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2 Dima Grigoriev, Edward A. Hirsh, and Dmitrii V. PasehnikSemi-algebrai proof systems. In [1℄, we have introdued several semi-algebraiproof systems. In these system, one deals with polynomial inequalities, and newinequalities an be derived by algebrai operations like the sum, the multipli-ation and the division. The simplest semi-algebrai systems are the so-alledLov�asz-Shrijver aluli (see [2, 3℄, f. also [11℄ and Subsetion 2.3 below), wherethe polynomials are restrited to quadrati ones. No exponential lower boundsare known so far even for these restrited systems (a number of lower boundson the number of steps of Lov�asz-Shrijver proedure is known [12{15, 1℄, butthey do not imply exponential lower bounds on the size of proofs [1℄). Moreover,general semi-algebrai proof systems, (where one allows polynomials of arbitarydegree, see [1℄ and Subsetion 2.3 below), appear to be very strong. In [1℄, it isproved that suh systems have short proofs of Tseitin's tautologies, the pigeon-hole priniple, lique-oloring tautologies and the symmetri knapsak problem.They also polynomially simulate the Cutting Planes proof system [16{19℄ withpolynomially bounded oeÆients. Another (and muh stronger) kind of semi-algebrai proof system was introdued in [20℄ with no fous on the omplexity.Stati systems and our results. Another proof system manipulating polynomialinequalities alled the Positivstellensatz Calulus was introdued in [21℄. Lowerbounds on the degree in this system were established for the parity priniple, forTseitin's tautologies [22℄ and for the knapsak problem [23℄. Lower bounds onthe Positivstellensatz Calulus degree are possible beause its \dynami" partis restrited to an ideal and an element of a one is obtained from an elementof ideal by adding the sum of squares to it. On the ontrary, the semi-algebraiproof systems introdued in [2, 3, 1℄ are ompletely \dynami" proof systems.(The disussion on stati and dynami proof systems an be found in [21℄. Briey,the di�erene is that in the dynami semi-algebrai proof systems a derivationonstruts gradually an element of the one generated by the input system ofinequalities, while in the Positivstellensatz Calulus the sum of squares is givenexpliitly.) We onsider a stati version of Lov�asz-Shrijver aluli and prove anexponential lower bound on the size of refutation of the symmetri knapsakproblem (Setion 4); this bound also translates into the bound for the tree-likeversion of (dynami) LS. The key ingredient of the proof is a linear lower boundon the \Boolean degree" of Positivstellensatz Calulus refutations (Setion 3).Note that exponential lower bounds on the size of (stati!) Positivstellensatzrefutations are still unknown.Organization of the paper. We start with the de�nitions of proof systems ingeneral and the partiular proof systems we use in our paper (Setion 2). Wethen prove a lower bound on the \Boolean degree" of Positivstellensatz Calulusrefutations of the symmetri knapsak problem (Setion 3), and derive from itan exponential lower bound on the size of proofs in a stati semi-algebrai proofsystem and in the tree-like versions of two dynami semi-algebrai proof systems(Setion 4). Finally, we formulate open questions (Setion 5).



