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Abstract. Cryptography based on noncommutative algebra still suffers
from lack of schemes and lack of interest. In this work, we show new
constructions of cryptosystems based on group invariants and suggest
methods to make such cryptosystems secure in practice.
We do not know any proof of security in its cryptographic sense or even a
reduction of it to a sensible statement about regular complexity classes.
In this paper we introduce a new notion of cryptographic security, a
provable break, and prove that cryptosystems based on matrix group
invariants and also a variation of the Anshel-Anshel-Goldfeld key agree-
ment protocol for modular groups are secure against provable worst-case
break unless NP ⊆ RP.

1 Introduction

Suppose that, as usual, Alice and Bob are engaged in a cryptographic
protocol, and Charlie tries to eavesdrop, decoding the messages that
Bob sends to Alice. But now Charlie does not really trust the results
he receives (or, perhaps, he has a boss who does not trust Charlie’s
algorithm of breaking the protocol), so he wants to be able to prove
that his decoded message is actually what Bob had in mind. This is
(informally) what we call a provable break.

In this setting, it is not sufficient for Charlie just to recover the
encrypted message m from a ciphertext c, he should also justify

? The research was done during the stay at the Max-Planck-Institut für Mathematik,
Bonn, Germany. Supported in part by INTAS (YSF fellowship 05-109-5565) and
RFBR (grants 05-01-00932, 06-01-00502).



2

that it is possible to encode m into c. Namely, in the provable break
security model an adversary given a codeword E(m) should not only
produce the message m, but also present suitable random bits of E
that might lead to such a cipher.

There may be several sets of random bits {r1, . . . , rk} that pro-
duce the same cipher: E(m, pk, r1) = . . . = E(m, pk, rk). In this case,
of course, an adversary only needs to present some random string
that results in the cipher, not necessarily the one Bob actually used
(when k > 1, Charlie has absolutely no chance to find it anyway).

Informal discussion of provable break began in connection with
the Rabin–Goldwasser–Micali cryptosystem based on quadratic
residues [GB01]. It was shown that provable break of this cryptosys-
tem implies that factoring is contained in RP. However, we know of
no reference where a formal definition was presented.

One of the most fundamental questions in theoretical cryptogra-
phy is to construct a secure encryption scheme based on some nat-
ural complexity assumption like P 6=NP. It is likely to be impossible
(see [BT03] for recent results). Moreover, it is unknown if hard on av-
erage problems imply one-way functions [Lev03]. Partial results were
obtained under the assumption of a very strong adversary, worst-case
adversary, who breaks the code in all cases [EY80,Lem79]. For a de-
tailed survey on the subject we refer the reader to the book [MSU08]
and to previous papers of the first author [GP06,GP07].

In this paper, we present two slightly different definitions of prov-
able break (one weaker than the other) and prove that two differ-
ent cryptographic protocols, namely the Anshel-Anshel-Goldfeld key
agreement protocol and cryptosystems based on group invariants are
all secure against provable worst-case break provided NP 6⊆RP. For
the latter cryptosystem, we develop new ways to provide for their
security in the usual cryptographic sense.

2 Definitions

First we define provable break of public key cryptosystems and then
extend it to key agreement protocols. We present two separate def-
initions, one of them worst-case. The following definition is taken
from [GB01].
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Definition 1. A public-key encryption scheme S consists of three
probabilistic worst-case polynomial-time algorithms (G,E,D) for key
generation, encryption and decryption respectively.

The key generation algorithm G on input 1n (the security param-
eter) produces a pair G(1n) = (e, d) of public and secret keys. The
encryption algorithm E takes as input a public key e and a plaintext
message m and produces a ciphertext

E(e,m) = c.

Finally, the decryption algorithm D takes as input a secret key d and
a ciphertext c. The output of D is a message

D(d, c) = m′,

which may fail to equal the original message m when E(e,m) =
E(e,m′). These situations are called collisions; we assume that col-
lisions happen with negligible probability.

Remark 1. In what follows we (equivalently) redefine the en-
cryption algorithm E to be a deterministic worst-case polynomial-
time algorithm with access to a random string r. It takes as input
a public key e, a plaintext message m, and a random string r and
produces ciphertext E(r, e, m) = c.

