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The polynomials f,¢g € F[Xy,...,X,] are called shift-equivalent if there exists
a shift (aq,...,a,) € F™ such that f(X3 + aq,...,Xn + an) = g. The algorithms
in three different cases are designed which produce the set of all shift-equivalences

of f,¢ in polynomial time, herewith in the case of a

(1) zero-characteristics field F' the designed algorithm is deterministic;

(2) prime residue field ' = F, and a reduced polynomial f, i.e. degy, (f) <
p—1,1<:<n, the algorithm is randomized;

(3) finite field F' = F, of the characteristic 2 the algorithm is quantum; for
an arbitrary finite field F, a quantum machine is designed which computes

the group of all shift-self-equivalences of f,i.e. (B1,...,3n) € Fy such that

fXi+ P, X+ 8n) = f.

Introduction

In the paper we deal with the problem of testing, whether two given polynomials
fyg € F[Xy,...,X,] are shift-equivalent, i.e. there exists a shift aq,...,a, such

that f(X14aq,...,Xn+a,) = g. Earlier,the issue of considering polynomials up to
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the shifts appeared in the context of the interpolation of shifted-sparse polynomials

(see [7, 11, 8]), namely, the polynomials which become sparse after a suitable shift.

We present the algorithms for computing the group Sy s of the shifts (51, ..., 3,)
such that f(Xq + f1,...,Xn + fn) = f and for testing, whether the set S, of the
shifts (a1, ..., ap) for which f(Xi4aq,...,X,+ay,) = ¢is non-empty (in the latter
case Sf 4 = (ay,...,ay) + Sy s and the algorithm yields a certain (aq,...,ay) €
S¢,4)- The nature and the complexity of the algorithms substantially depends on

the characteristic of the ground field F.

Our deterministic algorithm of section 1 test self-equivalence over the fields of
characteristic zero and has a polynomial-time complexity if the degree of f grows

slower than n.

Our randomized algorithm of section 2 tests shift-equivalence over the fields of
positive characteristic p where I = T, is the field of residues mod p and the
polynomial f is reduced, i.e. the degree with respect to each variable degy.(f) <
p—1,1 <2 < n. This algorithm has a polynomial running-time, if p grows slower

than a certain polynomial in n/d.

In section 3 we treat the case of an arbitrary finite ground field " and the degree
of f. We design a quantum machine that computes the group Sy ¢ (the reader is
referred to [1, 14, 15, 17] on this subject, definitions and further background) . Our
methods of section 3 actually allow one to design a quantum machine that for a
fixed action of an abelian group on a finite set, computes the stabilizator subgroup
of a given element from the set (as the author recently learned, the problem of
computing the stabilizator subgroup by a quantum machine was also solved in [18]
with a better complexity bound). In [19] a quantum machine was constructed that
allows one to test, whether a given function has a hidden linear structure, or to
find the period of a periodic univariate function with small preimages (the latter
result generalizes [14]). Our method of section 3 has a common point with [19]

in applying the Fourier transform to the similar configurations (actually, the idea



rises to [15]), but our approach is quite distinct. In particular, our method is easier
since unlike [19] it does not use the uniqueness of a hidden linear structure and
estimations of the amplitudes , but rather exploites the duality of Sy with its

group of characters, which allows one to find Sy 5.

When the characteristic of F'is 2, we design a quantum machine which computes
St.q. Moreover, if the abelian group being a direct product of cyclic groups, each
of the order 2, acts on a finite set, one can design a quantum machine, which tests,
whether two elements from the set lie in the same orbit of the action of the group.
It seems to be an open question, whether one could solve the latter problem by a
quantum machine over a finite field of an arbitrary characteristics. The designed
machines run in polynomial time, if p grows slower than a certain polynomial in

the input size (";d> (being the number of the coeflicients of f).

In the last section 4 we discuss the future research for the equivalence of the
polynomials with respect to a larger class of groups that extend the considered

group of the shifts.
Now we formulate the main results of the paper.

Theorem 1 Let f,g € Q[X1,...,X,], deg(f),deg(g) < d, and the bit-size of
the coefficients of f,¢g be less than M. A (deterministic) algorithm is designed
that finds a basis (over C) vq,...,vy € Q" of the linear space Sy C C* of all
the shift-selfequivalences of f. Moreover, the algorithm tests whether the set of all
shift-equivalences Sy , C C" is nonempty and in the later case produces an element
(a1,...,apn) € Sy, NQ". The running time of the algorithm can be bounded by
(M(dn)*)om.

