Exponential Lower Bound
for Static Semi-Algebraic Proofs

Dima Grigoriev!, Edward A. Hirsch?*, and Dmitrii V. Pasechnik?

L IRMAR, Université de Rennes, Campus de Beaulieu, 35042 Rennes, cedex France.
Email: dima@maths.univ-rennesi.fr.
Web: http://wuw.maths.univ-rennesl.fr/~dima/
2 Steklov Institute of Mathematics at St.Petersburg, 27 Fontanka, 191011
St.Petersburg, Russia.
Email: hirsch@pdmi.ras.ru. Web: http://logic.pdmi.ras.ru/“hirsch/

3 Department of Technical Mathematics and Informatics, Faculty ITS, Delft
University of Technology, Mekelweg 4, 2628 CD Delft, The Netherlands.
Email: d.pasechnik@its.tudelft.nl.

Web: http://ssor.twi.tudelft.nl/"dima/

Abstract. Semi-algebraic proof systems were introduced in [1] as ex-
tensions of Lovész-Schrijver proof systems [2, 3]. These systems are very
strong; in particular, they have short proofs of Tseitin’s tautologies, the
pigeonhole principle, the symmetric knapsack problem and the clique-
coloring tautologies [1].

In this paper we study static versions of these systems. We prove an
exponential lower bound on the length of proofs in one such system. The
same bound for two tree-like (dynamic) systems follows. The proof is
based on a lower bound on the “Boolean degree” of Positivstellensatz
Calculus refutations of the symmetric knapsack problem.

1 Introduction

Algebraic proof systems. An observation that a propositional formula can be
written as a system of polynomial equations has lead to considering algebraic
proof systems, in particular, the Nullstellensatz (NS) and the Polynomial Cal-
culus (PC) proof systems, see Subsection 2.2 below (we do not dwell much here
on the history of this rich area, several nice historical overviews one could find
in e.g., [4-9]).

For these proof systems several interesting complexity lower bounds on the
degrees of the derived polynomials were obtained [6,7,9]. When the degree is
close enough to linear (in fact, greater than the square root), these bounds
imply exponential lower bounds on the proof complexity (more precisely, on the
number of monomials in the derived polynomials) [7]. If polynomials are given
by formulas rather than by sums of monomials as in NS or in PC, then the
complexity could decrease significantly. Several gaps between these two kinds of
proof systems are demonstrated in [10].

* Partially supported by grant #1 of the 6th RAS contest-expertise of young scientists
projects (1999) and grants from CRDF, RFBR and NATO.
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Semi-algebraic proof systems. In [1], we have introduced several semi-algebraic
proof systems. In these system, one deals with polynomial inequalities, and new
inequalities can be derived by algebraic operations like the sum, the multipli-
cation and the division. The simplest semi-algebraic systems are the so-called
Lovész-Schrijver calculi (see [2, 3], cf. also [11] and Subsection 2.3 below), where
the polynomials are restricted to quadratic ones. No exponential lower bounds
are known so far even for these restricted systems (a number of lower bounds
on the number of steps of Lovész-Schrijver procedure is known [12-15,1], but
they do not imply exponential lower bounds on the size of proofs [1]). Moreover,
general semi-algebraic proof systems, (where one allows polynomials of arbitary
degree, see [1] and Subsection 2.3 below), appear to be very strong. In [1], it is
proved that such systems have short proofs of Tseitin’s tautologies, the pigeon-
hole principle, clique-coloring tautologies and the symmetric knapsack problem.
They also polynomially simulate the Cutting Planes proof system [16-19] with
polynomially bounded coefficients. Another (and much stronger) kind of semi-
algebraic proof system was introduced in [20] with no focus on the complexity.