Exponential Lower Bound for Stati Semi-Algebrai Proofs 32 De�nitions2.1 Proof systemsA proof system [24℄ for a language L is a polynomial-time omputable funtionmapping words (proof andidates) onto L (whose elements are onsidered astheorems).A propositional proof system is a proof system for any �xed o-NP-ompletelanguage of Boolean tautologies (e.g., tautologies in DNF).When we have two proof systems �1 and �2 for the same language L, wean ompare them. We say that �1 polynomially simulates �2, if there is afuntion g mapping proof andidates of �2 to proof andidates of �1 so that forevery proof andidate � for �2, one has �1(g(�)) = �2(�) and g(�) is at mostpolynomially longer than �.Proof system �1 is exponentially separated from �2, if there is an in�nitesequene of words t1; t2; : : : 2 L suh that the length of the shortest �1-proof ofti is polynomial in the length of ti, and the length of the shortest �2-proof of tiis exponential.Proof system �1 is exponentially stronger than �2, if �1 polynomially sim-ulates �2 and is exponentially separated from it.When we have two proof systems for di�erent languages L1 and L2, we analso ompare them if we �x a redution between these languages. However, it anbe the ase that the result of the omparison is more due to the redution thanto the systems themselves. Therefore, if we have propositional proof systems forlanguages L1 and L2, and the intersetion L = L1 \ L2 of these languages iso-NP-omplete, we will ompare these systems as systems1 for L.2.2 Algebrai proof systemsThere is a series of proof systems for languages onsisting of unsolvable systemsof polynomial equations. To transform suh a proof system into a propositionalproof system, one needs to translate Boolean tautologies into systems of poly-nomial equations.To translate a formula F in k-DNF, we take its negation :F in k-CNF andtranslate eah lause of :F into a polynomial equation. A lause ontainingvariables vj1 ; : : : ; vjt (t � k) is translated into an equation(1� l1) � : : : � (1� lt) = 0; (1)where li = vji if variable vji ours positively in the lause, and li = (1� vji) ifit ours negatively. For eah variable vi, we also add the equation v2i � vi = 0to this system.1 If one an deide in polynomial time for x 2 L1, whether x 2 L, then any proofsystem for L1 an be restrited to L � L1 by mapping proofs of elements of L1 n Linto any �xed element of L. For example, this is the ase for L1 onsisting of alltautologies in DNF and L onsisting of all tautologies in k-DNF.



4 Dima Grigoriev, Edward A. Hirsh, and Dmitrii V. PasehnikRemark 1. Observe that it does not make sense to onsider this translationfor formulas in general DNF (rather than k-DNF for onstant k), beause anexponential lower bound for any system using suh enoding would be trivial(note that (1� v1)(1� v2) : : : (1� vn) denotes a polynomial with exponentiallymany monomials).Note that F is a tautology if and only if the obtained system S of polynomialequations f1 = 0, f2 = 0, . . . , fm = 0 has no solutions. Therefore, to prove F itsuÆes to derive a ontradition from S.Nullstellensatz (NS) [4℄. A proof in this system is a olletion of polynomialsg1; : : : ; gm suh that Xi figi = 1:Polynomial Calulus (PC) [8℄. This system has two derivation rules:p1 = 0; p2 = 0p1 + p2 = 0 and p = 0p � q = 0 : (2)I.e., one an take a sum2 of two already derived equations p1 = 0 and p2 = 0,or multiply an already derived equation p = 0 by an arbitrary polynomial q.The proof in this system is a derivation of 1 = 0 from S using these rules.Positivstellensatz [21℄. A proof in this system onsists of polynomialsg1; : : : ; gm and h1; : : : ; hl suh thatXi figi = 1 +Xj h2j (3)Positivstellensatz Calulus [21℄. A proof in this system onsists of polyno-mials h1; : : : ; hl and a derivation of 1+Pj h2j = 0 from S using the rules (2).2.3 Dynami semi-algebrai proof systemsTo de�ne a propositional proof system manipulating with inequalities, we againtranslate eah formula :F in CNF into a system S of linear inequalities, suhthat F is a tautology if and only if S has no 0-1 solutions. Given a Booleanformula in CNF, we translate eah its lause ontaining variables vj1 ; : : : ; vjtinto the inequality l1 + : : :+ lt � 1; (4)where li = vji if the variable vji ours positively in the lause, and li = 1� vjiif vji ours negatively. We also add to S the inequalitiesx � 0; (5)x � 1 (6)for every variable x.2 Usually, an arbitrary linear ombination is allowed, but learly it an be replaed bytwo multipliations and one addition.