Definition 2. An adversary C performs provable break of a cryp-
tosystem (G,E,D) if for a uniform distribution over messages m
and random bits of all participating algorithms (the public key pk is
taken from the pair (pk, sk) generated by the key generation algo-
rithm G(1n))

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), and n is the security parameter.

If E is deterministic then provable break is equivalent to usual
break. However, such cryptosystems are usually easy to break, be-
cause they allow an adversary to check that he has the right answer
by re-encrypting the message. This is precisely the idea of provable
break. An adversary should not only decipher the message, but also
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check that the cipher is actually a valid one; while the former may
be trivial (as it will be in some of our examples), the latter may be
very hard.

We also introduce the notion of a very strong adversary, that
performs a worst-case break. The difference with the usual break is
that the adversary should be successful on all inputs.

Definition 3. An adversary C performs provable worst-case break
of a cryptosystem (G,E, D) if for all messages m

Pr [C(E(m, pk, r), pk) = (m, r′)] ≥ 1

poly(n)
,

where E(m, pk, r′) = E(m, pk, r), n is the security parameter, and
the distribution is taken over random bits of all participating algo-
rithms (public key pk is taken from the pair (pk, sk) generated by the
key generation algorithm G(1n)).

We say that a cryptosystem (G,E, D) is secure against provable
(worst-case) break is there is no polynomial probabilistic Turing ma-
chine C performing provable (worst-case) break of (G,E,D).

Remark 2. It is easy to think of a trivial cryptosystem which is
secure against provable break. Let Bob transfer the message openly
(decryption is thus trivial), but add a value of some one-way function
to the end of the message. Alice can disregard this one-way function,
but Charlie would have to invert this one-way function in order to
get a valid set of Bob’s random bits. Therefore, our task is not to
simply devise cryptosystems that are secure against provable break,
but to devise them in such a way that they are or at least may be
made secure in the usual cryptographic sense. Of course, we can-
not prove their security (nobody currently can prove security of any
cryptosystem at all), but we provide constructions that we believe
to produce reasonably secure cryptosystems.

3 Invariant-based cryptosystems and their
provable break

3.1 Cryptosystems based on group invariants

In [Gri05], D. Grigoriev suggested a new class of public-key cryp-
tosystems based on group invariants. In an invariant-based cryp-
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tosystem, Alice chooses a group G ≤ GL(n, F ) acting on some vec-
tor space F n. As a secret key, Alice chooses an invariant f : F n → X
such that ∀g ∈ G f(gx) = f(x). She also selects a set (or a
space given by generators) of messages M ⊆ F n such that for all
m1 6= m2 ∈ M f(m1) 6= f(m2). Thus, an invariant-based cryptosys-
tem is defined by a triple (G, f,M). As the public key Alice transmits
generators of G and M .

Bob selects a vector m ∈ M (m is Bob’s message) and a random
element g ∈ G. After that, Bob communicates to Alice gm. Alice can
decipher the message by taking the invariant f(gm) = f(m). We call
a triple (G, f, M) admissible if it correctly defines an invariant–based
cryptosystem.

It is now clear that the primary concern of the security of
invariant-based cryptosystems is to find a well-concealed invariant.
In what follows we give several ways to do so. These ways are similar
to the ones employed in [GP07] and may be summarized with the
following construction. Consider a tree such that each node of the
tree contains a triple (G, f, M). Alice builds this tree from the leaves
to the root, at each step keeping track of G, f , and M . After the
tree is created, Alice takes the cryptosystem from the root and uses
it.

An adversary will thus be able to break the cryptosystem if he
knows the structure of the tree. This structure is equivalent to the
description of the invariant from the security point of view, and may
also be considered as Alice’s secret key. The security of this cryp-
tosystem will rely on the difficulty of the conjugacy and membership
problems, as in [GP07] (see Section 4 for details).

3.2 An invariant-based cryptosystem secure against
provable break unless NP⊆RP

The construction is based on the modular group. The modular group
is the multiplicative group SL2(Z) of 2× 2-matrices of determinant
1 (unimodular matrices).