Static systems and our results. Another proof system manipulating polynomial
inequalities called the Positivstellensatz Calculus was introduced in [21]. Lower
bounds on the degree in this system were established for the parity principle, for
Tseitin’s tautologies [22] and for the knapsack problem [23]. Lower bounds on
the Positivstellensatz Calculus degree are possible because its “dynamic” part
is restricted to an ideal and an element of a cone is obtained from an element
of ideal by adding the sum of squares to it. On the contrary, the semi-algebraic
proof systems introduced in [2,3,1] are completely “dynamic” proof systems.
(The discussion on static and dynamic proof systems can be found in [21]. Briefly,
the difference is that in the dynamic semi-algebraic proof systems a derivation
constructs gradually an element of the cone generated by the input system of
inequalities, while in the Positivstellensatz Calculus the sum of squares is given
explicitly.) We consider a static version of Lovasz-Schrijver calculi and prove an
exponential lower bound on the size of refutation of the symmetric knapsack
problem (Section 4); this bound also translates into the bound for the tree-like
version of (dynamic) LS. The key ingredient of the proof is a linear lower bound
on the “Boolean degree” of Positivstellensatz Calculus refutations (Section 3).
Note that exponential lower bounds on the size of (static!) Positivstellensatz
refutations are still unknown.

Organization of the paper. We start with the definitions of proof systems in
general and the particular proof systems we use in our paper (Section 2). We
then prove a lower bound on the “Boolean degree” of Positivstellensatz Calculus
refutations of the symmetric knapsack problem (Section 3), and derive from it
an exponential lower bound on the size of proofs in a static semi-algebraic proof
system and in the tree-like versions of two dynamic semi-algebraic proof systems
(Section 4). Finally, we formulate open questions (Section 5).
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2 Definitions

2.1 Proof systems

A proof system [24] for a language L is a polynomial-time computable function
mapping words (proof candidates) onto L (whose elements are considered as
theorems).

A propositional proof system is a proof system for any fixed co-NP-complete
language of Boolean tautologies (e.g., tautologies in DNF).

When we have two proof systems II; and Il for the same language L, we
can compare them. We say that IIy polynomially simulates Ily, if there is a
function g mapping proof candidates of IT5 to proof candidates of IT; so that for
every proof candidate 7 for II2, one has IT; (g(7)) = II>(w) and g() is at most
polynomially longer than .

Proof system II, is exponentially separated from II,, if there is an infinite
sequence of words t1,ts,... € L such that the length of the shortest IT;-proof of
t; is polynomial in the length of ¢;, and the length of the shortest IT>-proof of ¢;
is exponential.

Proof system II; is exponentially stronger than II,, if II; polynomially sim-
ulates IT> and is exponentially separated from it.

When we have two proof systems for different languages L; and Lo, we can
also compare them if we fix a reduction between these languages. However, it can
be the case that the result of the comparison is more due to the reduction than
to the systems themselves. Therefore, if we have propositional proof systems for
languages L; and Lo, and the intersection L = L; N Lo of these languages is
co-NP-complete, we will compare these systems as systems' for L.

2.2 Algebraic proof systems

There is a series of proof systems for languages consisting of unsolvable systems
of polynomial equations. To transform such a proof system into a propositional
proof system, one needs to translate Boolean tautologies into systems of poly-
nomial equations.

To translate a formula F' in k-DNF, we take its negation —F in k-CNF and
translate each clause of —=F into a polynomial equation. A clause containing
variables vj, ,...,v;, (t <k) is translated into an equation

(1=0) ...-(1=1;) =0, (1)

where [; = vj; if variable v;; occurs positively in the clause, and I; = (1 — vy;) if
it occurs negatively. For each variable v;, we also add the equation v} — v; = 0
to this system.

L If one can decide in polynomial time for 2 € Li, whether € L, then any proof
system for L; can be restricted to L C L; by mapping proofs of elements of L, \ L
into any fixed element of L. For example, this is the case for L; consisting of all
tautologies in DNF and L consisting of all tautologies in k-DNF.
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Remark 1. Observe that it does not make sense to consider this translation
for formulas in general DNF (rather than k-DNF for constant k), because an
exponential lower bound for any system using such encoding would be trivial
(note that (1 —wv1)(1 —wv2)...(1 —v,) denotes a polynomial with exponentially
many monomials).

Note that F'is a tautology if and only if the obtained system S of polynomial
equations f; =0, fo =0, ..., fn = 0 has no solutions. Therefore, to prove F it
suffices to derive a contradiction from S.