Exponential Lower Bound for Stati Semi-Algebrai Proofs 5Lov�asz-Shrijver alulus (LS) [2, 3℄ (f. also [11℄). In the weakest ofLov�asz-Shrijver proof systems, the ontradition must be obtained usingthe rule f1 � 0; : : : ; ft � 0Pti=1 �ifi � 0 (where �i � 0); (7)applied to linear or quadrati fi's and the rulesf � 0fx � 0; f � 0f(1� x) � 0 (where f is linear, x is a variable): (8)Also, the system S is extended by the axiomsx2 � x � 0; x� x2 � 0 (9)for every variable x.LS+ [2, 3, 11℄. This system has the same axioms and derivation rules as LS,and also has the axiom l2 � 0 (10)for every linear l.Note that the Lov�asz-Shrijver systems desribed above deal either with lin-ear or quadrati inequalities. In [1℄, several extensions of Lov�asz and Shrijverproof systems are introdued. The main idea is to allow a proof to ontain mono-mials of degree up to d.LSd. This system is an extension of LS. The di�erene is that rule (8) is nowrestrited to f of degree at most d�1 rather than to linear inequalities. Rule(7) an be applied to any olletion of inequalities of degree at most d.Remark 2. Note that LS=LS2.2.4 Stati semi-algebrai proof systemsNullstellensatz is a \stati" version of Polynomial Calulus; Positivstellensatzis a \stati" version of Positivstellensatz Calulus. Similarly, we de�ne \stati"versions of the semi-algebrai proof systems de�ned in the previous subsetion.Stati LSn. A proof in this system is a a refutation of a system of inequalitiesS = fsi � 0gti=1, where eah si � 0 is either an inequality given by thetranslation (4), an inequality of the form xj � 0 or 1 � xj � 0, or aninequality of the form x2j � xj � 0. The refutation onsists of positive realoeÆients !i;l and multisets U+i;l and U�i;l de�ning the polynomialsui;l = !i;l � Yk2U+i;l xk � Yk2U�i;l(1� xk)suh that tXi=1 siXl ui;l = �1: (11)



6 Dima Grigoriev, Edward A. Hirsh, and Dmitrii V. PasehnikStati LSn+. The di�erene from the previous system is that S is extended byinequalities st+1 � 0; : : : ; st0 � 0, where eah polynomial sj (j 2 [t + 1::t0℄)is a square of another polynomial s0j . The requirement (11) transforms intot0Xi=1 siXl ui;l = �1: (12)Stati LS+. The same as stati LSn+, but the polynomials s0i an be only linear.Remark 3. Note that stati LS+ inludes stati LSn.Remark 4. Note that these stati systems are not propositional proof systemsin the sense of Cook and Rekhow [24℄, but are something more general, sinethere is no lear way to verify (11) in deterministi polynomial time (f. [25℄).However, they an be easily augmented to math the de�nition of Cook andRekhow, e.g., by inluding a proof of the equality (11) or (12) using axiomsof a ring (f. F-NS of [10℄). Clearly, if we prove a lower bound for the originalsystem, the lower bound will be valid for any augmented system as well.Remark 5. The size of a refutation in these systems is the length of a reasonablebit representation of all polynomials ui;l, si (for i 2 [1::t℄) and s0j (for j 2[t+ 1::t0℄) and is thus at least the number of ui;l's.Example 1. We now present a very simple stati LS+ proof of the propositionalpigeonhole priniple. The negation of this tautology is given by the followingsystem of inequalities:m�1X̀=1 xk` � 1; 1 � k � m; (13)xk` + xk0` � 1; 1 � k < k0 � m; 1 � ` � m� 1: (14)(That says that the k-th pigeon must get into a hole, while two pigeons k andk0 annot share the same hole `.)Here is the stati LS+ proof:mXk=1 m�1X̀=1 xk` � 1!+m�1X̀=1  mXk=1 xk` � 1!2 +m�1X̀=1 mXk=1 mXk 6=k0=1(1� xk` � xk0`)xk` +m�1X̀=1 mXk=1(x2k` � xk`)(m� 1)= �1: ut



