
TESTING SHIFT{EQUIVALENCE OFPOLYNOMIALS BY DETERMINISTIC,PROBABILISTIC AND QUANTUM MACHINESD. Grigoriev�Department of Computer Science &Department of MathematicsPenn State UniversityUniversity Park, PA 16802 USAemail: dima@cse.psu.eduThe polynomials f; g 2 F [X1; : : : ;Xn] are called shift-equivalent if there existsa shift (�1; : : : ; �n) 2 Fn such that f(X1 + �1; : : : ;Xn + �n) = g. The algorithmsin three di�erent cases are designed which produce the set of all shift-equivalencesof f; g in polynomial time, herewith in the case of a(1) zero-characteristics �eld F the designed algorithm is deterministic;(2) prime residue �eld F = Fp and a reduced polynomial f , i.e. degXi(f) �p� 1, 1 � i � n, the algorithm is randomized;(3) �nite �eld F = Fq of the characteristic 2 the algorithm is quantum; foran arbitrary �nite �eld Fq a quantum machine is designed which computesthe group of all shift-self-equivalences of f , i.e. (�1; : : : ; �n) 2 Fnq such thatf(X1 + �1; : : : ;Xn + �n) = f .IntroductionIn the paper we deal with the problem of testing, whether two given polynomialsf; g 2 F [X1; : : : ;Xn] are shift-equivalent, i.e. there exists a shift �1; : : : ; �n suchthat f(X1+�1; : : : ;Xn+�n) = g. Earlier,the issue of considering polynomials up to�Supported by NSF grant CCR-9424358. Typeset by AMS-TEX1



2the shifts appeared in the context of the interpolation of shifted-sparse polynomials(see [7, 11, 8]), namely, the polynomials which become sparse after a suitable shift.We present the algorithms for computing the group Sf;f of the shifts (�1; : : : ; �n)such that f(X1 + �1; : : : ;Xn + �n) = f and for testing, whether the set Sf;g of theshifts (�1; : : : ; �n) for which f(X1+�1; : : : ;Xn+�n) = g is non-empty (in the lattercase Sf;g = (�1; : : : ; �n) + Sf;f and the algorithm yields a certain (�1; : : : ; �n) 2Sf;g). The nature and the complexity of the algorithms substantially depends onthe characteristic of the ground �eld F .Our deterministic algorithm of section 1 test self-equivalence over the �elds ofcharacteristic zero and has a polynomial-time complexity if the degree of f growsslower than n.Our randomized algorithm of section 2 tests shift-equivalence over the �elds ofpositive characteristic p where F = Fp is the �eld of residues mod p and thepolynomial f is reduced, i.e. the degree with respect to each variable degXi(f) �p� 1, 1 � i � n. This algorithm has a polynomial running-time, if p grows slowerthan a certain polynomial in n=d.In section 3 we treat the case of an arbitrary �nite ground �eld F and the degreeof f . We design a quantum machine that computes the group Sf;f (the reader isreferred to [1, 14, 15, 17] on this subject, de�nitions and further background) . Ourmethods of section 3 actually allow one to design a quantum machine that for a�xed action of an abelian group on a �nite set, computes the stabilizator subgroupof a given element from the set (as the author recently learned, the problem ofcomputing the stabilizator subgroup by a quantum machine was also solved in [18]with a better complexity bound). In [19] a quantum machine was constructed thatallows one to test, whether a given function has a hidden linear structure, or to�nd the period of a periodic univariate function with small preimages (the latterresult generalizes [14]). Our method of section 3 has a common point with [19]in applying the Fourier transform to the similar con�gurations (actually, the idea