In [BG95, Corollary 11.5] Blass and Gurevich proved that the
following bounded membership problem (BM) for the modular group
is NP-complete.
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Problem 1. Let X be an unimodular matrix, S be a finite set of uni-
modular matrices and N be a positive integer. Can X be represented
as

∏m
i=1 Yi, where m ≤ N and for each i either Yi or Y −1

i is in S?

Remark 3. Do not confuse this problem with other problems
that in [BG95] are proven to be RNP-complete. The primary dif-
ference is that in this case we are dealing with group membership,
while RNP-complete problems arise from checking membership in
semigroups.

Let us take G to be the unimodular group ( 1 ∗
0 1 ). As the invariant

we take f ( x1
x2 ) = x2 and as the message space — the space of vectors

( 1∗ ). Bob takes a random element g in the given group (obtained
by multiplying not more than, say, N generators), transports the
message vector m into gm and transmits gm and N . Alice computes
f(gm) and decides which m it was.

Note that this “cryptosystem” is trivial to break: encryption does
not change the part of the vector that actually carries the message.
However, we will presently see that its provable break is NP-hard.

Theorem 1. If there is a polynomial adversary C performing prov-
able worst-case break of the invariant-based cryptosystem described
above then NP ⊆ RP.

Proof. In short, the provable break is NP-hard because the Integer
Sum problem is easily reduced to deciding bounded membership in
a subgroup of the modular group, as shown in [BG95].

First, note that

(
1 λ
0 1

)(
1 µ
0 1

)
=

(
1 λ + µ
0 1

)
.

Thus, the problem of deciding bounded membership in a subgroup of
the modular group is equivalent to the problem of deciding whether
a given number is expressible as a bounded sum of other given num-
bers. This is the Integer Sum problem, shown to be NP-complete
in [BG95].

If a polynomial-time algorithm solves a search problem with suc-
cess probability 1

nConst , this probability can be easily amplified to
3/4 by repeating the algorithm for a polynomial number of times
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and taking the majority vote as an answer. Therefore, if a polynomi-
ally bounded adversary provably worst-case breaks the cryptosystem
presented, NP ⊆ RP.

In Sections 4 and 5 we present constructions aimed at making
invariant-based cryptosystems more reasonable from the security
viewpoint.

4 The tree of groups

4.1 General remarks

The invariant-based protocol described in the previous section shares
a discouraging property with the cryptosystem presented in a remark
in Section 2. It is easy to break in the common cryptographic sense.
In this section we provide a construction that allows us to “hide”
these primitives inside a large tree of groups. We can also use it
to improve security of the Anshel-Anshel-Goldfeld key agreement
protocol.

We follow the lines of [GP07] to produce a tree of group–
invariant–messages triples such that knowing the structure of the
tree one can efficiently calculate the invariant in its root, while with-
out knowing the structure the invariant is “concealed” in the tree.

In what follows, we concentrate on the invariant-based cryptosys-
tems (introduced in Section 3) since [GP07] can be directly applied
to key agreement protocols described in Section 7. However, we have
to develop several new techniques to handle invariant-based cryp-
tosystems. We will consider the same operations as in [GP07] and
look at what happens with the invariants. But first we should intro-
duce the basic notions.

To each vertex v of the tree a triple (Gv, fv, Mv) is attached and
triples are produced by recursion on the vertices of the tree starting
with leaves towards the root to each vertex one of the following op-
erations is assigned which allow the recursive step. For every vertex
v the group Gv is a matrix group for some n and some underlying
ring R.

To a tree we attach the resulting triple (G, f, M), where G ≤
GL(n,R) is a group, f is an invariant, that is, a function f : Rn → R
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such that ∀g ∈ G ∀x ∈ Rn f(gx) = f(x), and M ⊂ F n is a canonical
set of messages with the property that ∀m 6= m′ ∈ M f(m) 6= f(m′).

The public key will consist of R, n, G (given by generators), and
M . The point of building such a tree is to conceal the secret invariant.
Note that in situations where we change the invariant we can either
change the invariant from f to f ◦ h or change the message space
from M to h(M). Since we care about concealing the invariant, and
the message space will be given publicly, we will always choose the
first alternative.