Exponential Lower Bound for Stati Semi-Algebrai Proofs 73 Linear lower bound on the \Boolean degree" ofPositivstellensatz Calulus refutations of the knapsakWe use the following notation from [7, 23℄. For a polynomial f , its multilineariza-tion f is a polynomial obtained by the redution of f modulo (x�x2) for everyvariable x, i.e., f is the unique multilinear polynomial equivalent to f modulothese (\Boolean") polynomials. When f = f we say that f is redued.For a monomial t one an de�ne its Boolean degree Bdeg(t) as deg(t), in otherwords, the number of ourring variables; then one extends the onept of Bdegto polynomials: Bdeg(f) = maxBdeg(ti), where the maximum is taken over allnon-zero monomials ti ourring in f . Thereby, one an de�ne Bdeg of a deriva-tion in PC and subsequently in Positivstellensatz and Positivstellensatz Calulusas maximum Bdeg of all polynomials in the derivation (in Positivstellensatz andPositivstellensatz Calulus, this inludes polynomials h2j , f. de�nition in Sub-setion 2.2).The following lemma extends the argument in the proof of [7, Theorem 5.1℄from deg to Bdeg.Lemma 1. Let f(x1; : : : ; xn) = 1x1+: : :+nxn�m, where 1; : : : ; n 2 Rnf0g.Let q be deduible in PC from the knapsak problem f = 0 with Bdeg � d(n �1)=2e. Then one an representq = nXi=1(xi � x2i )gi + fg; (15)where deg(fg) � Bdeg(q).Proof. Similarly to the proof of [7, Theorem 5.1℄, we ondut the indution alonga (�xed) dedution in PC. Assume (15) and onsider a polynomial qx1 obtainedfrom q by multiplying it by a variable x1. W.l.o.g. one an suppose that g isredued. Then qx1 = fgx1; denote h = gx1. Let d = deg(h) � 1. We need toverify that d+ 2 = deg(fh) � Bdeg(qx1). Taking into aount thatd+ 1 = deg(h) � deg(g) + 1 = deg(fg) � Bdeg(q) � Bdeg(qx1);the mere ase to be brought to a ontradition is when Bdeg(qx1) = Bdeg(q) =deg(g) + 1 = d+ 1.We write g = p+x1p1 where all the terms of g not ontaining x1 are gatheredin p. Clearly, deg(p) � deg(g) = d. Moreover, deg(p) = d beause if deg(p) < d,we would have d+1 = deg(h) � Bdeg(gx1) � max(Bdeg(x1p);Bdeg(x21p1)) � d.On the other hand, d = Bdeg(q)�1 � d(n�1)=2e�1. Therefore, [7, Lemma5.2℄ applied to the instane 2x2 + : : :+ nxn � 0 of symmetri knapsak statesthat deg((2x2 + : : :+ nxn)p) = deg(p) + 1 = d+ 1(one should add to the formulation of [7, Lemma 5.2℄ the ondition that p isredued).



8 Dima Grigoriev, Edward A. Hirsh, and Dmitrii V. PasehnikHene there exists a monomial xJ =Qj2J xj ourring in p for a ertain J �f2; : : : ; ng, jJ j = d, and besides, there exists i 2 [2::n℄ suh that the monomialxixJ , being of the degree d + 1, ours in the polynomial (2x2 + : : :+ nxn)p,in partiular i 62 J .Beause of that the monomial T = xixJx1 with deg(T ) = d+ 2 ours inp0 = (2x2 + : : :+ nxn)px1:Furthermore, T ours infgx1 = ((2x2 + : : :+ nxn) + (1x1 �m))(p+ x1p1)x1sine after opening the parenthesis in the right-hand side of the latter expressionwe obtain only p0 and two subexpressions(1x1 �m)(p+ x1p1)x1 = (1 �m)gx1 and (2x2 + : : :+ nxn)x1p1x1of Boolean degree at most d + 1 (thereby, any monomial from these subexpres-sions annot be equal to the redued monomial T ). Finally, due to the equalityqx1 = fgx1, we onlude that Bdeg(qx1) � deg(qx1) = deg(fgx1) � d+ 2; theahieved ontradition proves the indution hypothesis for the ase of the rule ofthe multipliation by a variable (note that the seond rule in (2) an be replaedby the multipliation by a variable with a multipliative onstant).Now we proeed to the onsideration of the rule of taking the sum of twopolynomials q and r. By the indution hypothesis we haver = nXi=1(xi � x2i )ui + fu;where u is redued and deg(fu) � Bdeg(r). Then making use of (15) we getr + q = fv where v = g + u. The inequalitydeg(v) � maxfdeg(g); deg(u)g � maxfBdeg(q);Bdeg(r)g � 1� d(n� 1)=2e � 1 � dn=2e � 1enables us to apply [7, Lemma 5.2℄ to v, this implies that deg(fv) = deg(v)+1 =deg(fv). Therefore, Bdeg(r + q) � deg(r + q) = deg(fv) = deg(fv). utThe next orollary extends [7, Theorem 5.1℄.Corollary 1. Any PC refutation of the knapsak f has Bdeg greater than d(n�1)=2e:Now we an formulate the following theorem extending the theorem of [23℄from deg to Bdeg. Denote by Æ a stairs-form funtion whih equals to 2 out ofthe interval (0; n) and whih equals to 2k + 4 on the intervals (k; k + 1) and(n� k � 1; n� k) for all integers 0 � k < n=2.



