x and Φ is an undetermined function of its argument.

Consequently the given second-order operator has an infinite number of first-order right factors of the

form ∂x + y
x∂y + 1

x
1 + x2Φ(φ)
1− x2Φ(φ)

which are parametrized by Φ.

If the term ∂xx does not occur in LPDO (6) but ∂yy occurs, Theorem 3.1 may be applied after x
and y are exchanged. The special case where the only second-order term is ∂xy may be traced back
to the previous one by a change of variables, or it may be treated directly as in the proof of the above
theorem. In any case, the answer simplifies considerably as it is shown next.
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Corollary 3.3 Let a second-order LPDO ∂xy +Q3∂x +Q4∂y +Q5 be given with Qk ∈ Q(x, y) for all
k. The following two cases have to be distinguished.

1) There exists a first-order right factor ∂x +Q4 if and only if Q5 −Q3Q4 = Q4,y.

2) There exists a first-order right factor ∂y +Q3 if and only if Q5 −Q3Q4 = Q3,x.

If the conditions for both cases 1) and 2) are satisfied, the given LPDO is the lcm of the two first-order
factors.

Example 4. Let a LPDO ∂xy + 1
x+ y (α∂x + β∂y) be given. The preceding corollary leads

immediately to the following result. If α = 1, β 6= 1 it factors into (∂y + 1
x+ y )(∂x + β

x+ y ). If

α 6= 1 and β = 1 it factors into (∂x + 1
x+ y )(∂y + α

x+ y ). If both α = β = 1 it is equal to

lcm(∂x + 1
x+ y , ∂y + 1

x+ y ).

If a second-order LPDO is reducible, solving the corresponding differential equation is reduced to
solving one or more first order equations (cf. the Remark 1.8). In the Appendix a few results on
solving such equations are listed. They are applied next for solving reducible second-order equations.

Theorem 3.4 The solutions of a second-order linear pde may be described as follows.

1) If the corresponding second-order LPDO is the lcm of two first-order LPDO, i.e. if

L ≡ ∂xx + q1∂xy + q2∂yy + q3∂x + q4∂y + q5 = lcm(∂x + a1∂y + a2, ∂x + b1∂y + b2),

the general solution of Lz = 0 has the form z(x, y) = z0(x, y) + z1(x, y) (see the Remark 1.8)
where

z0(x, y) = Φ(φ)e−
∫
a2(x,φ̄)dx|ȳ=φ, z1(x, y) = Ψ(ψ)e−

∫
b2(x,ψ̄)dx|ȳ=ψ, (12)

φ(x, y) is the integral of dydx = a1, ψ(x, y) is the integral of dydx = b1, φ̄ is the inverse of ȳ =

φ(x, y), i. e. y = φ̄(x, ȳ), and ψ̄ is the inverse of ȳ = ψ(x, y), i. e. y = ψ̄(x, ȳ).

If the gcd ideal of the two first-order factors is nontrivial with a solution w(x, y), by Corollary 5.2,
the general solution may be written in the simplified form [Φ(φ) + Ψ(ψ)]w(x, y). If the gcd ideal
is finite-dimensional then in order to yield its solution w(x, y) one can make use of [11].

2) If the corresponding second-order LPDO is not the lcm of two first-order LPDO but has only
one factorization

L ≡ ∂xx + q1∂xy + q2∂yy + q3∂x + q4∂y + q5 = (∂x + b1∂y + b2)(∂x + a1∂y + a2),

the general solution of Lz = 0 has the form

z(x, y) = z0(x, y) + e−
∫
a2(x,φ̄)dx

∫
z1(x, φ̄)e

∫
a2(x,φ̄)dxdx|ȳ=φ (13)

with z0 and z1 as in the previous case.

Example 1 (completed). By case 2) of Theorem 2.1, the gcd ideal is < ∂x − 1
x, ∂y −

1
y >6= 1.

With the notation of case 1) of Theorem 3.4, the first order ode’s y′±xy2 + 1
xy = 0 for the integral of

the homogeneous part are obtained. These Riccati equations have the general solutions y = 1
Cx± x2

9



where C is a constant. They yield the first integrals φ = 1
xy+x and ψ = 1

xy−x respectively. Applying

Corollary 5.2 the general solution may be written as [Φ( 1
xy + x) + Ψ( 1

xy − x)]xy.

