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t. Semi-algebrai
 proof systems were introdu
ed in [1℄ as ex-tensions of Lov�asz-S
hrijver proof systems [2, 3℄. These systems are verystrong; in parti
ular, they have short proofs of Tseitin's tautologies, thepigeonhole prin
iple, the symmetri
 knapsa
k problem and the 
lique-
oloring tautologies [1℄.In this paper we study stati
 versions of these systems. We prove anexponential lower bound on the length of proofs in one su
h system. Thesame bound for two tree-like (dynami
) systems follows. The proof isbased on a lower bound on the \Boolean degree" of PositivstellensatzCal
ulus refutations of the symmetri
 knapsa
k problem.1 Introdu
tionAlgebrai
 proof systems. An observation that a propositional formula 
an bewritten as a system of polynomial equations has lead to 
onsidering algebrai
proof systems, in parti
ular, the Nullstellensatz (NS) and the Polynomial Cal-
ulus (PC) proof systems, see Subse
tion 2.2 below (we do not dwell mu
h hereon the history of this ri
h area, several ni
e histori
al overviews one 
ould �ndin e.g., [4{9℄).For these proof systems several interesting 
omplexity lower bounds on thedegrees of the derived polynomials were obtained [6, 7, 9℄. When the degree is
lose enough to linear (in fa
t, greater than the square root), these boundsimply exponential lower bounds on the proof 
omplexity (more pre
isely, on thenumber of monomials in the derived polynomials) [7℄. If polynomials are givenby formulas rather than by sums of monomials as in NS or in PC, then the
omplexity 
ould de
rease signi�
antly. Several gaps between these two kinds ofproof systems are demonstrated in [10℄.? Partially supported by grant #1 of the 6th RAS 
ontest-expertise of young s
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2 Dima Grigoriev, Edward A. Hirs
h, and Dmitrii V. Pase
hnikSemi-algebrai
 proof systems. In [1℄, we have introdu
ed several semi-algebrai
proof systems. In these system, one deals with polynomial inequalities, and newinequalities 
an be derived by algebrai
 operations like the sum, the multipli-
ation and the division. The simplest semi-algebrai
 systems are the so-
alledLov�asz-S
hrijver 
al
uli (see [2, 3℄, 
f. also [11℄ and Subse
tion 2.3 below), wherethe polynomials are restri
ted to quadrati
 ones. No exponential lower boundsare known so far even for these restri
ted systems (a number of lower boundson the number of steps of Lov�asz-S
hrijver pro
edure is known [12{15, 1℄, butthey do not imply exponential lower bounds on the size of proofs [1℄). Moreover,general semi-algebrai
 proof systems, (where one allows polynomials of arbitarydegree, see [1℄ and Subse
tion 2.3 below), appear to be very strong. In [1℄, it isproved that su
h systems have short proofs of Tseitin's tautologies, the pigeon-hole prin
iple, 
lique-
oloring tautologies and the symmetri
 knapsa
k problem.They also polynomially simulate the Cutting Planes proof system [16{19℄ withpolynomially bounded 
oeÆ
ients. Another (and mu
h stronger) kind of semi-algebrai
 proof system was introdu
ed in [20℄ with no fo
us on the 
omplexity.Stati
 systems and our results. Another proof system manipulating polynomialinequalities 
alled the Positivstellensatz Cal
ulus was introdu
ed in [21℄. Lowerbounds on the degree in this system were established for the parity prin
iple, forTseitin's tautologies [22℄ and for the knapsa
k problem [23℄. Lower bounds onthe Positivstellensatz Cal
ulus degree are possible be
ause its \dynami
" partis restri
ted to an ideal and an element of a 
one is obtained from an elementof ideal by adding the sum of squares to it. On the 
ontrary, the semi-algebrai
proof systems introdu
ed in [2, 3, 1℄ are 
ompletely \dynami
" proof systems.(The dis
ussion on stati
 and dynami
 proof systems 
an be found in [21℄. Brie
y,the di�eren
e is that in the dynami
 semi-algebrai
 proof systems a derivation
onstru
ts gradually an element of the 
one generated by the input system ofinequalities, while in the Positivstellensatz Cal
ulus the sum of squares is givenexpli
itly.) We 
onsider a stati
 version of Lov�asz-S
hrijver 
al
uli and prove anexponential lower bound on the size of refutation of the symmetri
 knapsa
kproblem (Se
tion 4); this bound also translates into the bound for the tree-likeversion of (dynami
) LS. The key ingredient of the proof is a linear lower boundon the \Boolean degree" of Positivstellensatz Cal
ulus refutations (Se
tion 3).Note that exponential lower bounds on the size of (stati
!) Positivstellensatzrefutations are still unknown.Organization of the paper. We start with the de�nitions of proof systems ingeneral and the parti
ular proof systems we use in our paper (Se
tion 2). Wethen prove a lower bound on the \Boolean degree" of Positivstellensatz Cal
ulusrefutations of the symmetri
 knapsa
k problem (Se
tion 3), and derive from itan exponential lower bound on the size of proofs in a stati
 semi-algebrai
 proofsystem and in the tree-like versions of two dynami
 semi-algebrai
 proof systems(Se
tion 4). Finally, we formulate open questions (Se
tion 5).