We want to combine this regular security with provable worst-
case security of the modular group that we have proven in Theorem 1.
To do this, we place a provably secure construction based on the
modular group in one of the leaves of the tree. Then, for Charlie to
solve the membership problem in the root of the tree, Charlie would
have to solve the membership problem for all leaves of the tree (our
construction has this property).

4.2 Base of recursion

To treat the construction formally, consider a class of groups G closed
under a certain set of group–theoretical operations O (we list the rel-
evant operations below) that transform admissible triples into admis-
sible triples. For a set G0 ⊂ G (which is the base of the construction)
we define recursively a class P(G0,O) of quadruples (G, f, M, T ) in
the following way.

– Base of recursion: any quadruple (G, f, M, T ), where G ∈ G0,
(G, f,M) is an admissible triple, and T is a single node labeled
by G.

– Recursive step: given quadruples {(Gi, fi,Mi, Ti)}s
i=1 and an op-

eration o ∈ O of arity s, the class P(G0,O) contains the quadru-
ple (G, f, M, T ), where G = o(G1, . . . , Gs), f = o(f1, . . . , fs),
M = o(M1, . . . , Ms), and T is the tree obtained from T1, . . . , Ts

by adding a new root labeled by o, its sons being the roots of
T1, . . . , Ts.

4.3 Recursive step

Let us now list the “building blocks” of the tree according to [GP06]
and see what happens with the invariants in these cases.
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1. Changing the underlying ring φ : R → R′. If the ring becomes
smaller (R′ embeds in R with ϕ : R′ → R, and φϕ = id),
an invariant f transforms into an invariant φ(f) that acts like
φ(f)(x′) = f(ϕ(x′)). If ∀x ∈ Rn, g ∈ G f(x) = f(gx) then

∀x′ ∈ R′n, g ∈ G φ(f)(gx′) = f(gϕ(x′)) = f(ϕ(x′)) = φ(f)f(x′).

If the ring becomes larger, bad things may happen (since there
are new elements in the ring now, old equalities may not hold
anymore). This property allows us to reason that any invariant
known from invariant theory over fields will carry on to the rings
that are subsets of these fields; e.g. any invariant over C will be
an invariant over Z.
However, this action requires care about the message space.
If there were different representatives m,m′ ∈ M such that
φ(m) = φ(m′) then the corresponding messages will be consid-
ered identical in the resulting message space φ(M). Therefore, it
is sensible to reduce the underlying ring only if φ(M) is nontrivial.

2. Conjugation g 7→ h−1gh. The invariant f(x) becomes the invari-
ant f ′(x) = f(hx). If ∀g ∈ G∀x ∈ Rn f(gx) = f(x) then

∀g ∈ G∀x ∈ Rn f ′(h−1ghx) = f(hh−1ghx) = f(g(hx)) = f(hx) = f ′(x).

The message space M does not change.
3. Direct product G1, G2 7→ G1 ×G2. We here consider the natural

representation of the direct product; if G1 ≤ GL(n1, F ) and G2 ≤
GL(n2, F ) then G1×G2 ≤ GL(n1+n2, F ), acting componentwise.
In this situation, if f1(x), f2(x) were invariants of G1, G2, any
element f ∈ 〈f1(x), f2(y)〉 ≤ R[x, y] will be an invariant of G1 ×
G2. We can choose a random element of this set, and the message
space will in any case become M1 ×M2 (if we do not need that
many different messages, we can choose several at random and
discard the others).

4. Wreath product G o H, where G ≤ GL(n,R), H ≤ Sm. In this
case, we take the natural representation of G oH on Rmn acting
as

(g1, . . . , gm, π)




x1

. . .
xm


 =




g1xπ(1)

. . .
gmxπ(m)


 .



10

In this case, for any invariant f , if ∀g ∈ G, x ∈ Rn f(gx) = f(x)
the same will hold for G oH if we take fm to act componentwise.
The permutation disturbs nothing in the invariant equality. The
message space will grow correspondingly to Mm (again, we may
choose several messages at random or choose the diagonal ∆ =
{(x, . . . , x) | x ∈ M} if we do not need that many messages).