Example 2 (completed). The solution has to be constructed by case 2) of Theorem 3.4. The

right factor yields z0(x, y) = xyΦ( 1
xy + x), the left factor z1(x, y) = Ψ(x− y) exp (−1

2x
2) with Φ and

Ψ undetermined functions. Substituting these expressions into (13) finally yields

z(x, y) = xyΦ(
1

xy
+ x)− 1

xy

∫
(x− ȳ)Ψ(x− φ̄) exp (−1

2
x2)dx|ȳ=φ

where φ = 1
xy + x and φ̄ = 1

x(ȳ − x)
.

Example 3 (completed). There are several ways to proceed in this case. Two different right
factors may be created by two choices of Φ, e. g. Φ = 1 and Φ = y

x . Then by applying case 1) of
Theorem 3.4, the solution is obtained in the form

z(x, y) = (x− 1

x
)Φ(

y

x
) +

y

x2 (xy − 1)Ψ(
y

x
).

Alternatively Lemma 5.1 may be applied to the general first-order factor which results in

z(x, y) =
1

x
Φ(
y

x
)(x2Φ(

y

x
)− 1)Ψ(

y

x
) = xΦ̄(

y

x
)− 1

x
Ψ̄

where Φ̄ = Φ2Ψ and Ψ̄ = ΦΨ.

4 Factorization of Third-Order Differential Operators

In this section we study third-order LPDO’s from the ring D = Q(x, y)[∂x, ∂y].

Theorem 4.1 Let a third-order LPDO be given with coefficients Qk ∈ F for all k.

∂xxx +Q1∂xxy +Q2∂xyy +Q3∂yyy +Q4∂xx +Q5∂xy +Q6∂yy +Q7∂x +Q8∂y +Q9. (14)

A first-order right factor ∂x + S1∂y + S2 with S1, S2 ∈ F may exist only if there is a solution of
S3

1 −Q1S
2
1 +Q2S1−Q3 = 0 in F for S1. In addition, the following two cases have to be distinguished.

1.1) If S2
1 − 2

3Q1S1 + 1
3Q2 6= 0 (cf. Remark 1.3), then S2 is uniquely determined from

(S2
1 − 2

3Q1S1 + 1
3Q2)S2

= (S1 − 1
3Q1)S1,x − (S2

1 −Q1S1 + 2
3Q2)S1,y + 1

3Q4S
2
1 − 1

3Q5S1 + 1
3Q6.

(15)

1.2) If S2
1 − 2

3Q1S1 + 1
3Q2 = 0 (i.e. (14) being non-separable, cf. Section 1), then S2 has to be

obtained as a solution of

(S1 − 1
3Q1)S2,x − (S2

1 −Q1S1 + 2
3Q2)S2,y − (S1 − 1

3Q1)S2
2

+(S1,x − S1S1,y + 2
3Q1S1,y + 2

3Q4S1 − 1
3Q5)S2

−1
3S1,xx + 1

3(S1 −Q1)S1,xy − 1
3(S2

1 −Q1S1 +Q2)S1,yy + 2
3S1,xS1,y

−1
3Q4S1,x − 1

3(S1 −Q1)S2
1,y + 1

3(Q4S1 −Q5)S1,y − 1
3Q7S1 + 1

3Q8 = 0.

(16)
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Two additional constraints of the form

Fk(Q1, . . . , Q9, Q1,x, . . . , Q9,yy) = 0 for k = 1, 2 (17)

and Fk a polynomial in its arguments have to be satisfied. Due to their huge sizes we omit them.
A second-order right factor ∂xx +S1∂xy +S2∂yy +S3∂x +S4∂y +S5 of (14) may exist only if there

is a solution of S3
1 − 2Q1S

2
1 + (Q2 +Q2

1)S1 +Q3 −Q1Q2 = 0 for S1. Then S2 = S2
1 −Q1S1 +Q2 and

the following two cases have to be distinguished.

2.1) If S2
1 − 4

3Q1S1 + 1
3(Q2 +Q2

1) 6= 0, then S3 is uniquely determined from

(S2
1 − 4

3Q1S1 + 1
3(Q2 +Q2

1))S3 + (S1 − 2
3Q1)S1,x − (S2

1 − 5
3Q1S1 − 2

3Q
2
1)S1,y

+1
3(2Q4 +Q1,y)S

2
1 − 1

3(Q5 + 2Q1Q4 +Q2,y +Q1,x +Q1Q1,y)S1

+1
3(Q2,x +Q2,yQ1 +Q4Q2 +Q5Q1 −Q6) = 0.