3rises to [15]), but our approach is quite distinct. In particular, our method is easiersince unlike [19] it does not use the uniqueness of a hidden linear structure andestimations of the amplitudes , but rather exploites the duality of Sf;f with itsgroup of characters, which allows one to �nd Sf;f .When the characteristic of F is 2, we design a quantum machine which computesSf;g. Moreover, if the abelian group being a direct product of cyclic groups, eachof the order 2, acts on a �nite set, one can design a quantum machine, which tests,whether two elements from the set lie in the same orbit of the action of the group.It seems to be an open question, whether one could solve the latter problem by aquantum machine over a �nite �eld of an arbitrary characteristics. The designedmachines run in polynomial time, if p grows slower than a certain polynomial inthe input size �n+dd � (being the number of the coe�cients of f).In the last section 4 we discuss the future research for the equivalence of thepolynomials with respect to a larger class of groups that extend the consideredgroup of the shifts.Now we formulate the main results of the paper.Theorem 1 Let f; g 2 Q[X1; : : : ;Xn], deg(f);deg(g) � d, and the bit-size ofthe coe�cients of f; g be less than M . A (deterministic) algorithm is designedthat �nds a basis (over C ) v1; : : : ; vk 2 Qn of the linear space Sf;f � C n of allthe shift-selfequivalences of f . Moreover, the algorithm tests whether the set of allshift-equivalences Sf;g � C n is nonempty and in the later case produces an element(�1; : : : ; �n) 2 Sf;g \ Qn. The running time of the algorithm can be bounded by(M(dn)d)O(1).Theorem 2 Let f; g 2 Fp [X1; : : : ;Xn] for a prime p, the degrees deg(f),deg(g) � d, and degXi(f), degXi(g) � p � 1, 1 � i � n. A randomized algo-rithm is designed that �nds a basis over Fp of the linear space Sf;f � Fnp . More-over, the algorithm tests whether Sf;g 6= ; and in the latter case produces anelement (�1; : : : ; �n) 2 Sf;g. The running time of the algorithm does not exceed



4(pd�n+dd �)O(1).Theorem 3 Let f; g 2 Fpm [X1; : : : ;Xn], the degrees deg(f);deg(g) � d. Aquantummachine is designed that �nds a basis over Fp of Sf;f � (Fpm )n. Moreover,when the �eld's characteristics p equals 2, a quantum machine is designed thatcomputes an element (�1; : : : ; �n) of Sf;g � (F2m )n or determines that Sf;g isempty . The running times of the quantum machines are less than (pm�n+dd �)O(1).1. Testing shift-equivalence of polynomials over zero-characteristic�eld: deterministic algorithmLet f; g 2 Q[X1; : : : ;Xn] be two polynomials with deg(f), deg(g) � d and withthe size of rational coe�cients less than M . Actually, one could consider the co-e�cients of f; g from a larger (say, algebraic number) �eld, but we stick with therational coe�cients just for simplifying the bounds on the size of the output data.Denote by Sf;g � Qn (herewith the bar denotes the algebraic closure) the set ofall shift-equivalence of f and g, i.e. (�1; : : : ; �n) 2 Qn such that f(X1+�1; : : : ;Xn+�n) = g(X1; : : : ;Xn). If Sf;g 6= ; we say that f and g are shift-equivalent. In thissection we design a deterministic algorithm which computes Sf;g. Observe that if(�1; : : : ; �n) 2 Sf;f then for any integer m we have (m�1; : : : ;m�n) 2 Sf;f . Hence(t�1; : : : ; t�n) 2 Sf;f holds for any t 2 Q. Thus, considering t as a new variable,we get that0 = df(X1 + t�1; : : : ;Xn + t�n)dt =��1 @f@X1 + � � �+ �n @f@Xn� (X1 + t�1; : : : ;Xn + t�n)Substituting t = 0 in the latter identity, we obtain that �1 @f@X1 + � � �+ �n @f@Xn = 0.Inversing this arguing, we conclude that Sf;f � Qn is a linear subspace. Therefore,Sf;g is a linear variety of the same dimension as Sf;f (if Sf;g is nonempty).Observe that the variety Sf;g is de�ned over Q, therefore the subspace Sf;fhas a basis from Qn (one could obtain it from the system of linear equations