Nullstellensatz (NS) [4]. A proof in this system is a collection of polynomials
g1, ---,9m such that
Z figi = 1.
i

Polynomial Calculus (PC) [8]. This system has two derivation rules:

p1=0;p2=0 p=0
B EEE—— and

p1r+p=0 p-q=0"

(2)

Le., one can take a sum? of two already derived equations p; = 0 and ps = 0,
or multiply an already derived equation p = 0 by an arbitrary polynomial q.
The proof in this system is a derivation of 1 = 0 from S using these rules.

Positivstellensatz [21]. A proof in this system consists of polynomials
Jis---,9m and hq, ... h; such that

Y figi=1+Y b3 (3)
i J

Positivstellensatz Calculus [21]. A proof in this system consists of polyno-
mials hi, ..., and a derivation of 143, h% = 0 from S using the rules (2).

2.3 Dynamic semi-algebraic proof systems

To define a propositional proof system manipulating with inequalities, we again
translate each formula —=F in CNF into a system S of linear inequalities, such
that F is a tautology if and only if S has no 0-1 solutions. Given a Boolean
formula in CNF, we translate each its clause containing variables v;,,...,v;,
into the inequality

L+... .+ >1, (4)

where [; = vj; if the variable v;; occurs positively in the clause, and I; =1 — v;
if v;; occurs negatively. We also add to S the inequalities

i

x>0, (5)
z<1 (6)
for every variable z.

% Usually, an arbitrary linear combination is allowed, but clearly it can be replaced by
two multiplications and one addition.
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Lovasz-Schrijver calculus (LS) [2, 3] (cf. also [11]). In the weakest of
Lovéasz-Schrijver proof systems, the contradiction must be obtained using

the rule
f120; ... fi >0

S Xifi >0
applied to linear or quadratic f;’s and the rules

f=>0 f=0
fz >0 fl=—=z)=0

Also, the system S is extended by the axioms

(where A\; > 0), (7)

(where f is linear, = is a variable).  (8)

2 —2>0, z—22>0 9)

for every variable z.
LS. [2,3,11]. This system has the same axioms and derivation rules as LS,
and also has the axiom
>0 (10)
for every linear .

Note that the Lovasz-Schrijver systems described above deal either with lin-
ear or quadratic inequalities. In [1], several extensions of Lovész and Schrijver
proof systems are introduced. The main idea is to allow a proof to contain mono-
mials of degree up to d.

LS?. This system is an extension of LS. The difference is that rule (8) is now
restricted to f of degree at most d— 1 rather than to linear inequalities. Rule
(7) can be applied to any collection of inequalities of degree at most d.

Remark 2. Note that LS=LS?.

2.4 Static semi-algebraic proof systems

Nullstellensatz is a “static” version of Polynomial Calculus; Positivstellensatz
is a “static” version of Positivstellensatz Calculus. Similarly, we define “static”
versions of the semi-algebraic proof systems defined in the previous subsection.

Static LS™. A proof in this system is a a refutation of a system of inequalities
S = {s; > 0}._,, where each s; > 0 is either an inequality given by the
translation (4), an inequality of the form z; > 0 or 1 — z; > 0, or an
inequality of the form CU? —x; > 0. The refutation consists of positive real
coefficients w;; and multisets Uifl and Uijl defining the polynomials

Ui = Wi - H Ty H (1— )
keUF, kEU;,

such that .

D sy uig=-1. (11)
l

i=1
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Static LS’ . The difference from the previous system is that S is extended by
inequalities s;11 > 0,..., sy > 0, where each polynomial s; (j € [t + 1..t'])
is a square of another polynomial s’. The requirement (11) transforms into

Zleu”—— (12)

i=1

Static LS. The same as static LS}, but the polynomials s} can be only linear.
Remark 3. Note that static LS, includes static LS™.