Exponential Lower Bound for Stati Semi-Algebrai Proofs 9Theorem 1. Any Positivstellensatz Calulus refutation of the symmetri knap-sak problem f = x1+ : : :+xn�m has Bdeg greater or equal to minfÆ(m); d(n�1)=2e+ 1g:Proof. The proof of the theorem follows the proof of the theorem [23℄. First, weapply Lemma 1 to the dedution in PC being an ingredient of the dedution inPositivstellensatz Calulus (see de�nitions in 2.2). This provides a refutation inPositivstellensatz Calulus of the form�1 = nXi=1(xi � x2i )gi + fg +Xj h2j : (16)The rest of the proof follows literally the proof from [23℄ whih onsists inapplying to (16) the homomorphism B introdued in [23℄. It is worthwhile tomention that B is de�ned on the quotient algebra R[x1 ; : : : ; xn℄=(x1�x21; : : : ; xn�x2n), thereby, the proof in [23℄ atually, estimates Bdeg rather than just deg. ut4 Exponential lower bound on the size of stati LS+refutations of the symmetri knapsakIn this setion we apply the results of Setion 3 to obtain an exponential lowerbound on the size of stati LS+ refutations of the symmetri knapsak. We followthe notation introdued in Subsetion 2.4 and Setion 3. The Boolean degree ofa stati LS (LS+) refutation is the maximum Boolean degree of the polynomialsui;l in Subsetion 2.4.Let us �x for the time being a ertain (threshold) d.Lemma 2. Denote byM the number of ui;l's ourring in (12) that have Booleandegrees at least d. Then there is a variable x and a value a 2 f0; 1g suh thatthe result of substituting x = a in (12) ontains at most M(1�d=(2n)) non-zeropolynomials ui;ljx=a of Boolean degrees at least d. (Note that by substituting in(12) a value a for x we obtain a valid stati LS+ refutation of the system Sjx=a).Proof. Sine there are at least Md polynomials ui;l of Boolean degrees at leastd ontaining either x or 1 � x, there is a variable x suh that either x or 1� xours in at least Md=(2n) of these polynomials. Therefore, after substitutingthe appropriate value for x, at least Md=(2n) polynomials ui;l vanish from (12).ut For the symmetri knapsak problemx1 + x2 + : : :+ xn �m = 0 (17)we an rewrite its stati LS+ refutation in the following way. Denotef0 = x1 + : : :+ xn �m;fi = xi � x2i (1 � i � n);fi = (s0i)2 (n+ 1 � i � n0)



10 Dima Grigoriev, Edward A. Hirsh, and Dmitrii V. Pasehnik(m is not an integer). The refutation an be represented in the formtXi=0 fiXl gi;l + n0Xj=n+1 fjtj + n00Xj=n0+1 tj = �1; (18)where gi;l = i;l � Yk2G+i;l xk � Yk2G�i;l(1� xk);tj = �j � Yk2T+j xk � Yk2T�j (1� xk)for appropriate multisets G�i;l, G+i;l, T�j and T+j , positive real �j and arbitraryreal i;l.Lemma 3. If n=4 < m < 3n=4, then the Boolean degree D of any stati LS+refutation of the symmetri knapsak problem is at least n=4.Proof. Replaing in tj eah ourrene of xi by fi + x2i and eah ourrene of1�xi by fi+(1� xi)2 and subsequently opening the parentheses in tj , one angather all the terms ontaining at least one of fi and separately the produts ofsquares of the form x2i , (1 � xi)2. As a result one gets a representation of theform nXi=0 figi + n000Xj=1 h2j = �1for appropriate polynomials gi; hj of Boolean degrees Bdeg(gi);Bdeg(h2j ) � D,thereby a Positivstellensatz (and Positivstellensatz Calulus) refutation of thesymmetri knapsak of Boolean degree at most D+2. Then Theorem 1 impliesthat D � d(n� 1)=2e � 1 � n=4. utTheorem 2. For m = (2n + 1)=4 the number of gi;l's and tj 's in (18) isexp(