5�1 @f@X1 + � � � + �n @f@Xn = 0 in the variables �1; : : : ; �n). Furthermore, Sf;g con-tains a vector from Qn, indeed, take any vector � 2 Sf;g and all its conjugates� = �1(�); �2(�); : : : ; �N (�) 2 Sf;g over Q, then 1N P1�j�N�j(�) 2 Sf;g \ Qn, thusSf;g is de�nable by a linear system over Q.For brevity denote S(i) = S@f=@Xi;@g=@Xi , 1 � i � n.Lemma 1. Sf;g = \1�i�nS(i) \ f(�1; : : : ; �n) 2 Qn : f(�1; : : : ; �n) = g(0; : : : ; 0)g.Proof. The inclusion� is obvious. To prove the inverse inclusion take (�1; : : : ; �n) 2Qn from the right side of the equality. Then the polynomial f(X1 + �1; : : : ;Xn +�n) � g(X1; : : : ;Xn) = �0 2 Q because all the partial derivatives of this di�erencevanish. Moreover, substituting (X1; : : : ;Xn) = (0; : : : ; 0), we conclude that �0 = 0,q.e.d.Relying on lemma 1, the algorithm �nds each S(i), 1 � i � n by a linear over Qsystem de�ning S(i), using the recursion on the degree. Then the algorithm �nds alinear over Q system de�ning the intersection \1�i�nS(i) and substitutes the general(parametric) solution (A1; : : : ; An) = v + �1v1 + � � � + �kvk of the latter system(here �1 : : : ; �k are parameters, the vectors v; v1; : : : ; vk 2 Qn, k = dim \1�i�nS(i),and v1 : : : ; vk are linearly independent) into f . Due to lemma 1 the set of thevectors (A1; : : : ; An) satisfying the equation f(A1; : : : ; An) = g(0; : : : ; 0), coincideswith Sf;g.Hence the equation f(A1; : : : ; An) = g(0; : : : ; 0) determines a linear variety V inthe space � ' Qk of parameters (�1; : : : ; �k). There could occur one of the followingthree cases. In the �rst case V = ;, i.e. Sf;g = ;, this means that the polynomialf(A1; : : : ; An)�g(0; : : : ; 0) 2 Q[�1; : : : ; �k] equals to a nonzero constant from Q. Inthe second case V = �, i.e. Sf;g = \1�i�nS(i), it is equivalent to identical vanishingof the polynomial f(A1; : : : ; An) � g(0; : : : ; 0). In the last case V is a hyperplane



6in �, given by a linear equation P1�j�kcj�j � c0 = 0 for suitable cj 2 Q. Therefore,f(A1; : : : ; An)� g(0; : : : ; 0) = c 0@ X1�j�kcj�j � c01A�for an appropriate c 2 Q, where � = deg�1;:::;�k f(A1; : : : ; An). Let us �nd all cj.Checking, whether the polynomial f(A1; : : : ; An)� g(0; : : : ; 0) is homogeneous, wedetect, whether c0 = 0. If c0 6= 0 we set c0 = 1 and for every 1 � j � k replace�`, for all ` 6= j by zeroes in f(A1; : : : ; An) � g(0; : : : ; 0), as a result we obtaina univariate polynomial  j = f(A1; : : : ; An) � g(0; : : : ; 0)���`=0;` 6=j = c(cj�j � 1)�.The algorithm �nds cj calculating GCD � j ; d jd �j � = cj �j � 1. If on the oppositec0 = 0, then for each pair 1 � j1; j2 � k we make a substitution �j1 = 1 and�` = 0 for all ` 6= j1; j2, as a result the algorithm either �nds the quotient cj2=cj1or returns cj1 = 0 similar to the situation c0 = 1. This completes the descriptionof the recursive algorithm which computes Sf;g.In particular, this allows one to test, whether f and g are shift-equivalent.Now we estimate the number of arithmetic operations in the described algorithm.The number of monomials in f; g and the number of taking the derivatives can bebounded by �d+nd �O(1). At each step of recursion for constructing the intersection\1�i�nS(i) the algorithm solves a linear system in n variables, it requires nO(1)arithmetic operations. After that the calculating of the substitution f(A1; : : : ; An)needs �d+nd �O(1) operations, and �nally computing cj takes nO(1) operations. Thus,the number of arithmetic operations of the algorithm does not exceed �d+nd �O(1),i.e. is polynomial in the input size.Now we estimate the bit-size of the occurring intermediate coe�cients. Thebit-size of the coe�cients of any involved partial derivative is less than d(log n)M .Denote by M`, 0 � b � d the bit-size of the coe�cients of the linear systemsrepresenting Sf`;g` for intermediate in the recursion polynomials of degrees `. Thenat the current step of the recursion the size of the coe�cients in a linear systemrepresenting \1�i�nS(i) can be bounded by nO(1)M`, then the size of the coe�cients