Apart from the old ways to extend the tree, invariant theory
suggests new ways. We can consider several transformations o ∈ O
that leave the group intact (o(G) = G) and only change the invariant
f and the message space M . The following will only work if f is a
polynomial.

1. Hessians H(f). If f is a polynomial invariant of G, and ∀g ∈
G ≤ GL(n, F ) det g = ±1 (note that F is a field) then

H(f) = det

(
∂2f

∂zi∂zj

)

is also an invariant. The group G and the message space M re-
main unchanged.

2. Jacobian J . If f1, . . . , fn are polynomial invariants of G ≤
SL(n, F ) (note that F is a field) then

J(f1, . . . , fn) = det

(
∂fi

∂zj

)

is also an invariant. In this way we can unite n identical groups
with different invariants into one; this will probably be useful
only on the first level of the tree, where we can choose arbitrarily
many identical groups.

5 The leaves of the tree

The previous section explains how to build a new invariant out of
existing ones (thus, the recursive step). The question that remains is
to find the base of this recursion. What should we put in the leaves
of this tree?



11

5.1 General remarks

The first remark we should make is that in computer science, we can-
not truly work over C or R. Anything we do is actually over Q. In-
variant theory over Q is a little different from the classic well-known
invariant theory over C. Fortunately, we don’t have to throw away
the theory: if f is an invariant of a group G ≤ GL(n,C) represented
by matrices with rational coefficients, then it is still an invariant of
the group G ≤ GL(n,Q) because elements of G have rational coef-
ficients. Therefore, in what follows we will refer to invariants over C
but they will always be the same for Q.

We may also look at invariants over finite fields, usually called
modular invariants, but they provide a completely different story
with completely different theory.

5.2 Orbit Chern classes

As an example of a standard well-known construction from invari-
ant theory (see, e.g., [Smi96]) we remind the so-called orbit Chern
classes. They provide most known invariants of finite groups. The
idea is simple: take an orbit aG of an element a ∈ F n (suppose for
the moment that G acts over a field) and note that

∏
b∈aG(x + b),

where x is a formal variable, is invariant under G (elements of G only
permute the factors in this expression). Its coefficients are called or-
bit Chern classes. For example,

∑
b∈aG b is an invariant.

All orbit Chern classes are nothing more than symmetric func-
tions in the elements of the orbit; if we take a to be an unknown,
we obtain the invariants we are looking for. The similar for compact
groups.

5.3 Examples of finite groups’ invariants

In this subsection we give several examples of invariants of different
finite groups. The examples may be easily multiplied.

Example 1. The symmetric group Sn has a monomial represen-
tation on F n Sn → GL(n, F ) that permutes the variables. The ring
of invariants in this case is generated by all symmetric polynomials,
from x1 + . . . + xn to x1 . . . xn. This is a simple example of orbit
Chern classes.



12

Example 2. A cyclic group Zn may be represented by any matrix
g ∈ GL(m, F ) such that gn = e (a unipotent matrix of a matching
order). For a function f to be an invariant of a cyclic group’s repre-
sentation, it suffices to ensure that it remains unchanged under the
action of the only generator: f(x) = f(gx).

For example, a cyclic group Zn is naturally represented by a
subgroup generated by ξne, where ξn is a primitive n-th root of unity
and e is the identity matrix. Obviously, any homogeneous polynomial
of degree n is an invariant of this group. We can go one step further
and consider the representation of a cyclic group Zn generated by a
matrix 


ξ1 . . . 0
...

...
0 . . . ξm


 ,

where ξi are (possibly different) primitive roots of unity, ξn
i = 1. The

invariant ring of this group will be C[xn
1 , . . . , x

n
m].

Note that invariants depend not only on groups themselves, but
also on their representations; the same group with different repre-
sentations has very different invariants.

Example 3. A dihedral group D2k has a representation D2k →
GL(2,R) as the symmetry group of a regular polygon. In this repre-
sentation D2k is generated by two matrices:

D2k =

〈(
cos 2π

k
− sin 2π

k

sin 2π
k

cos 2π
k

)
,

(
1 0
0 −1

)〉
.

Then the invariant ring of the dihedral group in this representa-
tion is generated by polynomials

q = x2 + y2, h =
k−1∏
i=0

((
cos

2πi

k

)
x +

(
sin

2πi

k

)
y

)
.