Exponential Lower Bound for Stati
 Semi-Algebrai
 Proofs 32 De�nitions2.1 Proof systemsA proof system [24℄ for a language L is a polynomial-time 
omputable fun
tionmapping words (proof 
andidates) onto L (whose elements are 
onsidered astheorems).A propositional proof system is a proof system for any �xed 
o-NP-
ompletelanguage of Boolean tautologies (e.g., tautologies in DNF).When we have two proof systems �1 and �2 for the same language L, we
an 
ompare them. We say that �1 polynomially simulates �2, if there is afun
tion g mapping proof 
andidates of �2 to proof 
andidates of �1 so that forevery proof 
andidate � for �2, one has �1(g(�)) = �2(�) and g(�) is at mostpolynomially longer than �.Proof system �1 is exponentially separated from �2, if there is an in�nitesequen
e of words t1; t2; : : : 2 L su
h that the length of the shortest �1-proof ofti is polynomial in the length of ti, and the length of the shortest �2-proof of tiis exponential.Proof system �1 is exponentially stronger than �2, if �1 polynomially sim-ulates �2 and is exponentially separated from it.When we have two proof systems for di�erent languages L1 and L2, we 
analso 
ompare them if we �x a redu
tion between these languages. However, it 
anbe the 
ase that the result of the 
omparison is more due to the redu
tion thanto the systems themselves. Therefore, if we have propositional proof systems forlanguages L1 and L2, and the interse
tion L = L1 \ L2 of these languages is
o-NP-
omplete, we will 
ompare these systems as systems1 for L.2.2 Algebrai
 proof systemsThere is a series of proof systems for languages 
onsisting of unsolvable systemsof polynomial equations. To transform su
h a proof system into a propositionalproof system, one needs to translate Boolean tautologies into systems of poly-nomial equations.To translate a formula F in k-DNF, we take its negation :F in k-CNF andtranslate ea
h 
lause of :F into a polynomial equation. A 
lause 
ontainingvariables vj1 ; : : : ; vjt (t � k) is translated into an equation(1� l1) � : : : � (1� lt) = 0; (1)where li = vji if variable vji o