7cj does not exceed (nd)O(1)M` by the subresultant theorem [12]. Hence M`+1 �(nd)O(1)M` and we conclude that Md � (nd)O(d)M and the bit-size of all occurringcoe�cients is also less thanM(nd)O(d). Therefore, the running time of the describedalgorithm does not exceed (M(nd)d)O(1) which completes the proof of theorem 1).When d = no(1) then (nd)O(d) � �d+nn �O(1) and the bit complexity of the describedalgorithm is polynomial. When d grows faster than, say, n2 it is more pro�table forcomputing Sf;g to solve a system of polynomial equations f(X1+�1; : : : ;Xn+�n) =g(X1; : : : ;Xn) in n variables �1; : : : ; �n with the running time (Mdn2)O(1) [4].2. Testing shift-equivalence of reduced polynomials over a primeresidues �eld: randomized algorithmLet the polynomials f; g 2 Fp [X1; : : : ;Xn], deg(f);deg(g) � d, where p is aprime, be reduced, namely degXi(f);degXi(g) � p � 1, 1 � i � n. In this sectionwe design a polynomial-time randomized algorithm which computes Sf;g � Fnp .Observe that Sf;f is a linear subspace over Fp and Sf;g = v +Sf;f for an arbitraryvector v 2 Sf;g (if Sf;g 6= ;).Notice that since f; g are reduced, lemma 1 from the section 1 holds for Sf;g alsoin the case under consideration.Let q = pm, a polynomial h 2 Fq [X1; : : : ;Xn]. The following lemma 2 was toldthe author by R. Smolensky [16] and strengthens Schwartz's lemma [13] for �nite�elds. Observe that when n � q degh and degXi(h) � q � 2, 1 � i � n, lemma 2follows from [10] (for arbitrary h a weaker bound was proved in [6]).Lemma 2. If h has a zero in Fnq then h has at least qn�deg(h) zeroes.Proof. Let a polynomial 0 6� h1 2 Fq [X1; : : : ;Xn]. As we study zeroes in Fnq wecan assume w.l.o.g. that h1 is reduced (in the proof of the lemma this means thatdegXi(h1) � q � 1, 1 � i � n). Take a monomial a Xi11 : : : Xinn being a leading onein the polynomials h1 in the lexicographical ordering w.r.t. X1 > X2 > � � � > Xn.Denote K = f(a1; : : : ; an) 2 Fnq : h1(a1; : : : ; an) 6= 0g. For any j1; : : : ; jn such



8that 0 � j` � q � 1 � i`, 1 � ` � n the polynomials Xj1n � � �Xjnn h1 are linearlyindependent over Fq because in the polynomialXj11 � � �Xjnn h1 the reducedmonomialXj1+i11 � � �Xjn+inn is the leading one, therefore it is the leading monomial as wellin the reduction red(Xj11 � � �Xjnn h1) (herewith by the reduction we mean replacingeach power Xs`` , s` � q by X((s`�1) (mod q�1))+1` ), and these reduced monomialsare pairwise distinct. Taking into account that the reduced polynomials are in thebijective correspondence with the functions Fnq to Fq , we deduce that the functionsfred (Xj11 : : : Xjnn h1)g0�j`�q�1�i`;1�`�n on Fnq are linearly independent over Fq .Since all these functions vanish on the set Fnq nK, we conclude that the cardinality#K � #f(j1; : : : ; jn) : 0 � j` � q � 1 � i`; 1 � ` � ng = (q � i1) � � � (q � in).Obviously, for a �xed d1 = degh1 the latter product is the least possible fori1 = � � � = ibd1=(q�1)c = q � 1; ibd1=(q�1)c+1 = d1 � (q � 1)bd1=(q � 1)c;the rest ij = 0, bd1=(q� 1)c+1 < j � n, hence (q � i1) � � � (q� in) � qn�dd1=(q�1)e.To complete the proof of the lemma apply this construction to the polynomialh1 = red(1�hq�1), then d1 � (q�1) deg h, and we obtain that the number of zeroesof h in Fnq (or equivalently, the number of nonzeroes of h1) is greater or equal toqn�deg h, provided that h1 6� 0 (or equivalently, that h has at least one zero in Fnq ).q.e.d.Now we describe a randomized algorithm which computes Sf;g � Fnp . Similar tothe section 1 the algorithm by recursion on the degree computes S(i), 1 � i � nrepresenting each S(i) by a linear system over Fp . Then the algorithm producesa linear system which represents the intersection \1�i�nS(i) yielding the general(parametric) solution (A1; : : : ; An) = v + �1v1 + � � � + �kvk, where v; v1; : : : ; vk 2Fnp , k = dimFp � \1�i�nS(i)�, of this linear system (cf. section 1). After that thealgorithm substitutes (A1; : : : ; An) in f . Due to lemma 1 Sf;g is isomorphic to theset of the solutions of the polynomial over Fp equation f(A1; : : : ; An) = g(0; : : : ; 0)in the parameters �1; : : : ; �k, one could consider w.l.o.g. Sf;g as a linear over