Remark 4. Note that these static systems are not propositional proof systems
in the sense of Cook and Reckhow [24], but are something more general, since
there is no clear way to verify (11) in deterministic polynomial time (cf. [25]).
However, they can be easily augmented to match the definition of Cook and
Reckhow, e.g., by including a proof of the equality (11) or (12) using axioms
of a ring (cf. F-NS of [10]). Clearly, if we prove a lower bound for the original
system, the lower bound will be valid for any augmented system as well.

Remark 5. The size of a refutation in these systems is the length of a reasonable
bit representation of all polynomials u;;, s; (for i € [1..t]) and s (for j €
[t + 1..t']) and is thus at least the number of u;;’s.

Ezxample 1. We now present a very simple static LS proof of the propositional
pigeonhole principle. The negation of this tautology is given by the following
system of inequalities:

Zmuzl; 1<k<m (13)

Tpe + Tpre < 1 1<k<k <m;1<l<m-1. (14)

(That says that the k-th pigeon must get into a hole, while two pigeons k and
k' cannot share the same hole £.)
Here is the static LS} proof:

(S
<k_1 Tpe — 1> +

m
> (=2 — me)TRe +
1 k#k'=1

M

¥ I

N}

3

I
NE

=~
Il

3
L

]
NE

(ke — zre)(m — 1)

~
I
| =
)
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3 Linear lower bound on the “Boolean degree” of
Positivstellensatz Calculus refutations of the knapsack

We use the following notation from [7,23]. For a polynomial f, its multilineariza-
tion f is a polynomial obtained by the reduction of f modulo (z — z2) for every
variable z, i.e., f is the unique multilinear polynomial equivalent to f modulo
these (“Boolean”) polynomials. When f = f we say that f is reduced.

For a monomial ¢ one can define its Boolean degree Bdeg(t) as deg(t), in other
words, the number of occurring variables; then one extends the concept of Bdeg
to polynomials: Bdeg(f) = max Bdeg(t;), where the maximum is taken over all
non-zero monomials #; occurring in f. Thereby, one can define Bdeg of a deriva-
tion in PC and subsequently in Positivstellensatz and Positivstellensatz Calculus
as maximum Bdeg of all polynomials in the derivation (in Positivstellensatz and
Positivstellensatz Calculus, this includes polynomials h?, cf. definition in Sub-
section 2.2).

The following lemma extends the argument in the proof of [7, Theorem 5.1]
from deg to Bdeg.

Lemma 1. Let f(z1,...,2,) = 121 +...+cpxyp—m, wherecy, ..., c, € R\{0}.
Let q be deducible in PC from the knapsack problem f = 0 with Bdeg < [(n —
1)/2]. Then one can represent

n

q=> (xi —x})gi + fg, (15)

i=1
where deg(fg) < Bdeg(q).

Proof. Similarly to the proof of [7, Theorem 5.1], we conduct the induction along
a (fixed) deduction in PC. Assume (15) and consider a polynomial gz; obtained
from ¢ by multiplying it by a variable z;. W.l.o.g. one can suppose that g is
reduced. Then qz7 = fgz1; denote h = gz7. Let d = deg(h) — 1. We need to
verify that d + 2 = deg(fh) < Bdeg(gz;). Taking into account that

d+1=deg(h) < deg(g) +1 = deg(fg) < Bdeg(q) < Bdeg(qz1),

the mere case to be brought to a contradiction is when Bdeg(gz1) = Bdeg(q) =
deg(g) +1=d+ 1.

We write g = p+x1p; where all the terms of g not containing z; are gathered
in p. Clearly, deg(p) < deg(g) = d. Moreover, deg(p) = d because if deg(p) < d,
we would have d+1 = deg(h) < Bdeg(gz1) < max(Bdeg(x;p), Bdeg(z?p;)) < d.

On the other hand, d = Bdeg(q) —1 < [(n—1)/2] — 1. Therefore, [7, Lemma
5.2] applied to the instance c2x2 + ...+ ¢px, — 0 of symmetric knapsack states
that

deg((coxa + ...+ cpzpn)p) =deg(p) + 1 =d+1

(one should add to the formulation of [7, Lemma 5.2] the condition that p is
reduced).
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Hence there exists a monomial z7 = [] jes Tj occurring in p for a certain J C
{2,...,n}, |J| = d, and besides, there exists i € [2..n] such that the monomial
z;z”, being of the degree d + 1, occurs in the polynomial (caxs + ... + cap)p,
in particular i & J.

