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Abstract

We introduce two versions of proof systems dealing with systems of
inequalities: Positivstellensatz refutations and Positivstellensatz cal-
culus. For both systems we prove the lower bounds on degrees and
lengths of derivations for the example due to Lazard, Mora and Philip-
pon. These bounds are sharp, as well as they are for the Nullstellen-
satz refutations and for the polynomial calculus. The bounds demon-
strate a gap between the Null- and Positivstellensatz refutations on
one hand, and the polynomial calculus and Positivstellensatz calculus
on the other.

Introduction

In recent years there was an intensive activity in the research of algebraic
proof systems ([BIK 96], [BuGI 99], [BuIK 96], [CEI 96], [G 98], [IPS 97]).
The approach relies on the Hilbert’s Nullstellensatz and treats the problem
of feasibility of a system of polynomial equations

f1 = · · · = fk = 0,
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with f1, . . . , fk ∈ F [X1, . . . , Xn], over the algebraic closure F . Note that this
problem is, in general, NP -hard.

The Nullstellensatz proof system (NS) was first considered in [BIK 96].
The aim of the system is to find the polynomials g1, . . . , gk ∈ F [X1, . . . , Xn]
such that 1 = g1f1 + · · ·+gkfk. The latter representation is sometimes called
a Nullstellensatz refutation. The number max1≤i≤k{deg(gifi)} is called the
Nullstellensatz degree.

The first example of an exponential lower bound dΩ(n), where deg(fi) ≤ d,
for the Nullstellensatz degree is due to Lazard, Mora and Philippon (see [Br
87] and Section 1 below). In the proof system theory ([BIK 96], [BuIK
96], [IPS 97], [P 98]) a similar question of obtaining lower bounds on the
Nullstellensatz degree was studied mostly for Boolean systems, in which the
input polynomials f1, . . . , fk include X2

i −Xi for all 1 ≤ i ≤ n. In Boolean
case a linear upper bound O(n) is evident, in [BIK 96] a non-constant lower
bound was proved, while in [G 98] a linear (and thus sharp) lower bound was
proved.

In [CEI 96] a stronger proof system — polynomial calculus (PC) was
introduced. Starting from axioms f1, . . . , fk, PC allows to derive from the
already obtained polynomials a, b ∈ F [X1, . . . , Xn] more polynomials, ac-
cording to the following two rules:

1. (additive) a, b ` αa+ βb, where α, β ∈ F ;

2. (multiplicative) a ` Xia for 1 ≤ i ≤ n.

The aim of a derivation is to reach 1.
The degree of a PC derivation is defined as the maximum of the degrees of

all intermediately derived polynomials. The first lower bound on the degrees
of PC derivations was obtained in [R 96] (see also [IPS 97] and [BuIK 96]).
A linear lower bound for PC was proved in [BuGI 99]. Note that the latter
bound is sharp.

The aim of the present paper is to involve inequalities along with equa-
tions into proof systems, in particular we assume that the input polynomi-
als f1, . . . , fk belong to R[X1, . . . , Xn]. The case of linear inequalities with
added conditions X2

i = Xi (Boolean programming) was widely studied by
means of cutting planes proofs, for which an exponential lower bound on the
length was obtained (a survey and references can be found in [P 98]). An-
other approach to systems of linear inequalities was undertaken in [LS 91],
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[L 94], [ST 98], where a derivation system was introduced which allows from
any linear polynomial e, already derived linear inequalities a1 ≥ 0, a2 ≥ 0
and quadratic inequalities p1 ≥ 0, p2 ≥ 0, to derive quadratic inequalities
e2 ≥ 0, a1 + a2 ≥ 0, a1a2 ≥ 0, p1 + p2 ≥ 0. In [P 98] one can find some
remarks on the complexity of this Lovász-Schrijver procedure, in particu-
lar, an upper bound for the Pigeon Hole Principle which demonstrates an
exponential gap between the complexity of cutting planes proofs and the
Lovász-Schrijver procedure.

In the present paper we introduce two proof systems for dealing with
systems of polynomial inequalities. While NS and PC are based on Hilbert’s
Nullstellensatz, our systems involve Positivstellensatz (see [BCR 98], [S 74]
and Section 2 below). The first (weaker) proof system (Section 2), called
Positivstellensatz refutation, is similar to NS and, as NS, can be viewed as
a static proof system in the sense that we require to present a refutation
as a formula containing all the information about the refutation, and the
complexity is the size of this formula.