9Fp variety in the space � ' Fkp of the parameters. Lemma 2 implies that s =dimFp Sf;g � k � deg f � k � d (if Sf;g 6= ;).In [9] it is proved that if in a set U to choose randomly independently N timeselements u 2 U then the number y of the times when a chosen u belongs to a �xedsubset ; 6= A � U , satis�es with the probability greater than 1 � � the followinginequalities: 12 #A#U � yN � 32 #A#U , whereN = #U#A � 16 � log2(2=�):The randomized algorithm under description for computing Sf;g checks �rst,whether 0 2 Sf;g, if yes then we set the vector u0 = 0 2 Sf;g. If not then thealgorithm chooses N times randomly independently elements from the set U = �,herewith A = A0 = Sf;g and � = �n�n+dd ���2. Hence #U#A � pd. Then with theprobability greater than 1 � � among the chosen N = O(pdd logn) vectors therewould be a vector u0 2 Sf;g, (one could easily check the membership to Sf;g),provided that Sf;g 6= ;. If none of the chosen N vectors belongs to Sf;g, thealgorithm returns that Sf;g = ;.After that the algorithm makes 2N independent choices of the elements from U .Among them with the probability greater than 1 � � there is a vector u1 2 Sf;gsuch that u1 � u0 6= 0 (herewith we take A = A1 = Sf;g r fu0g, obviously #A1 �12#A0). Thereupon making again 2N independent choices the algorithm with theprobability greater than 1 � � �nds a vector u2 2 Sf;g such that the vectors u2 �u0; u1 � u0 are linearly independent. Herewith we take A = A2 = Sf;g rLfu0; u1gwhere L(u00; � � � ; u0̀ ) denotes the minimal linear variety which contains the pointsu00; : : : ; u0̀ (clearly Lfu0; u1g is a line), obviously #A2 � 12#A0. Continuing inthis way, the algorithm makes at most s � k rounds of 2N independent choices,while it is possible to �nd the vectors u0; u1; : : : ; us0 2 Sf;g, s0 � s such that thedi�erences u1 � u0; : : : ; us0 � u0 are linearly independent. The algorithm returnsthat Sf;g = u0+�1(u1�u0)+ � � �+�s0(us0�u0), where �1; : : : ; �s0 are parametersfrom Fp .



10 The algorithm �nds Sf;g correctly with the probability at least (1 � �)n(n+dd ) �1��n�n+dd ���1, because the algorithm calls recursively to itself at most �n+dd � timessince the number of nonvanishing partial derivatives of f does not exceed �n+dd �,and at each recursive step the algorithmmakes at most n rounds of 2N independentchoices as described above. Notice that if Sf;g = ;, the algorithm always returnsthe correct answer.Finally, estimate the running time of the algorithm. As already mentioned, thereare at most �n+dd � recursive calls of the algorithm to itself. At each recursive stepthe algorithm �rst �nds (deterministically) the intersection \1�i�nS(i), by means ofsolving a linear over Fp system with at most n variables, that requires ((log p)n)O(1)running time. Then the algorithm makes at most n rounds of choosing 2N vectorsfrom U = �, it takes �pd�n+dd ��O(1), which completes the proof of theorem 2.Notice that the time bound of the algorithm is better than the time bound pn ofthe trivial search in Fnp when d = o(n). In this case the time bound of the algorithmis polynomial in the input size log p � �n+dd � when p = �nd �O(1).3. Testing shift-equivalence of polynomials over a �nite �eld:quantum computationLet q = pm and the polynomials f; g 2 Fq [X1; : : : ;Xn], deg(f), deg(g) � d.In this section we design a quantum machine which computes Sf;f � Fnq and,furthermore, in the case of the �elds characteristic p = 2 we design a quantummachine which computes Sf;g. Observe as above that Sf;f is an abelian group andSf;g = v + Sf;f for an arbitrary v 2 Sf;g (if Sf;g 6= ;).The core of a quantum machine, a concept being an extension of a randomizedalgorithm (see e.g. [1, 17]), is a fast unitary transformation. In [14] it was shownthat a quantum machine could compute in polynomial time the Fourier transform�n for the cyclic group Zn of the order n for \smooth" n, namely n = p1 � � � p` beinga product of pairwise distinct small primes. In [5] �2k was computed by a quantum