Because of that the monomial T = z;27z; with deg(T) = d + 2 occurs in

p' = (comy + ...+ cpTp)pTy.

Furthermore, T occurs in

fogxr1 = (2o + ... + cpxy) + (121 — m))(p + z1p1) 21

since after opening the parenthesis in the right-hand side of the latter expression
we obtain only p’ and two subexpressions

(ciz1 —m)(p+ z1p1)z1 = (c1 —m)grr and  (cama + ... + cpn)T1 P12

of Boolean degree at most d + 1 (thereby, any monomial from these subexpres-
sions cannot be equal to the reduced monomial T'). Finally, due to the equality
qz1 = fgz1, we conclude that Bdeg(gzi) > deg(qzy) = deg(fgz1) > d + 2; the
achieved contradiction proves the induction hypothesis for the case of the rule of
the multiplication by a variable (note that the second rule in (2) can be replaced
by the multiplication by a variable with a multiplicative constant).

Now we proceed to the consideration of the rule of taking the sum of two
polynomials ¢ and r. By the induction hypothesis we have

n

r="Y (zi—a})ui + fu,

i=1

where u is reduced and deg(fu) < Bdeg(r). Then making use of (15) we get
r + q = fv where v = g + u. The inequality

deg(v)

< max{deg(g), deg(u)} < max{Bdeg(q), Bdeg(r)} — 1
<[(n—1)/21=1< [n/2] -1

enables us to apply [7, Lemma 5.2] to v, this implies that deg(fv) = deg(v)+1 =
deg(fv). Therefore, Bdeg(r + ¢) > deg(r + q) = deg(fv) = deg(fv). 0

The next corollary extends [7, Theorem 5.1].

Corollary 1. Any PC refutation of the knapsack f has Bdeg greater than [(n —
1)/2].

Now we can formulate the following theorem extending the theorem of [23]
from deg to Bdeg. Denote by 4 a stairs-form function which equals to 2 out of
the interval (0,n) and which equals to 2k 4+ 4 on the intervals (k,k + 1) and
(n—k—1,n—k) for all integers 0 < k < n/2.
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Theorem 1. Any Positivstellensatz Calculus refutation of the symmetric knap-
sack problem f = x1+...+x, —m has Bdeg greater or equal to min{6(m), [(n—

1)/2] +1}.

Proof. The proof of the theorem follows the proof of the theorem [23]. First, we
apply Lemma 1 to the deduction in PC being an ingredient of the deduction in
Positivstellensatz Calculus (see definitions in 2.2). This provides a refutation in
Positivstellensatz Calculus of the form
—1=) (wi—a})gi+fg+ Y N} (16)
J

i=1

The rest of the proof follows literally the proof from [23] which consists in
applying to (16) the homomorphism B introduced in [23]. It is worthwhile to
mention that B is defined on the quotient algebra Rlxy, ..., z,]/(z1—23,..., 2,—
z2), thereby, the proof in [23] actually, estimates Bdeg rather than just deg. O

4 Exponential lower bound on the size of static LS
refutations of the symmetric knapsack

In this section we apply the results of Section 3 to obtain an exponential lower
bound on the size of static LS, refutations of the symmetric knapsack. We follow
the notation introduced in Subsection 2.4 and Section 3. The Boolean degree of
a static LS (LS. ) refutation is the maximum Boolean degree of the polynomials
u;, in Subsection 2.4.

Let us fix for the time being a certain (threshold) d.

Lemma 2. Denote by M the number of u; ;’s occurring in (12) that have Boolean
degrees at least d. Then there is a variable x and a value a € {0,1} such that
the result of substituting x = a in (12) contains at most M (1 —d/(2n)) non-zero
polynomials w;;|z=a of Boolean degrees at least d. (Note that by substituting in
(12) a value a for x we obtain a valid static LSy refutation of the system S|,—, ).