Theorem 2 Let f,g € F,[X;,...,X,] for a prime p, the degrees deg(f),
deg(g) < d, and degy,(f), degy.(¢9) < p—1,1 < i < n. A randomized algo-
rithm is designed that finds a basis over F;, of the linear space Sy C F;. More-
over, the algorithm tests whether Sy, # 0 and in the latter case produces an

element (aq,...,a,) € Sy 4. The running time of the algorithm does not exceed
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Theorem 3 Let f,¢g € Fpm [Xy,...,X,], the degrees deg(f),deg(g) < d. A
quantum machine is designed that finds a basis over F), of S¢ ¢ C (F,m )"™. Moreover,
when the field’s characteristics p equals 2, a quantum machine is designed that
computes an element (aq,...,a,) of S¢, C (Fam )" or determines that Sy, is

empty . The running times of the quantum machines are less than (pm("ji'd>)o(1).

1. Testing shift-equivalence of polynomials over zero-characteristic

field: deterministic algorithm

Let f,g € Q[X1,...,X,] be two polynomials with deg(f), deg(g) < d and with
the size of rational coefficients less than M. Actually, one could consider the co-
efficients of f,¢ from a larger (say, algebraic number) field, but we stick with the
rational coefficients just for simplifying the bounds on the size of the output data.

Denote by Sy, C Q" (herewith the bar denotes the algebraic closure) the set of
all shift-equivalence of f and ¢, i.e. (81,...,0,) € Q" such that f(Xi+05,. ., X+
Brn) =g(Xq,....X,). If S¢, # 0 we say that f and ¢ are shift-equivalent. In this
section we design a deterministic algorithm which computes Sy ,. Observe that if
(a1,...,ap) € Sy ¢ then for any integer m we have (may,...,may) € Sy . Hence
(taq,...,tay,) € S¢ 5 holds for any t € Q. Thus, considering t as a new variable,

we get that

0= df(Xl —|—t0é1,...,Xn—|—tOén) .
= 7 =

of of
(OélaXl + .- —I_Oén@) (Xl —|—t0é1,...,Xn —|—tOén)

Substituting ¢ = 0 in the latter identity, we obtain that «aq anl 4+ 4+ an% =0.
Inversing this arguing, we conclude that Sy ¢ C Q" is a linear subspace. Therefore,
S¢,4 1s a linear variety of the same dimension as Sy ¢ (if Sy, is nonempty).

Observe that the variety Sy, is defined over Q, therefore the subspace Sy s

has a basis from Q" (one could obtain it from the system of linear equations
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al% 4 an% = 0 in the variables a1,...,ay). Furthermore, Sy, con-
tains a vector from Q7, indeed, take any vector 3 € Sy, and all its conjugates

= 61(8),02(),...,0n () € Sy 4 over Q, then % Yo 6;(B) € 5S¢y N Q" thus
1<7EN

St.4 1s definable by a linear system over Q.

For brevity denote $(9) = Saf/ox:,09/0X:» 1 <1< n.

Lemma 1. S, = 1<rlj<n5<i> N{(a,...,an) €Q" : flag,...,an) =g(0,...,0)}.

Proof. Theinclusion C is obvious. To prove the inverse inclusion take (aq,...,ay) €
Q" from the right side of the equality. Then the polynomial f(X; + aq,..., X, +
an) —g(X1,...,X,) = ag € Q because all the partial derivatives of this difference
vanish. Moreover, substituting (X1,...,X,) =(0,...,0), we conclude that oy = 0,

q.e.d.

Relying on lemma 1, the algorithm finds each SV, 1 < i < n by a linear over Q
system defining S, using the recursion on the degree. Then the algorithm finds a
linear over Q system defining the intersection N S and substitutes the general

1<:<n

(parametric) solution (A1,...,A,) = v + Ajvy + -+ - + Agvg of the latter system

(here Ay ..., A\ are parameters, the vectors v,vy,...,vx € Q", k = dim <ﬁ< SO8
1<:<n
and vy ...,v; are linearly independent) into f. Due to lemma 1 the set of the

vectors (Ap,..., A,) satisfying the equation f(A;,...,A4,) = ¢(0,...,0), coincides

with Sy 4.