11machine based on the fast Fourier transform. First we show (although we do notimmediately use it below) that �pk for any small p could be computed recursivelyon k by a quantum machine in a more succinct way using the product-formula forFourier transform [2], which in its turn easily entails the fast Fourier transformalgorithm.The matrix �p = 1pp �exp�2�ip s`��1�s;`�p the quantum machine computes di-rectly. For the recursive step, let w be a primitive root of unity of the degree pk+1.Denote by D a square pk � pk diagonal matrix with the diagonal elements beingsuccessive powers of w : 1; w;w2; : : : ; wpk�1. Denote by I` the unit ` � ` matrix.Then the following product-formula�pk+1 = �Ipk 
 �p�0BBBB@ Ipk D 
D2 . . .
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 Ip�allows one to compute �pk+1 recursively by a quantummachine within timeO((kp)2).Also observe that this gives a representation of �pk+1 as a product of O(k) matrices,while [5] provides for it the product of O(k2) matrices.Remark that as any �nite abelian group G is a direct product Zpk1` �� � ��Zpk`` ofthe cyclic groups its Fourier transform�G = �pk11 
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 �pk`` � could be computed by aquantum machine within time 0 P1�i�`(piki)2!.First we design a quantum machine which computes the group Sf;f � Fnq . Thisconstruction extends essentially the idea from [15]. We utilize the notations andterminology from the quantum computations which one could �nd in [1, 14, 15,17]. Actually, the described algorithm and the above quantum computation of�G allows one to solve the following problem by means of a quantum machine.Let a �nite abelian group G with all the primes dividing its order, being small,act on a set. The algorithm enables one to �nd for each element of the set thesubgroup of G which preserves this element (the stabilizator subgroup, see also



12[18]). Furthermore, if G is a direct product of cyclic groups each of the order 2,one can design a quantum machine which for any pair of elements of the set tests,whether these two elements are on the same orbit of the action of G. In the caseunder consideration G = Zp � � � � � Zp is the direct product of mn copies of Zp,herewith the action of (Zp)m on each variable Xi, 1 � i � n is isomorphic to theaction of the additive group of Fq by the shifts.The quantum machine under description starts with the initial con�guration (cf.[1, 14, 15, 17, 19]).C = 1�pq�n X(�1;:::;�n)2Fnq ���1; : : : ; �n; f(X1 + �1; : : : ;Xn + �n)� ;i.e. each basic state ���1; : : : ; �n; f(X1 + �1; : : : ;Xn + �n)� is taken with the ampli-tude 1(pq)n . Notice that each basic state is a basic ort in �qn � q(n+dd )�-dimensionalC -space with the Hermitean metric. Let w(1); : : : ; w(m) 2 Fq be a basis over Fp .Then one can represent each basic state j�1; : : : ; �n; f(X1 + �1; : : : ;Xn + �n)i inthe form j�(1)1 ; : : : ; �(m)1 ; : : : ; �(1)n ; : : : ; �(m)n ; f(X1 + �1; : : : ;Xn + �n)i where �` =P1�j�m�(j)` w(j), �(j)` 2 Fp , 1 � ` � n. The additive group of Fnq acts on the �rst nmcomponents as a direct product (Zp)nm.Denote Q = q(n+dd ). The quantum machine applies to C the matrix (see above)�p
� � �
�p
IQ where the tensor product of �p is taken nm times (cf. [19]). Then inthe resulting con�guration any basic state j�1; : : : ; �nm; f i where �` : Z=pZ! C ,1 � ` � nm are the characters of the cyclic additive group of Fp , i.e. �`(a) =exp�2�i a bp � for a suitable b and f = f(X1+�1; : : : ;Xn+�n) 2 Fq [X1; : : : ;Xn] forsome (�1; : : : ; �n) 2 Fnq , �` = P1�j�m�(j)` w(j), �(j)` 2 Fp , 1 � ` � n, occurs with theamplitude (cf. [14, 15, 19])1qn X(P�(j)1 w(j);:::;P�(j)n w(j))2Sf;f �1(�(1)1 + �(1)1 ) � � ��m(�(m)1 + �(m)1 ) � � ��nm�m+1(�(1)n + �(1)n ) � � ��nm(�(m)n + �(m)n )= 1qn�1(�(1)1 ) � � ��nm(�(m)n ) X(P�(j)1 w(j);:::;P�(j)n w(j))2Sf;f �1(�(1)1 ) � � ��nm(�(m)n )