urs positively in the 
lause, and li = (1� vji) ifit o

urs negatively. For ea
h variable vi, we also add the equation v2i � vi = 0to this system.1 If one 
an de
ide in polynomial time for x 2 L1, whether x 2 L, then any proofsystem for L1 
an be restri
ted to L � L1 by mapping proofs of elements of L1 n Linto any �xed element of L. For example, this is the 
ase for L1 
onsisting of alltautologies in DNF and L 
onsisting of all tautologies in k-DNF.
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h, and Dmitrii V. Pase
hnikRemark 1. Observe that it does not make sense to 
onsider this translationfor formulas in general DNF (rather than k-DNF for 
onstant k), be
ause anexponential lower bound for any system using su
h en
oding would be trivial(note that (1� v1)(1� v2) : : : (1� vn) denotes a polynomial with exponentiallymany monomials).Note that F is a tautology if and only if the obtained system S of polynomialequations f1 = 0, f2 = 0, . . . , fm = 0 has no solutions. Therefore, to prove F itsuÆ
es to derive a 
ontradi
tion from S.Nullstellensatz (NS) [4℄. A proof in this system is a 
olle
tion of polynomialsg1; : : : ; gm su
h that Xi figi = 1:Polynomial Cal
ulus (PC) [8℄. This system has two derivation rules:p1 = 0; p2 = 0p1 + p2 = 0 and p = 0p � q = 0 : (2)I.e., one 
an take a sum2 of two already derived equations p1 = 0 and p2 = 0,or multiply an already derived equation p = 0 by an arbitrary polynomial q.The proof in this system is a derivation of 1 = 0 from S using these rules.Positivstellensatz [21℄. A proof in this system 
onsists of polynomialsg1; : : : ; gm and h1; : : : ; hl su
h thatXi figi = 1 +Xj h2j (3)Positivstellensatz Cal
ulus [21℄. A proof in this system 
onsists of polyno-mials h1; : : : ; hl and a derivation of 1+Pj h2j = 0 from S using the rules (2).2.3 Dynami
 semi-algebrai
 proof systemsTo de�ne a propositional proof system manipulating with inequalities, we againtranslate ea
h formula :F in CNF into a system S of linear inequalities, su
hthat F is a tautology if and only if S has no 0-1 solutions. Given a Booleanformula in CNF, we translate ea
h its 
lause 
ontaining variables vj1 ; : : : ; vjtinto the inequality l1 + : : :+ lt � 1; (4)where li = vji if the variable vji o

urs positively in the 
lause, and li = 1� vjiif vji o

urs negatively. We also add to S the inequalitiesx � 0; (5)x � 1 (6)for every variable x.2 Usually, an arbitrary linear 
ombination is allowed, but 
learly it 
an be repla
ed bytwo multipli
ations and one addition.
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 Proofs 5Lov�asz-S
hrijver 
al
ulus (LS) [2, 3℄ (
f. also [11℄). In the weakest ofLov�asz-S
hrijver proof systems, the 
ontradi
tion must be obtained usingthe rule f1 � 0; : : : ; ft � 0Pti=1 �ifi � 0 (where �i � 0); (7)applied to linear or quadrati
 fi's and the rulesf � 0fx � 0; f � 0f(1� x) � 0 (where f is linear, x is a variable): (8)Also, the system S is extended by the axiomsx2 � x � 0; x� x2 � 0 (9)for every variable x.LS+ [2, 3, 11℄. This system has the same axioms and derivation rules as LS,and also has the axiom l2 � 0 (10)for every linear l.Note that the Lov�asz-S
hrijver systems des
ribed above deal either with lin-ear or quadrati
 inequalities. In [1℄, several extensions of Lov�asz and S
hrijverproof systems are introdu
ed. The main idea is to allow a proof to 
ontain mono-mials of degree up to d.LSd. This system is an extension of LS. The di�eren
e is that rule (8) is nowrestri
ted to f of degree at most d�1 rather than to linear inequalities. Rule(7) 
an be applied to any 
olle
tion of inequalities of degree at most d.Remark 2. Note that LS=LS2.2.4 Stati
 semi-algebrai
 proof systemsNullstellensatz is a \stati
" version of Polynomial Cal
ulus; Positivstellensatzis a \stati
" version of Positivstellensatz Cal
ulus. Similarly, we de�ne \stati
"versions of the semi-algebrai
 proof systems de�ned in the previous subse
tion.Stati
 LSn. A proof in this system is a a refutation of a system of inequalitiesS = fsi � 0gti=1, where ea
h si � 0 is either an inequality given by thetranslation (4), an inequality of the form xj � 0 or 1 � xj � 0, or aninequality of the form x2j � xj � 0. The refutation 
onsists of positive real
oeÆ
ients !i;l and multisets U+i;l and U�i;l de�ning the polynomialsui;l = !i;l � Yk2U+i;l xk � Yk2U�i;l(1� xk)su
h that tXi=1 siXl ui;l = �1: (11)
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hnikStati
 LSn+. The di�eren
e from the previous system is that S is extended byinequalities st+1 � 0; : : : ; st0 � 0, where ea
h polynomial sj (j 2 [t + 1::t0℄)is a square of another polynomial s0j . The requirement (11) transforms intot0Xi=1 siXl ui;l = �1: (12)Stati
 LS+. The same as stati
 LSn+, but the polynomials s0i 
an be only linear.Remark 3. Note that stati
 LS+ in
ludes stati
 LSn.Remark 4. Note that these stati
 systems are not propositional proof systemsin the sense of Cook and Re
khow [24℄, but are something more general, sin
ethere is no 
lear way to verify (11) in deterministi
 polynomial time (
f. [25℄).However, they 
an be easily augmented to mat
h the de�nition of Cook andRe
khow, e.g., by in
luding a proof of the equality (11) or (12) using axiomsof a ring (
f. F-NS of [10℄). Clearly, if we prove a lower bound for the originalsystem, the lower bound will be valid for any augmented system as well.Remark 5. The size of a refutation in these systems is the length of a reasonablebit representation of all polynomials ui;l, si (for i 2 [1::t℄) and s0j (for j 2[t+ 1::t0℄) and is thus at least the number of ui;l's.Example 1. We now present a very simple stati
 LS+ proof of the propositionalpigeonhole prin
iple. The negation of this tautology is given by the followingsystem of inequalities:m�1X̀=1 xk` � 1; 1 � k � m; (13)xk` + xk0` � 1; 1 � k < k0 � m; 1 � ` � m� 1: (14)(That says that the k-th pigeon must get into a hole, while two pigeons k andk0 
annot share the same hole `.)Here is the stati
 LS+ proof:mXk=1 m�1X̀=1 xk` � 1!+m�1X̀=1  mXk=1 xk` � 1!2 +m�1X̀=1 mXk=1 mXk 6=k0=1(1� xk` � xk0`)xk` +m�1X̀=1 mXk=1(x2k` � xk`)(m� 1)= �1: ut
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 Proofs 73 Linear lower bound on the \Boolean degree" ofPositivstellensatz Cal
ulus refutations of the knapsa
kWe use the following notation from [7, 23℄. For a polynomial f , its multilineariza-tion f is a polynomial obtained by the redu
tion of f modulo (x�x2) for everyvariable x, i.e., f is the unique multilinear polynomial equivalent to f modulothese (\Boolean") polynomials. When f = f we say that f is redu
ed.For a monomial t one 
an de�ne its Boolean degree Bdeg(t) as deg(t), in otherwords, the number of o