Example 4. For an odd prime p the dihedral group D2p has a
representation D2p → GL(2,Fp) over the finite field Fp given by the
matrices

D2k =

〈(
1 1
0 1

)
,

(−1 0
0 1

)〉
.
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In this case the invariant ring is isomorphic to Fp[y, (xyp−1 − xp)2].
However, if we switch to the dual representation (by simply transpos-
ing the matrices), the invariants will change substantially; the ring
will now be isomorphic to Fp[x

2, y(yp−1 − xp−1)]. In this example it
was important that the group was represented over a finite field of
degree not coprime with the group’s degree.

These two examples show how much invariants depend on the
actual representation. Some other examples of invariants of finite
and classical groups one can find in [Gri05].

5.4 Invariants of classical groups

In this subsection, we will give some examples of well-known invari-
ants of classical groups. They may also lie in the leaves of the tree
of groups.

Example 5. The orthogonal group in an even dimension
SO(2l, F ) has the well-known Dickson invariant : if charF 6= 2, which
we will assume to be the case, it is (−1)det g for a g ∈ SO(2l, F ).
This invariant works for any field with characteristic not equal to
two. Note that this invariant only has two values, so it is good for
encrypting only one bit.

Example 6. The symplectic group Sp(2n, F ) by definition pre-
serves a nondegenerate skew-symmetric bilinear form. The value of
this form is an invariant (and, unlike the previous example, a poly-
nomial invariant).

6 Attacks on invariant-based cryptosystems

When a new cryptosystem (or a family of cryptosystems) is pre-
sented, it is common to analyze the attacks on such cryptosystems.
In this section we analyze several attacks on invariant-based cryp-
tosystems and give practical advises on how to avoid their success.

6.1 Linear algebra attacks

The most dreaded attacks on algebraic cryptosystems usually go by
linear algebra: an adversary constructs a system of linear equations
and finds the secret key (the most notable example of this approach
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breaks the Polly Cracker scheme [FK92] that was only recently aug-
mented with special techniques to make linear algebra attacks less
efficient [Ly06]).

Suppose that the invariant f is a polynomial of degree d. In this
case, an adversary can view it as a polynomial with

(
n+d+1

d

)
indefi-

nite coefficients. To find the coefficients, he considers the equations
f(gimj) = f(mj) for all elements of the message space mj ∈ M
and all generators gi ∈ G. The space of solutions will yield an in-
variant separating the orbits of M (along with trivial invariants like
f = const, of course). If d is a constant this attack will actually suc-
ceed, so Alice should choose invariants in such a way that

(
n+d+1

d

)
is

superpolynomial.
Example 7. Suppose that we are trying to build an invariant-

based cryptosystem based on the monomial representation of the
symmetric group Sn generated by transpositions τij and its first de-
gree invariant

f(x1, . . . , xn) = x1 + . . . + xn.

For the message space we should choose a number of vectors such
that the sums of their coordinates are different; we denote them by
mi = (mi1, . . . , min). An adversary performing this kind of attack
will simply consider a polynomial

h = λ1x1 + . . . + λnxn

and solve a system of equations to ensure that transpositions do not
change h. The equation corresponding to τij is h(τijx) = h(x) which
is equivalent to λi = λj. So, the adversary will arrive to the correct
invariant (or a constant factor of it) after performing a polynomial
algorithm. Note that in order to overcome this algorithm one should
choose the message space in such a way that it contains messages
with identical sums of elements. The adversary does not need to find
the same invariant, he only needs to find an invariant that separates
the vectors of M .

6.2 Monte-Carlo attack and orbit sizes

Another concern comes from the sizes of the orbits of elements of
M . Indeed, suppose that an element m ∈ M has an orbit mG of
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polynomial size. In this case, an adversary has a polynomial chance
of hitting the correct cipher E(m) by simply picking an element
g ∈ G at random and comparing E(m) and gm. Thus, the elements
of the message space should be chosen with care to ensure that their
orbits are large.