(18)

2.2) If S2
1 − 4

3Q1S1 + 1
3(Q2 +Q2

1) = 0, then S3 is obtained from

(S1 − 2
3Q1)S3,x − (S2

1 − 5
3Q1S1 + 2

3Q
2
1)S3,y − (S1 − 2

3Q1)S2
3

+(S1,x − S1S1,y +Q1S1,y + 4
3Q4S1 + 1

3Q1,yS1 − 1
3Q5 − 2

3Q4Q1 − 1
3Q1,x − 1

3Q1Q1,y)S3

−1
3S1,xx + 2

3(S1 −Q1)S1,xy − 1
3(S2

1 − 2Q1S1 +Q2
1)S1,yy + 1

3S1,xS1,y + 2
3Q4(S1,yS1 − S1,x)

−2
3Q4S1,x − 1

3(S1 −Q1)S2
1,y + 1

3(Q1,yS1 − 2Q4Q1 −Q1,x −Q1,yQ1)S1,y + 1
3Q4,yS

2
1

−1
3(Q7 +Q5,y +Q4,x +Q4,yQ1 +Q2

4)S1 + 1
3(Q8 +Q7Q1 +Q5,x +Q5,yQ1 +Q5Q4) = 0.

(19)
As for the first-order factor, two additional constraints of the form (17) have to be satisfied.

The remaining coefficients are

S4 = 2S3S1 −Q1S3 − S1,x + (S1 −Q1)S1,y −Q4S1 +Q5,

S5 = S2
3 − S3,x + (S1 −Q1)S3,y −Q4S3 +Q7.

The proof of this result is similar to the case of the second-order factorization in Theorem 3.1 and
is therefore omitted.

Remark 4.2 In the separable cases 1.1) and 2.1), reducibility may always be decided, and the possible
factors may be obtained by algebraic operations and derivations. Its coefficients are either from Q(x, y)
or from a quadratic or cubic extension of it. In cases 1.2) and 2.2), absolute reducibility may always
be decided by testing conditions (17). If absolute irreducibility is precluded, the coefficient S2 or S3

may be obtained by solving the partial Riccati equation (16) or (19) respectively.

Example 5 (Blumberg 1912) In his dissertation [1] Blumberg gave the following example of a
reducible third-order LPDO with two different factorizations involving first-order right factors.

L = ∂xxx + x∂xxy + 2∂xx + 2(x+ 1)∂xy + ∂x + (x+ 2)∂y

= (∂xx + x∂xy + ∂x + (x+ 2)∂y)(∂x + 1) = (∂x + 1)(∂x + 1)(∂x + x∂y).
(20)
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The right factor ∂x + 1 is obtained from case 1.2) of the above theorem. The solution S1 = 0 leads to
the equation

S2,x − S2
2 + (2 +

2

x
)S2 − 1− 2

x
= 0

with the general solution S2 = 1 + 1
x −

1
C + x where C denotes an arbitrary function depending only

on y. The constraint F1 = 0 is satisfied for any C whereas F2 = 0 leads to C = 0, i. e. S2 = 1.
Furthermore Blumberg showed that the second-order left factor in this factorization is absolutely
irreducible. The other right factor ∂x + x∂y is obtained from case 1) for S1 = x. It turns out that the
quotient by this factor which is ∂xx + 2∂x + 1 is completely reducible with the consequence that the
second factorization in (20) should be replaced by

lcm(∂x + 1− 1

C1 + x
, ∂x + 1− 1

C2 + x
)(∂x + x∂y)

where C1 6= C2 are constants w.r.t. x, i. e. (Ck)x = 0, k = 1, 2. The limit Ck →∞ leads to the factor
∂x + 1 as given in (20). The intersection ideal of the two first-order right factors

< ∂x + 1 > ∩ < ∂x + x∂y >=

< ∂xxy + x∂xyy − 1
x∂xy + x∂yy − 1

x∂x −
x+ 1
x ∂y,

∂xxx − x2∂xyy + 3∂xx + (2x+ 3)∂xy − x2∂yy + 2∂x + (2x+ 3)∂y >

is not principal (see Theorem 2.1 case 3)). This demonstrates that a direct analogue of the Loewy
decomposition (cf. [12] and the Remark 2.2) fails for third-order LPDO’s. Indeed, L from (20) is
not lcm of its only two irreducible right factors ∂x + 1 and ∂x + x∂y (one can check making use of
Theorem 4.1 that there are no other irreducible right factors neither of the first- nor of the second-
order). However, all intersections

< (∂x + 1− 1

C + x
)(∂x + x∂y) > ∩ < ∂x + 1 >=< L >

are principal. This means that L has infinitely many representations as the lcm of a second-order and
a first-order operator.