Hence the equation f(A1,...,A4,)=g¢(0,...,0) determines a linear variety V in
the space A ~ @k of parameters (A1, ..., Ax). There could occur one of the following
three cases. In the first case V =0, i.e. Sy, = 0, this means that the polynomial
flA1,.. . A)—9g(0,...,0) € Q[A1, ..., \k] equals to a nonzero constant from Q. In
the second case V = A, ie. Sy, = S() it is equivalent to identical vanishing

1<i<n

of the polynomial f(A;,...,A,) —¢(0,...,0). In the last case V is a hyperplane



in A, given by a linear equation > ¢;A\j — ¢g = 0 for suitable ¢; € Q. Therefore,
1<7<k

6

flA1,...,A) —g(0,...,0)=c¢ ZC]‘/\]‘—CO
1 <<k

for an appropriate ¢ € Q, where 6 = deg,,  \, f(A1,...,4,). Let us find all ¢;.
Checking, whether the polynomial f(A;,...,A4,)— ¢(0,...,0) is homogeneous, we
detect, whether ¢o = 0. If ¢y # 0 we set ¢ = 1 and for every 1 < j < k replace
Ae, for all ¢ # j by zeroes in f(A;,...,An) — ¢(0,...,0), as a result we obtain

. . . L _ . . 6
a univariate polynomial ¢; = f(Ay,..., An) —¢(0,... ’0)‘&:0,[7&]‘ = c(c;A; —1)°.

The algorithm finds ¢; calculating GC'D < Iz %) = c¢; A; — 1. If on the opposite

co = 0, then for each pair 1 < 71,72 < k we make a substitution A\;, = 1 and
A¢ = 0 for all £ # jq,J2, as a result the algorithm either finds the quotient ¢, /c;,
or returns ¢;, = 0 similar to the situation ¢y = 1. This completes the description
of the recursive algorithm which computes Sy ,.

In particular, this allows one to test, whether f and ¢ are shift-equivalent.

Now we estimate the number of arithmetic operations in the described algorithm.

The number of monomials in f, ¢ and the number of taking the derivatives can be

bounded by <d+"> o

J . At each step of recursion for constructing the intersection

N SO the algorithm solves a linear system in n variables, it requires n®)

1<i<n
arithmetic operations. After that the calculating of the substitution f(Aq,..., A,)

o
needs (‘%") W operations, and finally computing c¢; takes n®W operations. Thus,
o
the number of arithmetic operations of the algorithm does not exceed (‘%") ( ),

i.e. is polynomial in the input size.

Now we estimate the bit-size of the occurring intermediate coefficients. The
bit-size of the coefficients of any involved partial derivative is less than d(logn)M.
Denote by Mg, 0 < b < d the bit-size of the coefficients of the linear systems
representing Sy, 4, for intermediate in the recursion polynomials of degrees ¢. Then
at the current step of the recursion the size of the coefficients in a linear system

representing <O< S can be bounded by n®™M M, then the size of the coefficients
1<i<n
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¢; does not exceed (nd)o(l)Mg by the subresultant theorem [12]. Hence M4y <
(nd)o(l)Mg and we conclude that M, < (nd)o(d)M and the bit-size of all occurring
coefficients is also less than M (nd)?®) . Therefore, the running time of the described
algorithm does not exceed (M (nd)4)°™) which completes the proof of theorem 1).
When d = n°") then (nd)°@ < (dj;">o(1) and the bit complexity of the described
algorithm is polynomial. When d grows faster than, say, n? it is more profitable for
computing Sy , to solve a system of polynomial equations f(X;+aq,..., X, +ay) =

g(X1,...,X,) in n variables aq,. .., «, with the running time (Md"2)o(1) [4].

2. Testing shift-equivalence of reduced polynomials over a prime

residues field: randomized algorithm

Let the polynomials f,g € F,[X5,...,X,], deg(f),deg(g) < d, where p is a
prime, be reduced, namely degy,(f),degy.(¢9) < p—1,1 < i < n. In this section
we design a polynomial-time randomized algorithm which computes Sy, C F.
Observe that Sy ; is a linear subspace over IF, and Sy, = v 4+ Sy s for an arbitrary
vector v € Sy, (if S¢ 4 # 0).

Notice that since f, ¢ are reduced, lemma 1 from the section 1 holds for Sy , also
in the case under consideration.

Let ¢ = p™, a polynomial h € F,[Xy,...,X,]. The following lemma 2 was told
the author by R. Smolensky [16] and strengthens Schwartz’s lemma [13] for finite
fields. Observe that when n < gdegh and degy.(h) < ¢—2,1 <7 < n, lemma 2

follows from [10] (for arbitrary h a weaker bound was proved in [6]).
Lemma 2. If I has a zero in F then I has at least g"~4e8(M) zeroes.