The second (stronger) system (Section 2) is similar to PC and, as PC,
can be viewed as a dynamic system in the sense that a refutation is derived
step by step. The complexity is measured by the size of the intermediate
polynomials and by the number of steps, i.e., by the length of the derivation.

The main results (Section 3) provide lower bounds for the Lazard-Mora-
Philippon example for the Positivstellensatz refutations (Theorem 2), and for
Positivstellensatz calculus (Theorem 3). Both bounds are sharp and coincide
with the corresponding upper bounds for NS (see [Br 87] and Section 1), and
for PC (Theorem 1, Section 1). In particular, the results show that for
the example considered in this paper, there is a gap between the degree of
derivations for the Positivstellensatz refutations and NS on one hand, and
for the Positivstellensatz calculus and PC on the other. Note that in [CEI
96], [Bu 99] there were constructed examples of Boolean systems of equations
for which PC has smaller degrees of derivations than the ones of NS.

We also mention that in [LMR 96] a deductive system based on Posi-
tivstellensatz was exhibited, for describing an equivalence of two semialge-
braic sets defined by systems of polynomial inequalities. In [CLR 99] a system
is described for automatic extracting of some constructive consequences from
non-constructive proofs of Null- and Positivstellensatz type. However, both
papers do not consider complexity issues.
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1 Complexity of polynomial calculus for a tele-

scopic system

Let F be a field. A well-known example of a lower bound for the degrees
in NS is due to Lazard, Mora and Philippon [Br 87]. It is called “telescopic
system” and is defined by the following polynomials:

1− Y X1, X
2
1 −X2, X

2
2 −X3, . . . , X

2
n−1 −Xn, Xn ∈ F [Y,X1, . . . , Xn] (1)

Polynomials (1) obviously don’t have common roots, and its NS degree is
bounded from below by 2n−1. Observe that 2n−1 is close to the known upper
bound for NS degree [Br 87]. The proof of the lower bound [Br 87] involves
the following substitution of Laurent polynomials:

Y = X−1
1 , X2 = X2

1 , X3 = X4
1 , . . . , Xn = X2n−1

1 . (2)

For any polynomial f ∈ F [Y,X1, . . . , Xn] let f be the the Laurent polyno-
mial being the result of the substitution (2) into f ; by its order ord(f) ∈ Z
we mean the lowest (possibly negative) degree of the Laurent monomials
occurring in f .

Let

1 = (1− Y X1)g1 + (X2
1 −X2)g2 + · · ·+ (X2

n−1 −Xn)gn +Xng

be a NS refutation for (1), where g1, . . . , gn, g ∈ F [Y,X1, . . . , Xn]. Then

1 = X2n−1

1 g, hence g = X−2n−1

1 , thus ord(g) = −2n−1. On the other hand,
ord(g) ≥ − degY (g) (see (2)). Therefore, degY (g) ≥ 2n−1. This proves
the mentioned lower bound on the NS refutation degree for the system (1).
Below, in Theorem 2 we’ll prove a similar lower bound for a stronger proof
system.

Now we prove an upper bound on the degree of PC refutation for (1).
Recall that the length of a PC refutation is the number of applications of the
rules of PC.

Theorem 1 For the system (1) one can produce a PC refutation with the
degree bounded by O(n) and the length not exceeding O(n2n).

Remark 1 This bound is close to sharp. This will follow from the lower
bound in Theorem 3 below.
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Proof. We start with the axiom Xn and derive on each step of the proof a
certain monomial of one of the two types:

(i) Xl1Xl2 · · ·Xlk−1
Xlk or

(ii) Xl1Xl2 · · ·Xlk−1
X2

lk
,

where n > l1 > l2 > · · · > lk ≥ 1.
If lk > 1 (we call it a regular step), then in case (i) we derive the monomial

Xl1Xl2 · · ·Xlk−1
X2

lk−1 invoking the axiomXlk−X2
lk−1, and applying k−1 times

the multiplication rule of PC and, subsequently, once the addition rule. In
case (ii) we derive the monomial Xl1Xl2 · · ·Xlk−1

XlkX
2
lk−1 in a similar way

using the same axiom.
If lk = 1 (we call it a singular step), then in case (i) we derive first

Xl1Xl2 · · ·Xlk−1
X1Y and then Xl1Xl2 · · ·Xlk−1

(as above). In case (ii) we
similarly derive

Xl1Xl2 · · ·Xlk−1
X2

1 ` Xl1Xl2 · · ·Xlk−1
X1 ` Xl1Xl2 · · ·Xlk−1

.

