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IntroductionA problem of testing membership to a semialge-braic set � was considered by many authors (see,e.g., [B 83], [B 92], [BKL 92], [BL 92], [BLY 92],[MH 85], [Y 92], [Y 94], [YR 80] and the referencesthere). Here we consider a problem of testing mem-bership to a convex polyhedron P in n-dimensionalspace Rn. Let P have N facets of all the dimen-sions. In [MH 85] it was shown, in particular,that for this problem O(logN)nO(1) upper boundis valid for the depth of linear decision trees, in[YR 80] a lower bound 
(logN) was obtained. Asimilar question was open for algebraic decisiontrees. In the present paper we prove a lower bound
(logN) for the depth of algebraic decision treestesting membership to P (see the theorem below).Several topological methods were introduced forobtaining lower bounds for the complexity of test-ing membership to � by linear decision trees, alge-braic decision trees , algebraic computation trees(the de�nitions one can �nd in, e.g., [B 83]).1



In [B 83] a lower bound 
(logC) was proved forthe most powerful among the considered in thisarea computational models, namely algebraic com-putation trees, where C is the number of connectedcomponents of � or of the complement of �. Afterthat, in [BLY 92], a lower bound 
(log�) for lineardecision trees was proved , where � is Euler char-acteristic of �, in [Y 92] this lower bound was ex-tended to algebraic computation trees. A strongerlower bound 
(logB) was proved later in [BL 92],[B 92] for linear decision trees, where B is the sumof Betti numbers of � (obviously, C; � � B). Inthe recent paper [Y 94] the latter lower bound wasextended to the algebraic decision trees.Unfortunately, all the mentioned topologicaltools fail when � is a convex polyhedron, becauseB = 1 in this situation. The same is true for themethod developed in [BLY 92] for linear decisiontrees, based on the minimal number of convex poly-hedra onto which � can be partitioned.To handle the case of a convex polyhedron, weintroduce in section 1 another approach based ona short description of a set of all sharp points of asemialgebraic set W which is accepted by a branchof an algebraic decision tree. Sharp points ofW areits singular (nonsmooth) points of a special kind.In order to obtain such a description we use com-plexity bounds for quanti�er elimination in the the-ory of real closed �elds (see [GV 88], [G 88], [R 92],[HRS 90]).In section 2 we give an upper bound for the num-ber of facets of P which intersect by a full dimen-sion with the set W (using lemma 3 from section 1which states that these are exactly the facets hav-ing intersections of a full dimension with the subsetof sharp points).

In section 3 we complete the proof of the theo-rem.We conclude the paper discussing a much eas-ier (than obtained in the theorem) lower bound
(logN0), with N0 being the number of all (n�1)-dimensional facets, which is valid also for a morepowerful model of algebraic computaion trees.Now let us formulate precisely the main result.We consider algebraic decision trees of a �xeddegree d (see, e.g., [B 83], [Y 94]). Suppose thatsuch a tree T , of the depth k, tests a membershipto a convex polyhedron P � Rn. Denote by N thenumber of facets of P of all dimensions from zeroto n. In this paper we agree that a facet is \open",i.e., does not contain facets of smaller dimensions.Theorem. k � 
(logN);provided that N � (dn)cn2 for some c > 0.Let us �x a branch of T which returns \yes".Denote by fi 2 R[X1; : : : ; Xn]; 1 � i � k the poly-nomials of degrees deg(fi) � d, attached to thevertices of T along the �xed branch. Without lossof generality, we can assume that the correspondingsigns of polynomials along the branch aref1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0:Then the (accepted) semialgebraic setW = ff1 = � � � = fk1 = 0; fk1+1 > 0; : : : ; fk > 0glies in P . Our main technical problem is to give anupper bound for a number of facets � of P suchthat dim(�) = dim(� \W ).2