13For every restriction of the character� = �1 
 � � � 
 �nm��Sf;f the sum X�2Sf;f �(�) = � 0 if � 6� 1#Sf;f if � � 1where � = (P�(j)1 w(j); : : : ;P�(j)n w(j)). Thus, each of the basic states j�1; : : : ; �nm; f ifor which �1 
 � � � 
 �nm��Sf;f � 1 (and only these basic states) occurs in the re-sulting con�guration with the same for each of them probability (which equals tothe square of the absolute value of the amplitude, see [1, 14, 15, 17, 19]) (#Sf;f )2q2n .Hence, each vector (�1; : : : ; �nm) such that �1 
 � � � 
 �nm��Sf;f � 1, occurs as the�rst nm coordinates of the basic states in the resulting con�guration with the samefor each of them probability #Sf;fqn , because for the rest of Q coordinates there areqn#Sf;f possibilities for f , each of them appearing with the same probability.Since Sf;f is an abelian subgroup of the additive group of (Fq )n, the order#Sf;f = pk for a certain 0 � k � nm. All the vectors of the characters (�1; : : : ; �nm)such that the restriction �1
� � �
�nm��Sf;f � 1 constitute the (multiplicative) groupS being isomorphic to the vector space (Fp)nm�k over Fp .Applying nm times independently the described quantum machine and eachtime observing the projection onto the �rst nm coordinates of a basic state ofthe resulting con�guration, we obtain a sequence of nm elements from S. Theprobability that the �rst nm � k vectors (one can assume that they are chosenindependently as each of them appears with the same probability, see above) amongthem form a basis of S over Fp is greater or equal to(1� p�1)(1� p�2)(1� p�3) � � � � (1� 2�1)(1 � 2�2)(1 � 2�3) � � �� 12(1� (2�2 + 2�3 + � � � )) > 14 :Therefore, making 4 rounds each consisting of nm described applications of thequantum machine, with the probability greater than 1� (1� 14)4 > 23 , the quantumalgorithm yields at one of the rounds a basis for the space S over Fp . The algorithmreturns as a basis the maximal set of linearly independent over Fp elements of Sobtained at one of 4 rounds.



14 Having a basis of S, the algorithm can uniquely select the subgroup Sf;f . Indeed,for every element (�1; : : : ; �nm) from the yielded basis let �t(�) = exp�2�i `t�p �,1 � t � nm for appropriate 0 � `t < p, then for any element P1�j�m�(j)1 w(j); : : : ; P1�j�m�(j)n w(j)! 2 Sf;f we have �1(�(1)1 ) � � ��nm(�(m)n ) = 1,i.e. p��`1�(1)1 + � � � + `nm�(m)n . Conversely, if the latter divisibility holds for everyelement from the basis then  P1�j�m�(j)1 w(j); : : : ; P1�j�m�(j)n w(j)! 2 Sf;f . Thesedivisibility conditions constitute a (homogeneous) linear system over Fp . Producinga basis of this linear system, the algorithm produces thereby a basis of Sf;f . Thiscompletes the description of the algorithm which computes Sf;f .Now in the case of the �elds characteristic p = 2 we design a quantum machinewhich tests, whether Sf;g 6= ;, and if it is the case the machine yields an elementv 2 Sf;g. Together with the described above construction of Sf;f this computesSf;g = v + Sf;f . First the machine checks, whether f � g, and if it is the case weare done by the above construction of Sf;f , so we can suppose w.l.o.g. that f 6� g.Then applying the described above construction, the machine computes the groupsSf;f and Sg;g. If Sf;f 6= Sg;g then Sf;g = ;. So we can assume that Sf;f = Sg;g.Observe that S = Sf;f [Sf;g is a group since p = 2. Notice also that S coincideswith the group of all the shifts (�1; : : : ; �n) 2 Fnq which preserve the unorderedpair of the polynomials ff(X1; : : : ;Xn); g(X1; : : : ;Xn)g = ff(X1 + �1; : : : ;Xn +�n); g(X1 + �1; : : : ;Xn + �n)g.To compute S the quantum machine as the basic states takesj�1; : : : ; �n; ff(X1 + �1; : : : ;Xn + �n); g(X1 + �1; : : : ;Xn + �n)giwhere (�1; : : : ; �n) 2 Fnq . Thus, a basic state could be treated as an ort from C -space of the dimension qn � a, where a = Q(Q+1)2 . As in the above construction, thequantum machine applies the Fourier transform � = �2 
 � � � 
 �2 (nm times) tothe �rst n coordinates, formally the machine multiplies the initial con�guration1(pq)n X�1;:::;�n2Fq j�1; : : : ; �n; ff(X1 + �1; : : : ;Xn + �n); g(X1 + �1; : : : ;Xn + �ngi