urring variables; then one extends the 
on
ept of Bdegto polynomials: Bdeg(f) = maxBdeg(ti), where the maximum is taken over allnon-zero monomials ti o

urring in f . Thereby, one 
an de�ne Bdeg of a deriva-tion in PC and subsequently in Positivstellensatz and Positivstellensatz Cal
ulusas maximum Bdeg of all polynomials in the derivation (in Positivstellensatz andPositivstellensatz Cal
ulus, this in
ludes polynomials h2j , 
f. de�nition in Sub-se
tion 2.2).The following lemma extends the argument in the proof of [7, Theorem 5.1℄from deg to Bdeg.Lemma 1. Let f(x1; : : : ; xn) = 
1x1+: : :+
nxn�m, where 
1; : : : ; 
n 2 Rnf0g.Let q be dedu
ible in PC from the knapsa
k problem f = 0 with Bdeg � d(n �1)=2e. Then one 
an representq = nXi=1(xi � x2i )gi + fg; (15)where deg(fg) � Bdeg(q).Proof. Similarly to the proof of [7, Theorem 5.1℄, we 
ondu
t the indu
tion alonga (�xed) dedu
tion in PC. Assume (15) and 
onsider a polynomial qx1 obtainedfrom q by multiplying it by a variable x1. W.l.o.g. one 
an suppose that g isredu
ed. Then qx1 = fgx1; denote h = gx1. Let d = deg(h) � 1. We need toverify that d+ 2 = deg(fh) � Bdeg(qx1). Taking into a

ount thatd+ 1 = deg(h) � deg(g) + 1 = deg(fg) � Bdeg(q) � Bdeg(qx1);the mere 
ase to be brought to a 
ontradi
tion is when Bdeg(qx1) = Bdeg(q) =deg(g) + 1 = d+ 1.We write g = p+x1p1 where all the terms of g not 
ontaining x1 are gatheredin p. Clearly, deg(p) � deg(g) = d. Moreover, deg(p) = d be
ause if deg(p) < d,we would have d+1 = deg(h) � Bdeg(gx1) � max(Bdeg(x1p);Bdeg(x21p1)) � d.On the other hand, d = Bdeg(q)�1 � d(n�1)=2e�1. Therefore, [7, Lemma5.2℄ applied to the instan
e 
2x2 + : : :+ 
nxn � 0 of symmetri
 knapsa
k statesthat deg((
2x2 + : : :+ 
nxn)p) = deg(p) + 1 = d+ 1(one should add to the formulation of [7, Lemma 5.2℄ the 
ondition that p isredu
ed).
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hnikHen
e there exists a monomial xJ =Qj2J xj o