Observe that after each step of the described derivation the order of the
current monomial does not increase in all cases. More precisely, at a regular
step the order remains the same, while on a singular step the order decreases
by either 1 or 2. Thereby, the number of singular steps does not exceed
O(2n). Moreover, if as a result of a singular step we derive a monomial
Xl1 · · ·Xlk , then after that we perform lk − 1 regular steps, followed by a
singular one. Since ord(Xl1 · · ·Xlk) = 2l1−1 + · · ·+ 2lk−1, the total number of
regular steps in the derivation can be bounded from above by O(2n). Because
each (regular or singular) step involves at most O(n) derivation rules of PC,
we obtain the bound O(n2n) on the length of the derivation.

While the order of a current monomial is positive we are able to per-
form either a regular or a singular step. The derivation terminates when we
attain the order 0, thereby the monomial 1. Obviously, the degree of any
intermediately derived polynomial does not exceed O(n).2

2 Positivstellensatz proofs

Similar to NS and PC which rely on Hilbert’s Nullstellensatz, we introduce
here Positivstellensatz proof system and Positivstellensatz calculus respec-
tively. Both are based on the Positivstellensatz [BCR 87], [S 74].
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Definition 1 The cone c(h1, . . . , hm) generated by polynomials h1, . . . , hm ∈
R[X1, . . . , Xn] is the smallest family of polynomials containing h1, . . . , hm
and satisfying the following rules:

(a) e2 ∈ c(h1, . . . , hm) for any e ∈ R[X1, . . . , Xn];

if a, b ∈ c(h1, . . . , hm), then
(b) a+ b ∈ c(h1, . . . , hm);
(c) ab ∈ c(h1, . . . , hm).

Remark 2 The minimal cone c(∅) consists of all sums of squares of polyno-
mials.

Remark 3 Any element of c(h1, . . . , hm) can be represented in a form

∑
I⊂{1,...,m}

(∏
i∈I
hi

)(∑
j

e2
I,j

)

for some polynomials eI,j ∈ R[X1, . . . , Xn].

Positivstellensatz A system of equations f1 = · · · = fk = 0 and inequal-
ities h1 ≥ 0, . . . , hm ≥ 0, where f1, . . . , fk, h1, . . . , hm ∈ R[X1, . . . , Xn] has
no common solutions in Rn if and only if for a suitable polynomial f ∈
R[X1, . . . , Xn] from the ideal (f1, . . . , fk) and a polynomial h ∈ c(h1, . . . , hm)
we have: f + h = −1.

Consider a system of equations and inequalities

f1 = · · · fk = 0, h1 ≥ 0, . . . , hm ≥ 0. (3)

The following proof system is stronger than NS refutations and could be
viewed as its Positivstellensatz analogue.

Definition 2 A pair of polynomials

(f, h) =

( ∑
1≤s≤k

fsgs,
∑

I⊂{1,...,m}

(∏
i∈I
hi

)(∑
j

e2
I,j

))

with f + h = −1 where gi, eI,j ∈ R[X1, . . . , Xn] we call a Positivstellensatz
refutation for (3). The degree of the refutation is

max
s,I,j
{deg(fsgs), deg(e2

I,j

∏
i∈I
hi)}.
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The following proof system is stronger than PC and could be viewed as
its Positivstellensatz analogue.

Definition 3 Let a polynomial f ∈ (f1, . . . , fk) be derived in PC from the
axioms f1, . . . , fk, and a polynomial h ∈ c(h1, . . . , hm) be derived, applying
the rules (a), (b), (c) (see Definition 1), from the axioms h1, . . . , hm. Suppose
that f+h = −1. This pair of derivations we call a Positivstellensatz calculus
refutation for (3). By its degree we mean the maximum of the degrees of
intermediate polynomials from both derivations. The length of the refutation
we define as the total number of steps in both derivations.

Note that the system of Lovász-Schrijver [LS 91] could be viewed as the
degree 2 fragment of the Positivstellensatz calculus.

3 Lower bounds for Positivstellensatz proof

systems

Generalizing the lower bound on NS degree for the telescopic system (1), we
prove the following theorem.

Theorem 2 The degree of any Positivstellensatz refutation of the system (1)
is greater or equal to 2n−1.

Proof. Let
h+ 1 = −f, (4)

where
h =

∑
j

e2
j

and

−f = (1− Y X1)g1 + (X2
1 −X2)g2 + · · ·+ (X2

n−1 −Xn)gn +Xng.