Proof. Since there are at least Md polynomials u;; of Boolean degrees at least
d containing either z or 1 — x, there is a variable x such that either z or 1 —
occurs in at least Md/(2n) of these polynomials. Therefore, after substituting
the appropriate value for z, at least Md/(2n) polynomials u;; vanish from (12).
O

For the symmetric knapsack problem
T+ To+...+z,—m=0 (17)
we can rewrite its static LSy refutation in the following way. Denote

fo=z1+...+x, —m,
fi=wi—a; (1<i<n),
fi=(s))? (n+1<i<n)

2
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(m is not an integer). The refutation can be represented in the form

t n' n''
MoEY g+ > fiti+ Y, ti=-1, (18)
i=0 1

j=n+1 j=n'+1

where

gin =" [] =+ ] (1—=n),

keGf, keG],
tj:Tj'ka' H(].—l‘k)
keT; keT;

for appropriate multisets G, G?‘l, T} and Tj+, positive real 7; and arbitrary
real ;.

Lemma 3. If n/4 < m < 3n/4, then the Boolean degree D of any static LS
refutation of the symmetric knapsack problem is at least n /4.

Proof. Replacing in t; each occurrence of z; by f; + 27 and each occurrence of
1—z; by fi + (1 —z;)? and subsequently opening the parentheses in t;, one can
gather all the terms containing at least one of f; and separately the products of
squares of the form z7, (1 — x;)2. As a result one gets a representation of the
form

for appropriate polynomials g;, h; of Boolean degrees Bdeg(gi),Bdeg(h?) <D,
thereby a Positivstellensatz (and Positivstellensatz Calculus) refutation of the
symmetric knapsack of Boolean degree at most D + 2. Then Theorem 1 implies
that D > [(n —1)/2] = 1> n/4. a

Theorem 2. For m = (2n + 1)/4 the number of g;;’s and t;’s in (18) is
exp(£2(n)).

Proof. Now we set d = [n/8] and apply Lemma 2 consecutively k = |n/4]
times. The result of all these substitutions in (18) we denote by (18’), it contains
n — k variables; denote by u;; the polynomial we thus get from u;;. We denote
by f§ the result of substitutions applied to fo. Note that after all substitutions
we obtain again an instance of the knapsack problem. Taking into account that
the free term m' of f{ ranges in the interval [m — k,m] and since (n — k)/4 <
m—k < m < 3(n — k)/4, we are able to apply Lemma 3 to (18'). Thus, the
degree of (18') is at least (n — k)/4 > d.

Denote by My the number of u;;’s of the degrees at least d in (18). By
Lemma 2 the refutation (18') contains at most My(1 — d/(2n))* < My(1 —
1/16)™/* non-zero polynomials u;; of degrees at least d. Since there is at least

one polynomial u;; of such degree, we have Mp(1 — 1/16)"* > 1, ie. My >
(16/15)™/*, which proves the theorem. 0
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Corollary 2. Any static LSy refutation of (17) for m = (2n + 1)/4 must have
size exp(£2(n)).

Corollary 3. Any treelike LS, (or LS™) refutation of (17) for m = (2n+1)/4
must have size exp(f2(n)).

Proof. The size of such treelike refutation (even the numer of instances of axioms
fi used in the refutation) is at least the number of polynomials ;. O

Remark 6. The value m = (2n+1)/4 in Theorem 2 and its corollaries above can
be changed to any non-integer value between [n/4] and |3n/4]| by tuning the
constants in the proofs (and in the 2(n) in the exponent).

5 Open questions

1. Prove an exponential lower bound for a static semi-algebraic propositional
proof system. Note that we have only proved an exponential lower bound
for static LS, as a proof system for the co-NP-complete language of systems
of 0-1 linear inequalities, because the symmetric knapsack problem is not
obtained as a translation of a Boolean formula in DNF.

2. Prove an exponential lower bound for a dynamic semi-algebraic proof system,
e.g., for LS.

3. Can static LS be polynomially simulated by a certain version of the Cutting
Planes proof system?
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