urring in p for a 
ertain J �f2; : : : ; ng, jJ j = d, and besides, there exists i 2 [2::n℄ su
h that the monomialxixJ , being of the degree d + 1, o

urs in the polynomial (
2x2 + : : :+ 
nxn)p,in parti
ular i 62 J .Be
ause of that the monomial T = xixJx1 with deg(T ) = d+ 2 o

urs inp0 = (
2x2 + : : :+ 
nxn)px1:Furthermore, T o

urs infgx1 = ((
2x2 + : : :+ 
nxn) + (
1x1 �m))(p+ x1p1)x1sin
e after opening the parenthesis in the right-hand side of the latter expressionwe obtain only p0 and two subexpressions(
1x1 �m)(p+ x1p1)x1 = (
1 �m)gx1 and (
2x2 + : : :+ 
nxn)x1p1x1of Boolean degree at most d + 1 (thereby, any monomial from these subexpres-sions 
annot be equal to the redu
ed monomial T ). Finally, due to the equalityqx1 = fgx1, we 
on
lude that Bdeg(qx1) � deg(qx1) = deg(fgx1) � d+ 2; thea
hieved 
ontradi
tion proves the indu
tion hypothesis for the 
ase of the rule ofthe multipli
ation by a variable (note that the se
ond rule in (2) 
an be repla
edby the multipli
ation by a variable with a multipli
ative 
onstant).Now we pro
eed to the 
onsideration of the rule of taking the sum of twopolynomials q and r. By the indu
tion hypothesis we haver = nXi=1(xi � x2i )ui + fu;where u is redu
ed and deg(fu) � Bdeg(r). Then making use of (15) we getr + q = fv where v = g + u. The inequalitydeg(v) � maxfdeg(g); deg(u)g � maxfBdeg(q);Bdeg(r)g � 1� d(n� 1)=2e � 1 � dn=2e � 1enables us to apply [7, Lemma 5.2℄ to v, this implies that deg(fv) = deg(v)+1 =deg(fv). Therefore, Bdeg(r + q) � deg(r + q) = deg(fv) = deg(fv). utThe next 
orollary extends [7, Theorem 5.1℄.Corollary 1. Any PC refutation of the knapsa
k f has Bdeg greater than d(n�1)=2e:Now we 
an formulate the following theorem extending the theorem of [23℄from deg to Bdeg. Denote by Æ a stairs-form fun
tion whi
h equals to 2 out ofthe interval (0; n) and whi
h equals to 2k + 4 on the intervals (k; k + 1) and(n� k � 1; n� k) for all integers 0 � k < n=2.
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 Proofs 9Theorem 1. Any Positivstellensatz Cal
ulus refutation of the symmetri
 knap-sa
k problem f = x1+ : : :+xn�m has Bdeg greater or equal to minfÆ(m); d(n�1)=2e+ 1g:Proof. The proof of the theorem follows the proof of the theorem [23℄. First, weapply Lemma 1 to the dedu
tion in PC being an ingredient of the dedu
tion inPositivstellensatz Cal
ulus (see de�nitions in 2.2). This provides a refutation inPositivstellensatz Cal
ulus of the form�1 = nXi=1(xi � x2i )gi + fg +Xj h2j : (16)The rest of the proof follows literally the proof from [23℄ whi
h 
onsists inapplying to (16) the homomorphism B introdu
ed in [23℄. It is worthwhile tomention that B is de�ned on the quotient algebra R[x1 ; : : : ; xn℄=(x1�x21; : : : ; xn�x2n), thereby, the proof in [23℄ a
tually, estimates Bdeg rather than just deg. ut4 Exponential lower bound on the size of stati
 LS+refutations of the symmetri
 knapsa
kIn this se
tion we apply the results of Se
tion 3 to obtain an exponential lowerbound on the size of stati
 LS+ refutations of the symmetri
 knapsa
k. We followthe notation introdu
ed in Subse
tion 2.4 and Se
tion 3. The Boolean degree ofa stati
 LS (LS+) refutation is the maximum Boolean degree of the polynomialsui;l in Subse
tion 2.4.Let us �x for the time being a 
ertain (threshold) d.Lemma 2. Denote byM the number of ui;l's o