Example 8. For a trivial yet representative example consider
a message space consisting of a zero vector and some other vector
(the following analysis will do for any subgroup of GL(n, F ) and any
invariant). The size of the zero vector orbit is 1, so an adversary does
not have to do anything: if he sees a zero vector, the message was
zero, if he sees a nonzero vector — it was the other vector that got
“encrypted”.

6.3 Tree reconstruction attack

Finally, an adversary may attempt to reconstruct the tree with which
the invariant was built. Along this way he will encounter, for exam-
ple, of finding a matrix a such that a−1Ga = H for given G and
H. This is a well-known hard problem; for example, in [Luk93] it is
shown that Graph Isomorphism reduces to the problem of group con-
jugation. This kind of attacks was considered in detail in [GP06]; the
same reasoning applies in this case, since the task of reconstructing
the tree has not become any easier. In fact, it has become harder, as
the tree nodes are now augmented with invariants that may change
nontrivially when going up the tree; consequently, to reconstruct a
tree an adversary needs not only to reconstruct the groups but also
to reconstruct invariants.

7 Anshel-Anshel-Goldfeld key agreement
protocol secure against provable break

First we recall the definition of the Anshel-Anshel-Goldfeld key
agreement protocol [AAG99]. Let G be a group, and let two players
A and B choose two subgroups of G

GA = 〈a1, . . . , am〉, GB = 〈b1, . . . , bn〉.
Remark 4. Note that everything shown below goes without

change if GA and GB are semigroups, not regular groups. All com-
mutators are taken in the larger group G.
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The group G and elements ai, 1 ≤ i ≤ m, and bj, 1 ≤ i ≤ n, are
made public. Both players A and B randomly choose secret elements
a ∈ GA and b ∈ GB as products of not more than N generators and
transmit to each other the following sequences:

XA = {a−1bja}n
j=1, XB = {b−1aib}m

i=1.

After this transmission, player A (resp. B) has a representation of
the element a (resp. b) in the subgroup GA (resp. GB). Therefore,
he can compute a representation of the element b−1ab (resp. a−1ba)
using elements of the sequence XA (resp. XB). Thus, both players
have shared a common key, namely the commutator

a−1(b−1ab) = [a, b] = (a−1ba)−1b.

An obvious necessary condition for this protocol to be secure is that
the set of all commutators with a ∈ GA and b ∈ GB should contain
at least two elements.

To provably break the Anshel-Anshel-Goldfeld key agreement
protocol, one has to find representations of certain elements a

′
in

GA and b
′
in GB, where

XA = {a′−1bja
′}n

j=1, XB = {b′−1aib
′}m

i=1.

Theorem 2. The Anshel-Anshel-Goldfeld key agreement protocol
for a modular group G and its subgroups GA and GB is secure against
provable worst-case break unless NP ⊆ RP. The same statement
holds if GA and GB are considered as subsemigroups of G, rather
than subgroups.

Proof. Assume that there is a probabilistic polynomial-time Tur-
ing machine M such that for infinitely many security parame-
ters N , and input I = {a1, . . . , am, b1, . . . , bn, a−1b1a, . . . , a−1bma,
b−1a1b, . . . , b

−1anb} it is true that

Pr[M(I) = a
′
1, s1, . . . , a

′
f , sf , b

′
1, t1, . . . , b

′
g, tg] ≥ 1/p(N),

where GA = 〈a1, . . . , am〉 and GB = 〈b1, . . . , bn〉 are subgroups of

the modular group, a ∈ GA, b ∈ GB, a
′
=

∏f
i=1 a

′si
i , b

′
=

∏g
j=1 b

′tj
j ,

a
′
i ∈ {ai}m

i=1, b
′
j ∈ {bj}n

j=1, a
′−1bja

′
= a−1bja, for all 1 ≤ j ≤ n,
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b
′−1aib

′
= b−1aib, for all 1 ≤ i ≤ m, si and tj are in {−1, 1} for all

1 ≤ i ≤ f and 1 ≤ j ≤ g, f, g ≤ N and p is some polynomial. Note
that we can check the correctness of the answer of M , so we also
assume that M produces only correct answers.

Using M , we can a construct probabilistic polynomial-time Tur-
ing machine M ′ that contains p(N)/2 copies of M such that on input
(X, {Yi}i, N) it does the following.