Similar as in the second-order case, when the leading derivative of a third-order operator is ∂xxy or
∂xyy, the possible factorizations are relatively simple as is shown next for the former case. The latter
may be reduced to it by exchanging its variables.

Corollary 4.3 Let a third-order LPDO ∂xxy +Q2∂xyy +Q4∂xx +Q5∂xy +Q6∂yy +Q7∂x +Q8∂y +Q9

be given with Qk ∈ Q(x, y) for all k. The following four cases have to be distinguished.

1) There exists a first-order right factor ∂x + S1∂y + S2 if and only if one of the following set of
conditions is satisfied.

S1 = 0, S2 = Q6
Q2

, S2,x + 2Q2S2,y − S2
2 +Q5S2 = Q8,

S2,xy +Q2S2,yy +Q4S2,x +Q5S2,y −Q4S
2
2 +Q7S2 = 2S2S2,y

or

S1 = Q2, S2 = −Q6
Q2

+
Q2,x

Q2
−Q2,y −Q2Q4 +Q5,

S2,xy +Q4S2,x + (Q5 −Q2,y −Q2Q4)S2,y −Q4S
2
2 +Q7S2 = 2S2,yS2 +Q9,

S2,x − S2
2 + (Q5 −Q2Q4 −Q2,y)S2 +Q2,yyQ2 + (Q4,y +Q2

4)Q2
2

+(2Q2,y −Q5)Q2Q4 −Q2Q5,y +Q2Q7 +Q4Q6 +Q6,y −Q8 = 0.
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2) There exists a first-order right factor ∂y + S2 if and only if there holds

S2 = Q4, 2Q4,x +Q2Q4,y +Q4(Q5 −Q2Q4) = Q7,

Q4,xx +Q2Q4,xy + (Q5 − 2Q2Q4)Q4,x +Q6Q4,y = Q4(Q4Q6 −Q8) +Q9.

3) There exists a second-order right factor ∂xx + S1∂xy + S2∂yy + S3∂x + S4∂y + S5 if and only if
there holds

S1 = Q2, S2 = 0, S3 = Q5 −Q2Q4 −Q2,y, S4 = Q6, S5 = Q8 −Q4Q6 −Q6,y,

S3,y +Q4S3 = Q7, S5,y +Q4S5 = Q9.

4) There exists a second-order right factor ∂xy +S2∂yy +S3∂x +S4∂y +S5 if and only if one of the
following set of conditions is satisfied.

S2 = 0, S3 = Q4, S4 = Q6
Q2

, S5 = Q4Q6
Q2

−Q2(Q4,y −Q2
4)−Q4Q5 −Q4,x +Q7,

S4,x +Q2S4,y +Q5S4 − S2
4 +Q2S5 = Q4Q6 +Q8,

S5,x +Q2S5,y + (Q5 −Q2Q5)S5 − S4S5 = Q9

or

S2 = Q2, S3 = Q4, S4 =
Q2,x

Q2
+Q5 − Q6

Q2
, S5 = Q4

Q2
(Q2,x −Q6 −Q4,x +Q7),

S4,x − S2
4 +Q5S4 = Q8, S5,x + (Q5 − S4)S5 = Q9.

5 Conclusion

The factorization problem for second- and third-order differential operators in two variables has been
shown to require the solution of a partial Riccati equation (23), which in turn requires to solve a general
first-order ode and possibly an ordinary Riccati equation. The bottleneck for designing a factorization
algorithm for a LPDO is the general first-order ode which makes the full problem intractable at present
because in general there are no solution algorithms available. Some of the results described in this
article may be generalized to any number of independent variables.