15by the matrix �
 Ia. Then as above the quantum machine computes the group S(by means of its basis over F2).Obviously, Sf;g 6= ; () Sf;f 6= S, and in this case we can take as v any elementof the basis of S which does not belong to Sf;f . This completes the description ofthe quantum machine which computes Sf;g.Finally, we estimate the complexity of the designed quantum machines. Inthe course of computing Sf;f the machine computes (deterministically) for any(�1; : : : ; �n) 2 Fnq the coe�cients of the polynomial f(X1+�1; : : : ;Xn+�n) whichrequires �m log p�n+dd ��O(1) time. Producing Fourier transform �p takes pO(1) time.So, the application of the Fourier transform runs in �mp�n+dd ��O(1) time. The ma-chine makes O(nm) such rounds and at the end solves (deterministically) a linearover Fp system of the size O(nm). Thus, the running time of the designed quan-tum machine does not exceed �mp�n+dd ��O(1). The similar bound is valid for thequantum machine which computes Sf;g, this completes the proof of theorem 3.Notice that this bound is always not worse that the complexity bound for therandomized algorithm designed in the section 2 (for m = 1). When p grows like�n+dd �O(1) the running time of the designed quantum machine is polynomial whichis not the case for the randomized algorithm from the section 2.4. Equivalence of polynomials relative to larger groups: furtherresearchIt would be interesting to consider the equivalence of the polynomials relative tolarger groups of transformations rather than the group of the shifts studied above.For example, we may consider the direct product of the a�ne groups, namely, wemay de�ne that f and g are equivalent if f(�1X1 + �1; : : : ; �nXn + �n) = g. Thenthe group of equivalent a�ne transformations could be nontrivial already for a singleunivariate polynomial, and the methods from the section 1 could not be appliedimmediately. For instance, let !n = 1, then a polynomial �(X + a)3n+�(X + a)2n



16is invariant under the a�ne transformation X ! !X + (! � 1)a. Still, the authorbelieves that the algorithms from the sections 1 and 2 could be extended to theproduct of the a�ne groups. Concerning the quantum machines, it is plausible thatone can construct the Fourier transform for the a�ne group fX ! �X + �g�;�2Fqin time (pm)O(1), but after that one encounters the principal problem of how toretrieve a subgroup H of a given non-abelian group G, knowing all the irreduciblerepresentations � of G such that the restriction � ��H contains the unit representationof H (compare our treatment of the abelian groups H = Sf;f � G = (Zp)nm insection 3).If we consider more nontrivial groups like the symmetric group Sn or the generallinear group GLn, then the problem of equivalence of the polynomials relative toa group becomes complete with respect to the graph isomorphism. For Sn this isobviously true already for the polynomials of the degree 2, for GLn this was shownby A. Chistov [3] for the polynomials of degree 4.Finally, recall that we considered the shifts from Sf;g over a speci�ed �nite �eldFp in section 2 and over Fq in section 3. In both cases we deal with the �elds ofpositive characteristic, and the answer whether f and g are shift-equivalent dependson over which �eld we take the shifts (unlike the zero-characteristic case where itis independent from the �eld, as it was shown in the section 1). This dependenceis demonstrated by the following example, in which we have to take the shiftsin an extension of the �eld of coe�cients in order to make the polynomials shift-equivalent. Let f = X6+X5+X4+X3+X2+X, g = X6+X5+X3+X2 2 F2 [X].Then f and g are not shift-equivalent over F2 , but f(X +�) = g where � 2 F4 suchthat �2 + �+ 1 = 0. This example leads us to an open problem: how to construct(in the positive characteristic case) the set Sf;g of the shift-equivalences taken froman extension (perhaps, algebraically closed) of the �eld of the coe�cients?Acknowledgements. The author is grateful to Aliosha Kitaev for valuableremarks.
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