1. If X =
∏m

i=1 Y
′si
i , where Y ′ ∈ {Yi}i, m ≤ N , si ∈ {−1, 1} (if we

consider GA and GB as semigroups, here we take positive degrees
only), then Pr[M ′ accepts] ≥ 1/2.

2. Otherwise, Pr[M ′ accepts] = 0.

For inputs of all copies of M we take a = b = X, ai = bi = Yi, and
compute all a−1b1a, . . . , a−1bma, b−1a1b, . . . , b

−1anb in polynomial
time. By [BG95, Corollary 11.5] the BM problem is NP-complete,
hence, NP ⊆ RP. ut

Remark 5. If GA and GB are semigroups, the BM problem is
hard, moreover, on average [VR92].

Note that the described key agreement protocol can be insecure
against linear algebra attack (cf. Subsection 6.1): it gives an adver-
sary the decision of the conjugacy problem which could be unique,
provided that the ring generated by GA (or by GB) coincides with
the whole ring of matrices (that is the case if we build our protocol
on the Blass-Gurevich groups). To make a cryptosystem more resis-
tant against linear algebra attacks, one can replace G by a tree-like
construction of groups or semigroups as in Section 4.

Formally speaking, we produce the following recursive construc-
tion for a class of groups G closed under a certain set of group–
theoretical operations O; this time we do not have to worry about
admissible triples, and the operations are defined simply on groups
of G. For a set G0 ⊂ G (which is the base of the construction) we
define recursively a class P(G0,O) of pairs (G, T ).

The recursive definition is done precisely as in 4.2, omitting the
constructions of the invariants and message spaces. In our case, the
set O of admissible operations consists of changing the underlying
ring, direct products, wreath products, and conjugations (same as for
invariant–based cryptosystems, but without invariant–specific oper-
ations).
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The security of the Anshel–Anshel–Goldfeld key agreement pro-
tocol for matrix groups relies on the following problem.

Linear Transporter Problem (LTP). Let R be a commuta-
tive ring, V be an R–module and G ≤ GL(V, R). Given u ∈ V and
v ∈ uG = {ug : g ∈ G} find g ∈ G such that v = ug.

If an adversary can efficiently solve LTP, he can obviously
break the Anshel–Anshel–Goldfeld protocol. In [GP07], the following
proposition was proven (Lemma 3.4).

Proposition 1. Let G ∈ G. Then, given a derivation tree of G, LTP
for G can be solved in time polynomial in the size of the tree and the
times of solving LTP for leaves of the tree.

Of course, this does not prove that security of the Anshel–Anshel–
Goldfeld key agreement protocol in the root of the tree depends on
the security of this protocol in the leaves of the tree. We have a much
weaker statement that goes in the undesirable direction twice: if we
can solve LTP we can break the Anshel–Anshel–Goldfeld protocol,
and if we can solve LTP for leaves of the tree, we can solve LTP for its
root. To prove security we would need to reverse both statements.
However, this is the best we can do, and we know of no similar
constructions with stronger dependencies.

8 Conclusions and further work

In the paper, we have introduced a new notion of provable break and
provable security in general. While this notion is undoubtedly much
weaker than regular cryptographic security, it appears natural, well-
defined, and sensible. Moreover, this notion of security is the only
notion known to us for which provable positive statements are pos-
sible. We have provided three examples of cryptographic protocols:
an invariant-based cryptosystem secure against provable break and
a key agreement protocol secure against provable break. We are sure
that one can produce more examples along the same lines.

Therefore, on one hand, further work lies in the search for more
cryptographic primitives secure against provable break. On the other
hand, one also wishes to look for connections between provable break
and other notions of security. It is easy to think of a trivial cryptosys-
tem for which provable security is equivalent to regular cryptographic
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security; however, it may be useful to look for nontrivial examples of
the same. These lines will probably be similar to the research carried
out by Ajtai and Dwork [AD97] who managed to reduce a worst-case
problem to an average-case one and thus obtained a cryptosystem
that is secure under some worst-case assumptions.

Acknowledgements. The authors are grateful to Edward A.
Hirsch for valuable discussions.
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