1 Sharp pointsFor an m-plane Q � Rn and a point x 2 Rn denoteby Q(x) them-plane, collinear to Q and containingx.For a facet � denote by � the dim(�)-plane,containing �.Two planes Q1; Q2 of arbitrary dimensions arecalled transversal ifdim�Q1(0) \Q2(0)� =maxf0; dim�Q1(0)�+ dim�Q2(0)�� ng:Lemma 1. For each j with 1 � j � n there existsa family Aj of j(n� j) + 1 j-subspaces in Rn suchthat for any i-subspace Q 2 Rn; 1 � i � n there isa j-subspace R 2 Aj which is transversal to Q.Proof. It su�ces to prove the lemma for i =n� j. One can �nd a proof in [C 85], but for con-venience we give here an outline of another proof.Let Gj be the Grassman variety of all i-subspacesinRn. Then Gj is irreducible projective variety anddim(Gj) = j(n� j) (see, e.g., [H 77]). For any Q 2Gn�j consider a projective subvariety H(Q) � Gjof all A 2 Gj such that Q \ A 6= f0g, then H(Q)has codimension 1 in Gj .Assume that byinductive hypothesis R1; : : : ; Rl 2 Gj are chosenalready for whichdim�H(R1) \ � � � \H(Rl)� = j(n� j)� l;with 0 � l � j(n� j). LetH(R1) \ � � � \H(Rl) =[� U�

be the the representation of the intersection as aunion of irreducible components.For every U� consider the subvarietyU� = fQ 2 Gn�j : U� � H(Q)g � Gn�j ;which is a proper subvariety because\Q2Gn�j H(Q) = ;:Since Gn�j is irreducible, there exists Q 2 Gn�jsuch that Q 62 U� for every �, which can betaken as Rl+1 at the inductive step. Take Aj =fR1; : : : ; Rj(n�j)+1g.Lemma 2. There exists a rotation of coordinatesX1; : : : ; Xn such that after this rotation for everyj, each R 2 Aj and for every facet � of P , thesubspace R and the plane � become transversal.Proof. Consider the algebraic variety R of allrotations of coordinates X1; : : : ; Xn. The non-transversality of a subspace R 2 Aj to a facet �imposes algebraic conditions (in the form of poly-nomial equations) on R.These equations do not vanish simultaneously atevery point of R. Indeed, �x an i-facet � and asubspace R 2 Aj . Due to lemma 1, there existsR0 2 Aj which is transversal to �. Choose a rota-tion which forces R0 to coincide with R.It follows that for a �xed pair of i-facet andR 2 Aj the subvariety of all rotations satisfying theequations has the dimension smaller than dim(R).Since the family of all facets is �nite, almost allrotations from R satisfy the requirement of thelemma.Below we suppose that the coordinate systemmeets the requirements of lemma 2.3



De�nition. For arbitrary i; 0 � i � n; a pointx 2 W is called i-sharp in W if there exists a realc < 1 such that for every real " > 0, for everysubset R 2 An�i and for any two points x(1); x(2) 2W \R(x) the following holds: ifk x � x(1) k=k x� x(2) k= "then k x(1) � x(2) k< 2"c:Here k � k denotes the Euclidean norm in Rn.Denote the semialgebraic set of all i-sharp pointsby Si.Lemma 3. Let for a i-facet � of P the set W \� contain a neighbourhood of some point x in �.Then x is i-sharp.Proof. Due to the supposed property of the ro-tation of the coordinate system (see lemma 2), forany R 2 An�i the point x is a vertex (zero-facet)of the polyhedron P = P \ R(x). Fix R 2 An�i.For every " > 0 and each pairx(1); x(2) 2 W \R(x) such thatk x � x(1) k=k x� x(2) k= "the relation k x(1) � x(2) k< 2"holds according to triangle inequality because x isa vertex of P . The existence of the required c forR in the de�nition follows from the existence ofthe maxima (less than �) among all possible atangles in P with the vertex in x (taking into theaccount that the set of all such at angles is com-pact). Then we take the maxima over all R 2 An�i.

Lemma 4. dim(Si) � i.Proof. Suppose that, contrary to our claim,dim(Si) = i1 � i+ 1:Let a point x 2 Si have a smooth i1-dimensionalneighbourhood in Si (in fact almost all the pointsof Si are smooth) and denote by Tx the tangenti1-plane to Si at x.Due to lemma 1, there exists R 2 An�i suchthat Tx and R intersect transversaly, i.e., dim�Tx\R(x)� = i1 � i.By the implicit function theorem, for a neigh-bourhood � of x in Si, the intersection � \R(x) issmooth and its dimension is i1�i (its tangent planeat x is Tx \R(x)). Since the dimension i1 � i � 1this contradicts to i-sharpness of x, because by thede�nition of a smooth neighbourhood, for a se-quence f"rg such that limr!1 "r = 0 there existtwo sequences fx(1)r g; fx(2)r g 2 � \R(x) such thatfor each su�ciently large rk x� x(1)r k=k x� x(2)r k= "rand limr!1 k x(1)r � x(2)r k2"r = 1:2 Estimating the number of fa-cets, containing sharp pointsLemma 5. For every i; 0 � i � n�1, the number�i of all i-facets � of P such that dim(�\W ) = i,does not exceed (kdn)O(n2).4