urring in (12) that have Booleandegrees at least d. Then there is a variable x and a value a 2 f0; 1g su
h thatthe result of substituting x = a in (12) 
ontains at most M(1�d=(2n)) non-zeropolynomials ui;ljx=a of Boolean degrees at least d. (Note that by substituting in(12) a value a for x we obtain a valid stati
 LS+ refutation of the system Sjx=a).Proof. Sin
e there are at least Md polynomials ui;l of Boolean degrees at leastd 
ontaining either x or 1 � x, there is a variable x su
h that either x or 1� xo

urs in at least Md=(2n) of these polynomials. Therefore, after substitutingthe appropriate value for x, at least Md=(2n) polynomials ui;l vanish from (12).ut For the symmetri
 knapsa
k problemx1 + x2 + : : :+ xn �m = 0 (17)we 
an rewrite its stati
 LS+ refutation in the following way. Denotef0 = x1 + : : :+ xn �m;fi = xi � x2i (1 � i � n);fi = (s0i)2 (n+ 1 � i � n0)
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hnik(m is not an integer). The refutation 
an be represented in the formtXi=0 fiXl gi;l + n0Xj=n+1 fjtj + n00Xj=n0+1 tj = �1; (18)where gi;l = 
i;l � Yk2G+i;l xk � Yk2G�i;l(1� xk);tj = �j � Yk2T+j xk � Yk2T�j (1� xk)for appropriate multisets G�i;l, G+i;l, T�j and T+j , positive real �j and arbitraryreal 
i;l.Lemma 3. If n=4 < m < 3n=4, then the Boolean degree D of any stati
 LS+refutation of the symmetri
 knapsa
k problem is at least n=4.Proof. Repla
ing in tj ea
h o

urren
e of xi by fi + x2i and ea
h o

urren
e of1�xi by fi+(1� xi)2 and subsequently opening the parentheses in tj , one 
angather all the terms 
ontaining at least one of fi and separately the produ
ts ofsquares of the form x2i , (1 � xi)2. As a result one gets a representation of theform nXi=0 figi + n000Xj=1 h2j = �1for appropriate polynomials gi; hj of Boolean degrees Bdeg(gi);Bdeg(h2j ) � D,thereby a Positivstellensatz (and Positivstellensatz Cal
ulus) refutation of thesymmetri
 knapsa
k of Boolean degree at most D+2. Then Theorem 1 impliesthat D � d(n� 1)=2e � 1 � n=4. utTheorem 2. For m = (2n + 1)=4 the number of gi;l's and tj 's in (18) isexp(
(n)).Proof. Now we set d = dn=8e and apply Lemma 2 
onse
utively � = bn=4
times. The result of all these substitutions in (18) we denote by (180), it 
ontainsn� � variables; denote by u0i;l the polynomial we thus get from ui;l. We denoteby f 00 the result of substitutions applied to f0. Note that after all substitutionswe obtain again an instan
e of the knapsa
k problem. Taking into a

ount thatthe free term m0 of f 00 ranges in the interval [m � �;m℄ and sin
e (n � �)=4 <m � � < m < 3(n � �)=4, we are able to apply Lemma 3 to (180). Thus, thedegree of (180) is at least (n� �)=4 > d.Denote by M0 the number of ui;l's of the degrees at least d in (18). ByLemma 2 the refutation (180) 
ontains at most M0(1 � d=(2n))� � M0(1 �1=16)n=4 non-zero polynomials u0i;l of degrees at least d. Sin
e there is at leastone polynomial u0i;l of su
h degree, we have M0(1 � 1=16)n=4 � 1, i.e. M0 �(16=15)n=4, whi
h proves the theorem. ut
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 Proofs 11Corollary 2. Any stati
 LS+ refutation of (17) for m = (2n+ 1)=4 must havesize exp(
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