Make the substitution (2) into (4) and assume contrary to the statement
of the theorem (in fact we need only to assume that degY (g) < 2n−1). We
conclude that the order of the right-hand side of (4),

ord(−f) = ord(g) + 2n−1 ≥ 1.
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On the other hand consider the result of the substitution (2) into the left-
hand side of (4). Let q be the minimal power of X1 occurring in all ej.
If q ≤ 0, then X2q

1 will occur in the left-hand side h + 1 with a positive
coefficient, which contradicts to the proved above inequality ord(−f) ≥ 1.
Otherwise, if q > 0, then ord(h+ 1) = 0, and again we get a contradiction.2

The next theorem provides a lower bound for the system (1) for Pos-
itivstellensatz calculus, which together with Theorem 1 (Section 1) shows
that the obtained complexity bounds are sharp for the Positivstellensatz cal-
culus (and a fortiori, they are sharp for PC).

Theorem 3 Any Positivstellensatz calculus refutation for (1) has a degree
greater than n− dlog2 ne − 2, and the length at least 2n−1.

Proof. Consider (4). As it was shown in the proof of Theorem 2, ord(−f) ≤
0. Let us consider a PC derivation from (1) of f provided by Positivstellensatz
calculus refutation (see Definition 3).

At the beginning of the derivation the only non-vanishing (after the sub-
stitution (2)) axiom is Xn = X2n−1

1 . The minimum of the orders of the poly-
nomials, intermediate in the course of the derivation, could decrease on one
step by at most 1 (only due to the multiplication by Y ). Thus, this minimum
attains successively the values 2n−1, 2n−1 − 1, . . . , 1, 0 because ord(−f) ≤ 0.
It follows that the length of the derivation is at least 2n−1. In particular,
there is a polynomial p, intermediate in the course of the derivation, with
the order ord(p) = 2n−1 − 2dlog2 ne+1. Take a monomial X i1

l1
· · ·X ik

lk
Y s with

l1 > · · · > lk ≥ 1 occurring in p with the order exactly

ord(X i1
l1
· · ·X ik

lk
Y s) = ord(p).

Since s ≤ n (otherwise the theorem is proved),

2n−1−2dlog2 ne+1 ≤ ord(X i1
l1
· · ·X ik

lk
) = ord(p)+s ≤ 2n−1−2dlog2 ne+1 +2dlog2 ne.

Thus, the binary representation of the integer ord(X i1
l1
· · ·X ik

lk
) contains at

least n− dlog2 ne − 2 digits 1 at the positions from dlog2 ne+ 2 to n− 1.
We prove that i1 + · · · + ik ≥ n − dlog2 ne − 2. Indeed, replacing in the

monomial X i1
l1
· · ·X ik

lk
any X

ij
lj

with ij ≥ 2 by Xlj+1X
ij−2
lj

, and keeping doing
this as long as possible, we do not change the order whereas decreasing the
degree of the monomial. At the end we arrive to a monomial of the form

Xn−1Xn−2 · · ·Xdlog2 ne+2Xt1 · · ·Xtr ,
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dlog2 ne+ 2 > t1 > · · · > tr ≥ 1

with the degree at least n− dlog2 ne − 2.2

4 Further research

One could further extend the Positivstellensatz calculus by admitting a fol-
lowing derivation of two polynomials f,H. The polynomial f ∈ (f1, . . . , fk)
is derived by means of PC from the axioms f1, . . . , fk. The polynomial H ∈
(f1, . . . , fk) + c(h1, . . . , hm) is derived from the axioms f1, . . . , fk, h1, . . . hm
using the rules (a), (b), (c), and allowing to take f as a, b (see Defini-
tion 1). Thus, we derive separately the elements from (f1, . . . , fk) and from
(f1, . . . , fk) + c(h1, . . . , h1). The aim is to derive H = −1, i.e., a refutation
for the initial system of equations and inequalities. It would be interesting
to obtain lower bounds for this extended calculus.

Another challenging problem is to obtain lower bounds for the Boolean
problems, e.g., for the ones studied in [BuIK 96], with respect to the Posi-
tivstellensatz calculi introduced in this paper.

It would be also interesting to construct examples of a system of equations
for which Positivstellensatz derivations have the degrees or lengths less than
their Nullstellensatz analogues.

Observe that the lower bounds in Theorems 2 and 3 remain true for the
sum of squares of polynomials from (1):

f0 = (1− Y X1)2 + (X2
1 −X2)2 + · · ·+ (X2

n−1 −Xn)2 +X2
n.

The proofs for f0 go through almost literally. What are the upper bounds for
the complexities of Positivstellensatz refutation and calculus for the equation
f0 = 0?
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