(n)).Proof. Now we set d = dn=8e and apply Lemma 2 onseutively � = bn=4times. The result of all these substitutions in (18) we denote by (180), it ontainsn� � variables; denote by u0i;l the polynomial we thus get from ui;l. We denoteby f 00 the result of substitutions applied to f0. Note that after all substitutionswe obtain again an instane of the knapsak problem. Taking into aount thatthe free term m0 of f 00 ranges in the interval [m � �;m℄ and sine (n � �)=4 <m � � < m < 3(n � �)=4, we are able to apply Lemma 3 to (180). Thus, thedegree of (180) is at least (n� �)=4 > d.Denote by M0 the number of ui;l's of the degrees at least d in (18). ByLemma 2 the refutation (180) ontains at most M0(1 � d=(2n))� � M0(1 �1=16)n=4 non-zero polynomials u0i;l of degrees at least d. Sine there is at leastone polynomial u0i;l of suh degree, we have M0(1 � 1=16)n=4 � 1, i.e. M0 �(16=15)n=4, whih proves the theorem. ut



Exponential Lower Bound for Stati Semi-Algebrai Proofs 11Corollary 2. Any stati LS+ refutation of (17) for m = (2n+ 1)=4 must havesize exp(
(n)).Corollary 3. Any treelike LS+ (or LSn) refutation of (17) for m = (2n+1)=4must have size exp(
(n)).Proof. The size of suh treelike refutation (even the numer of instanes of axiomsfi used in the refutation) is at least the number of polynomials ui;l. utRemark 6. The value m = (2n+1)=4 in Theorem 2 and its orollaries above anbe hanged to any non-integer value between dn=4e and b3n=4 by tuning theonstants in the proofs (and in the 
(n) in the exponent).5 Open questions1. Prove an exponential lower bound for a stati semi-algebrai propositionalproof system. Note that we have only proved an exponential lower boundfor stati LS+ as a proof system for the o-NP-omplete language of systemsof 0-1 linear inequalities, beause the symmetri knapsak problem is notobtained as a translation of a Boolean formula in DNF.2. Prove an exponential lower bound for a dynami semi-algebrai proof system,e.g., for LS.3. Can stati LS be polynomially simulated by a ertain version of the CuttingPlanes proof system?Referenes1. Grigoriev, D., Hirsh, E.A., Pasehnik, D.V.: Complexity of semi-algebrai proofs.In: Proeedings of the 19th International Symposium on Theoretial Aspets ofComputer Siene, STACS 2002. Volume 2285 of Leture Notes in Computer Si-ene., Springer (2002) 419{4302. Lov�asz, L., Shrijver, A.: Cones of matries and set-funtions and 0{1 optimization.SIAM Journal on Optimization 1 (1991) 166{1903. Lov�asz, L.: Stable sets and polynomials. Disrete Mathematis 124 (1994) 137{1534. Beame, P., Impagliazzo, R., Kraj���ek, J., Pitassi, T., Pudl�ak, P.: Lower boundson Hilbert's Nullstellensatz and propositional proofs. Pro. London Math. So. 73(1996) 1{265. Beame, P., Impagliazzo, R., Kraj���ek, J., Pudl�ak, P., Razborov, A.A., Sgall, J.:Proof omplexity in algebrai systems and bounded depth Frege systems withmodular ounting. Computational Complexity 6 (1996/97) 256{2986. Razborov, A.A.: Lower bounds for the polynomial alulus. Computational Com-plexity 7 (1998) 291{3247. Impagliazzo, R., Pudl�ak, P., Sgall, J.: Lower bounds for the polynomial alulus.Computational Complexity 8 (1999) 127{1448. Clegg, M., Edmonds, J., Impagliazzo, R.: Using the Groebner basis algorithm to�nd proofs of unsatis�ability. In: Proeedings of the 28th Annual ACM Symposiumon Theory of Computing, STOC'96, ACM (1996) 174{183
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