Proof. Let a polynomial 0 # hy € F,[Xy,...,X,]. As we study zeroes in F} we
can assume w.l.o.g. that hy is reduced (in the proof of the lemma this means that
degy.(h1) < ¢—1,1<¢<n). Take a monomial a X{l ... X!n being a leading one
in the polynomials h; in the lexicographical ordering w.r.t. X; > Xo > --- > X,,.

Denote K = {(a1,...,a,) € Fy : hi(a1,...,a,) # 0}. For any ji,...,J, such
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that 0 < j, < ¢g—1—1, 1 < ¢ < n the polynomials X;?} ---X,{"hl are linearly
independent over I, because in the polynomial X{l -+ XJn by the reduced monomial
Xijl—Hl .- XJnFin s the leading one, therefore it is the leading monomial as well

in the reduction 1"ed(X‘17‘1 -+ XJnhy) (herewith by the reduction we mean replacing

each power X/, s¢ > ¢ by Xé(sz_l) (mod q_l))+1) and these reduced monomials

b
are pairwise distinct. Taking into account that the reduced polynomials are in the
bijective correspondence with the functions Fy to F,, we deduce that the functions
{red (X‘lj1 ---X;i"hl)}ogjzgq—l—u,lgfgn on F are linearly independent over F,.
Since all these functions vanish on the set Fy \ ', we conclude that the cardinality

Obviously, for a fixed d; = deg hy the latter product is the least possible for

= =g -] =91 iy jg- 41 = d1 — (¢ = 1)[di /(¢ = 1)],

the rest i; = 0, |d1/(¢—1)] +1 < j <n, hence (¢ —i1)---(q—in) > ¢ [1/la=D],

To complete the proof of the lemma apply this construction to the polynomial
hy =red(1—n9"1), then d; < (¢—1)deg h, and we obtain that the number of zeroes
of I in Fy (or equivalently, the number of nonzeroes of hy) is greater or equal to
q" 48" provided that h; # 0 (or equivalently, that h has at least one zero in Iﬂ‘g)

q.e.d.

Now we describe a randomized algorithm which computes Sy, C ). Similar to
the section 1 the algorithm by recursion on the degree computes S, 1 < i < n
representing each SV by a linear system over F,. Then the algorithm produces
a linear system which represents the intersection 1<rlj<n5(i) yielding the general
(parametric) solution (A1,...,A,) = v + Aoy + - -_—I—_/\kvk, where v, v1,..., v €
Iy, k = dimg, <1<riw<n5<i>>, of this linear system (cf. section 1). After that the
algorithm substitu_te; (Ay,...,A,) in f. Due to lemma 1 S, is isomorphic to the
set of the solutions of the polynomial over F, equation f(A;,...,A,)=¢(0,...,0)

in the parameters A;,..., A, one could consider w.lo.g. Sy, as a linear over



F, variety in the space A o~ IE"; of the parameters. Lemma 2 implies that s =
dimy, Sy, >k —degf >k —d (if Sy, #0).

In [9] it is proved that if in a set U to choose randomly independently N times
elements u € U then the number y of the times when a chosen u belongs to a fixed

subset § £ A C U, satisfies with the probability greater than 1 — 6 the following

inequalities: % #—’3 <% < % %, where
U
N = #o 16 - log,(2/6).

H#HA

The randomized algorithm under description for computing Sy, checks first,
whether 0 € Sy, if yes then we set the vector ug = 0 € Sy ,. If not then the
algorithm chooses N times randomly independently elements from the set U = A,
herewith A = Ay = Sy, and 0 = <n<";d>>_2. Hence % < p?. Then with the
probability greater than 1 — § among the chosen N = O(p?dlogn) vectors there
would be a vector ug € Sy 4, (one could easily check the membership to Sy ),
provided that Sy, # 0. If none of the chosen N vectors belongs to Sy, the
algorithm returns that Sy, = 0.

After that the algorithm makes 2N independent choices of the elements from U.
Among them with the probability greater than 1 — ¢ there is a vector u; € Sy,
such that u; —ug # 0 (herewith we take A = Ay = Sy, ~ {ug}, obviously #A4; >
%#Ao). Thereupon making again 2N independent choices the algorithm with the
probability greater than 1 — ¢ finds a vector uy € Sy, such that the vectors us —
ug, U1 — ug are linearly independent. Herewith we take A = Ay = Sy, ~ L{ug,us}
where L(u(,--- ,ujy) denotes the minimal linear variety which contains the points
ug, ..., uy (clearly L{uo,uq} is a line), obviously #A4, > %#Ao. Continuing in
this way, the algorithm makes at most s < k rounds of 2N independent choices,
while it is possible to find the vectors wo, u1,...,us, € Sy 4, 5o < s such that the

differences u; — wug,...,us, — ug are linearly independent. The algorithm returns