Proof. First let us reduce the lemma to the caseof compact P . Let t be the minimal dimension offacets of P and �t be a facet with dim(�t) = t.Then �t is a t-plane.For each i-facet � of P with dim(� \ W ) = ichoose a point x� 2 (� \W ) such that a suitableneighbourhood of x� in � is contained in W .First consider the case t � 1. Choose any hy-perplane � transversal to �t such that the pointsx� for all i-facets � lie in one of two semi-spacesof Rn n�, denote this semi-space by ~�. Replace Pby (P \ ~�) [ � reducing t by one. Continue thisprocess while t � 1.Now consider the case t = 0.Observe that there exists a linear form L =�1X1+� � �+�nXn with �i 2 R; 1 � i � n such thatfor every  2 R the intersection fL +  � 0g \ Pis compact. Take  such that x� 2 P 0 = fL+  �0g\P for all �. The number of all i-facets �0 of P 0such that dim(�0\W ) = i is greater or equal to �i.From now on we assume, without loss of generality,that P is compact.Following the de�nition, one can determine theset Si of all i-sharp points by a formula �i of �rst-order theory of reals. Formula �i involves quanti-�ers and free variables X1; : : : ; Xn.We can assume that �i is in a prenex form withthe pre�x of the following kind:9c8"8X(1)1 � � � 8X(1)n 8X(2)1 � � � 8X(2)n :The quanti�er-free part of �i is a Boolean com-bination of atomic subformulas of the kind h > 0or h = 0 where h is a polynomial in variablesc; "; X(1)1 ; : : : ; X(1)n ; X(2)1 ; : : : ; X(2)n ; X1; : : : ; Xn

of a total degree at most maxf2; dg. The num-ber of atomic subformulas is less than O(kn2) (seelemma 1 and the de�nition).One can apply to �i an algorithm for quanti-�er elimination in the theory of real closed �elds(see [GV 88], [G 88], [HRS 90], [R 92]). The resultwould be an equivalent to �i quanti�er-free formulain a disjunctive normal form:_1�j�J(h(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0):Here h(j); g(j)1 ; : : : ; g(j)Ij 2 R[X1; : : : ; Xn]. More-over, according to [R 92] (cf. also the estimatesin [GV 88], [G 88], [HRS 90]) the following boundshold: Ij < (kdn)O(n);J < (kdn)O(n2); (1)degX1;:::;Xn(h(j)); degX1;:::;Xn(g(j)s ) < (kdn)O(n):Due to lemma 3, for an i-facet � of P , theequality dim(� \W ) = i is equivalent to dim(� \Si) = i, so we can replace in the formulation ofthe lemma the former equality by the latter one.Moreover, taking into the account the inequalityJ < (kdn)O(n2), it is su�cient to prove the lemmaseparately for the conditions dim(� \ S(j)i ) = i forall 1 � j � J instead of dim(� \W ) = i, whereS(j)i = fh(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0g � Si:Thus, we shall prove that the number �(j)i of alli-facets � of P such that dim(� \ S(j)i ) = i doesnot exceed (kdn)O(n2).In case i = 0, the set Si consists, due to lemma 4,of a �nite number of points. Their number is less5