Appendix

The subject of this appendix are quasilinear first-order partial differential equations in a single depen-
dent variable z, depending on x and y. These results are needed in the main text, they are due to
Goursat [4] and Kamke [9]. The first lemma deals with the general linear equation.

Lemma 5.1 The general solution of the linear partial differential equation

zx + a1zy + a2z + a3 = 0 (21)

with ak ≡ ak(x, y) ∈ Q(x, y), k = 1, . . . , 3 may be described as follows. Let φ(x, y) = const be the first

integral obtained from the solution of the first order ode dy
dx = a1(x, y). Assume that ȳ = φ(x, y) and

the inverse y = φ̄(x, ȳ) exist. Then the general solution of (21) is

z(x, y) =

(
Φ(φ)−

∫
a3(x, φ̄)e

∫
a2(x,φ̄)dxdx

)
e−
∫
a2(x,φ̄)dx|ȳ=φ (22)

with Φ an undetermined function of its argument.
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Proof. It is based on the procedure described in [9], Section 4.2. A homogeneous equation
corresponding to (21) for a new function w(x, y, z) is wx + a1wy − (a2z+ a3)wz = 0. A first integral φ

is obtained from dy
dx = a1. If it is applied for introducing a new variable ȳ as described in the Lemma,

the equation w̄x − (a2z + a3)|y=φ̄w̄z = 0 for w̄ is obtained with the first integral

ψ = ze
∫
a2(x,φ̄)dx +

∫
a3(x, φ̄)e

∫
a2(x,φ̄)dxdx.

Consequently the general solution w = Ψ(φ, ψ) is obtained with an undetermined function Ψ. Resub-
stituting ȳ = φ(x, y) and solving for z yields (22). 2

Corollary 5.2 Let z1 6= 0 and z2 be special solutions of zx+a1zy+a2z = 0, then the quotient z0 = z2
z1

is a solution of the homogeneous equation zx + a1zy = 0.

Proof. For any two solutions z1, z2 of zx + a1zy + a2z = 0, the quotient z2
z1

is a solution of
zx + a1zy = 0 as is obvious from

(
z2

z1
)x + a1(

z2

z1
)y =

1

z1
(z2,x + a1z2,y)−

z2

z2
1

(z1,x + a1z1,y) =
1

z1
(−a2z1)− z2

z2
1

(−a2z1) = 0. 2

For a2 and/or a3 = 0, the solution (22) simplifies in an obvious way to the solution of the respective
homogeneous equation.

The equation considered in the next Lemma is called partial Riccati equation for obvious reasons,
i. e. it is linear in the first order derivatives and quadratic in the dependent variable.

Lemma 5.3 The general solution of the partial Riccati equation

zx + a1zy + a2z
2 + a3z + a4 = 0 (23)

with ak ≡ ak(x, y) ∈ Q(x, y), k = 1, . . . , 4, may be described as follows. Let φ(x, y) = const be the first

integral obtained from the solution of the first order ode dy
dx = a1(x, y). Assume that ȳ = φ(x, y) and

the inverse y = φ̄(x, ȳ) exists, and generate the Riccati equation

dz

dx
+ a2(x, ȳ)z2 + a3(x, ȳ)z + a4(x, ȳ) = 0. (24)

Into its solution substitute ȳ = φ(x, y) to obtain the first integral ψ(x, y, z) = const. Solving the
relation ψ = Φ(φ) for z, where Φ is an undetermined function of its argument, yields the general
solution of (23).

Proof. By the same procedure as in the proof for Lemma 5.1, now for w̄(x, ȳ, z) the equation
w̄x − (a2z

2 + a3z + a4)|y=φ̄w̄z = 0 is obtained. Its first integral is determined by the general solution
of (24), from which the solution of (23) is obtained as described above. 2

Remark 5.4 Both equations (21) and (23) require solving a first order non-linear ode. No algorithm
is known for solving such an equation in general. If any solution has been found by ad hoc methods,
e. g. using a symmetry, the solution (22) is obtained by integration.
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[1] H. Blumberg, Über algebraische Eigenschaften von linearen homogenen Differentialausdrücken,
Inaugural-Dissertation, Göttingen, 1912,

[2] P. Cassidy, Differential Algebraic Groups, Amer. J. Math., 94, 891-954 (1972).

[3] D. Cox, J. Little, D. O’Shea, Ideals, Varieties and Algorithms, Springer, 1991.
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