than (kdn)O(n2) according to the estimates from[M 64], [T 65], taking into the account the bounds(1). In the remaining part of this proof we shallassume that i � 1.In the space Rn one can introduce the Zariskitopology (for its properties used below, see, e.g.,[H 77]), in which each closed set coincides with aset of all zeros of a multivariate polynomial withreal coe�cients.The Zariski topology on Rn is Noetherian. In re-lation to it, the concepts of an irreducibility (overR) of a set, and of the Krull dimension of a set arede�nable (note that for semialgebraic sets Krull di-mension coincides with the Euclidean dimension).The theorem on the dimension of intersection isvalid, which implies that for two closed irreduciblesubsets V1; V2 � Rn, either dim(V1 \ V2) <minfdim(V1); dim(V2)g, either V1 � V2 or V2 � V1.Each subset of Rn can be (uniquely) representedas a �nite union of its irreducible components. LetV be an irreducible component of S(j)i (by lemma 4,dim(V ) � i), and � be an i-facet of P such thatdim(� \ V ) = i. Applying the theorem on thedimension of intersection to the Zariski closure Vof V and to �, we conclude that V � �, henceV = �. Using this property, represent S(j)i as aunion of its irreducible components:S(j)i = [1�l�r1 V (l) [ [r1+1�l�r V (l) (2)where for each l; 1 � l � r1, there exists an i-facet� of P such that V (l) � � and for each l; r1+1 �l � r, for every i-facet � of Pdim(V (l) \�) < i:Consider an irreducible component V (l); 1 �l � r1 and the corresponding i-facet � (such that

dim(� \ V (l)) = i). Since V (l) is closed in S(j)iand V (l) = �, we get that V (l) � � \ S(j)i , henceV (l) = �\S(j)i . Because dim(�\S(j)i ) = i, we con-clude that h(j) vanishes identically on �, thereforeV (l) = � \ S(j)i = � \ fg(j)1 > 0 & � � �& g(j)Ij > 0g:(3)Introduce a polynomialg = Y1�l�Ij g(j)l ;and choose a real " > 0 satisfying the followingrequirements:(a) " is smaller than the absolute value of anynonzero critical value of the restriction of g on �for any i-facet � of P (by Sard's theorem [Hi 76],there exist only a �nite number of critical values);(b) polynomial g�" does not vanish identicallyon any irreducible component of every intersectionV (l)\�; 1 � l � r (there exists at most �nite num-ber of possible values of " such that g� " vanishesidentically on V (l) \�).The property (a) implies (involving the implicitfunction theorem) that �\fg = "g is a nonsingularhypersurface in �.From the property (b) it follows thatdim(fg = "g \ V (l) \�) < i� 1 (4)for each r1 + 1 � l � r.Observe that, due to (a) and according to el-ementary facts from Morse theory [Hi 76], everyconnected component of the set V (l) = �\ fg(j)1 >0 & � � �& g(j)Ij > 0g (see (3)) contains at least one6



(necessarily compact) connected component of thehypersurface fg = "g in � 1 (note that the signs ofall polynomials g(j)1 ; : : : ; g(j)Ij are constant on eachconnected component of fg = "g). Thus, in orderto estimate the number �(j)i of all i-facets � of Psuch that dim(�\S(j)i ) = i, it is su�cient to boundproperly the number of all connected componentsof fg = "g in �\ fg(j)1 > 0 & � � �& g(j)Ij > 0g for alli-facets �.The rest of the proof of the lemma closely follows[GKS 93].Because of the property (a) of ", for a �xed i-facet �, each compact connected component G� of� \ fg = "g divides � n G� into exactly two con-nected components (according to Jordan-Brouwertheorem, see, e.g., [D 72]). Hence, the zero Bettinumber b0(�nG�) = 2. Then, Alexander's dualityprinciple (see, e.g., [D 72]) implies that the (i�1)thBetti number,bi�1(G�) = b0(� nG�)� 1 = 1:It follows that�(j)i �X� XG� bi�1(G�)where the exterior sum ranges over all i-facets � ofP and the interior ranges over all connected com-ponents G� of �\fg = "g\fg(j)1 > 0 & � � �& g(j)Ij >0g.Relations (2) and (3) imply:S(j)i \ fg = "g = �S�SG� G��[1Actually there exists exactly one connected componentof fg = "g of this kind [GV 92], we do not use this fact here.

�Sr1+1�l�r V (l) \ fg = "g� (5)Here the union [� ranges over all i-facets � ofP .Let us analyse the pairwise intersections of thesets involved in the union (5).(i) For a �xed �, any two di�erent sets of the kindG� do not intersect being two di�erent connectedcomponents.(ii) For two di�erent facets � and �0, two setsG� and G�0 do not intersect. Indeed, G� and G�0lie in the Euclidean closures cl(�); cl(�0) of thefacets �; �0 respectively. Suppose that there existsa point x 2 G�\ cl(�)\ cl(�0), thus x 2 cl(�) n�.Then each point of a neighbourhood of x satis�esall the inequalities g(j)l > 0; 1 � l � Ij . Hence(because h(j) vanishes identically on �),S(j)i \ (� n cl(�)) 6= ;which contradicts to S(j)i � P .(iii) According to (4), for each i-facet � of P thefollowing holds:dim�G� \ ( [r1+1�l�r V (l) \ fg = "g)� < i� 1:Properties (i)|(iii) imply that (i � 1)-th Bettinumbers of all pairwise intersections of the termsof the union (5) are zeroes. Therefore, applyingMayer{Vietoris theorem (see, e.g., [D 72]) to theunion (5), we get:bi�1  [� [G� G�! [  [r1+1�l�r V (l) \ fg = "g!! �7



�X� XG� bi�1(G�)+bi�1 [r1+1�l�r V (l)\fg = "g!:(6)The right side of the inequality (6) is obviouslynot less than the �rst itemX� XG� bi�1(G�)which is an upper bound for �(j)i (see above).On the other hand, the left side of (6), being (see(5)) equal tobi�1(fh(j) = 0 & g(j)1 > 0 & � � �& g(j)Ij > 0 &g = "g);does not exceed (kdn)O(n2), according to [M 64],[T 65] and taking into the account the bounds (1).Hence the estimate �(j)i < (kdn)O(n2) is estab-lished. Since, by (1), J < (kdn)O(n2), we get:�i � X1�j�J �(j)i < (kdn)O(n2):The lemma is proved.3 The proof of the theoremNow we are able to complete the proof of the the-orem.For each facet � of P there exists at least onebranch of the tree T with the output \yes" andhaving an accepted set W1 � Rn such thatdim(W1 \�) = dim(�):

Since there are at most 3k di�erent branches ofT , the inequalityN < 3k(kdn)O(n2) (7)follows from lemma 5. Together, N � (dn)
(n2)(see the theorem in the introduction) and (7) implyk � 
�log(N)�:The theorem is proved.4 Algebraic computation treesConsider now algebraic computation trees whichconstitute a more powerful computational modelthan algebraic decision trees (of a �xed degree)which we were dealing with so far (see, e.g., [B 83]).Let an algebraic computation tree T0 of thedepth k0 test a membership to an n-dimensionalpolyhedron P � Rn. Denote by N0 the number ofall (n� 1)-facets of P .We claim that k0 � 
�log(N0)�.In order to prove that, consider any branch of T0with the output \yes". LetW1 = ff (1)1 = � � � = f (1)k2 = 0 &f (1)k2+1 > 0 & � � �& f (1)k0 > 0g � Pbe the semialgebraic (accepted) set, correspond-ing to this branch. In this formula f (1)i 2R[X1; : : : ; Xn]; 1 � i � k0 are all the polynomi-als occuring along the branch.Obviously, deg(f (1)i ) � 2k0 (cf. [B 83]).8



Assume that for a (n�1)-facet � of P , the dimen-sion dim(W1 \�) = n� 1. Here, the (n� 1)-plane� is de�ned by� = f X1�j�n �jXj � � = 0gfor some �j ; � 2 R.Denote f (1) = X1�i�k2�f (1)i �2:Evidently, f (1) 6� 0, otherwise the dimension ofthe open set W1; dim(W1) = n, which means thatW1 \ (Rn n P ) 6= ;.Because polynomial f (1) vanishes on �, the lin-ear expression P�jXj � � divides f (1), thereforethe number of (n � 1)-facets such that dim(W1 \�) = n� 1 does not exceeddeg(f (1)) < 2O(k0):Since there are at most 3k0 branches in T1, arguingas at the end of the proof of the theorem, we getthe lower bound k0 � 
�log(N0)�:Note that the number of all facets of all dimen-sions N � �maxf2; N0n g�n, and this estimate issharp. Thus, the bounds log(N) (from the theo-rem) and log(N0) can di�er by a factor O(n).An interesting open problem is to prove the lowerbound 
�log(N)� for the depth of algebraic com-putation trees.
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