0

that Sy, = uo —I—Xl(ul —ug)+--- —I—XSO(USO — ug ), where AL, ..., A, are parameters

from F,.
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The algorithm finds Sy , correctly with the probability at least (1 — (5)"(njd) >

-1
1— <n ("ji'd>> , because the algorithm calls recursively to itself at most (";d> times

since the number of nonvanishing partial derivatives of f does not exceed ("ji'd>,

and at each recursive step the algorithm makes at most n rounds of 2N independent
choices as described above. Notice that if Sy, = 0, the algorithm always returns

the correct answer.

Finally, estimate the running time of the algorithm. As already mentioned, there
are at most (";d> recursive calls of the algorithm to itself. At each recursive step
the algorithm first finds (deterministically) the intersection 1<r;<n5(i), by means of
solving a linear over I, system with at most n variables, that r—e(;uires ((log p)n)°™

running time. Then the algorithm makes at most n rounds of choosing 2N vectors

O(1)
from U = A, it takes <pd<";d>> , which completes the proof of theorem 2.

Notice that the time bound of the algorithm is better than the time bound p™ of
the trivial search in F)) when d = o(n). In this case the time bound of the algorithm

n)o(l)'

") when p= (%

is polynomial in the input size logp - (
3. Testing shift-equivalence of polynomials over a finite field:

quantum computation

Let ¢ = p™ and the polynomials f,¢g € F,[Xy,...,X,], deg(f), deg(g) < d.
In this section we design a quantum machine which computes Sy C Fy and,
furthermore, in the case of the fields characteristic p = 2 we design a quantum
machine which computes Sy ,. Observe as above that Sy r is an abelian group and
Stg =v+ Sg 5 for an arbitrary v € Sy, (if Sy 4 #0).

The core of a quantum machine, a concept being an extension of a randomized
algorithm (see e.g. [1, 17]), is a fast unitary transformation. In [14] it was shown
that a quantum machine could compute in polynomial time the Fourier transform
¢y, for the cyclic group Z,, of the order n for “smooth” n, namely n = p; - - - py being

a product of pairwise distinct small primes. In [5] ¢4» was computed by a quantum
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machine based on the fast Fourier transform. First we show (although we do not
immediately use it below) that ¢, for any small p could be computed recursively
on k by a quantum machine in a more succinct way using the product-formula for
Fourier transform [2], which in its turn easily entails the fast Fourier transform
algorithm.

The matrix ¢, = ﬁ <exp <2Tm3€>> the quantum machine computes di-

1<s,0<p

rectly. For the recursive step, let w be a primitive root of unity of the degree p**!.
Denote by D a square p* x p¥ diagonal matrix with the diagonal elements being
wp" 1

successive powers of w : 1,w,w?, ...,

. Denote by I; the unit ¢ x ¢ matrix.
Then the following product-formula

I

D O
<bp’“’l = (ka ® ¢P> D? ‘ <¢p’“ ® IP)
0 ~ pr
allows one to compute ¢, x+1 recursively by a quantum machine within time O((kp)?).
Also observe that this gives a representation of ¢,x+1 as a product of O(k) matrices,
while [5] provides for it the product of O(k?) matrices.
Remark that as any finite abelian group G is a direct product prl XX prz of
the cyclic groupsits Fourier transform ¢ = ¢pf1 @ - '®¢pr = <q§p;1c1 ® Ip;Q @ ® Ipf‘)

<Ip;1c1 R qbp;w R ® Ipf‘) ces <Ip;1c1 R Ip;Q R ® ¢pf‘> could be computed by a

quantum machine within time 0 [ > (p;k;)?
1<i< 0

First we design a quantum machine which computes the group Sy C Fy. This
construction extends essentially the idea from [15]. We utilize the notations and
terminology from the quantum computations which one could find in [1, 14, 15,
17]. Actually, the described algorithm and the above quantum computation of
o allows one to solve the following problem by means of a quantum machine.
Let a finite abelian group G with all the primes dividing its order, being small,

act on a set. The algorithm enables one to find for each element of the set the

subgroup of G which preserves this element (the stabilizator subgroup, see also
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[18]). Furthermore, if G is a direct product of cyclic groups each of the order 2,
one can design a quantum machine which for any pair of elements of the set tests,
whether these two elements are on the same orbit of the action of G. In the case
under consideration G = Z, X --- X Z, is the direct product of mn copies of Z,,,
herewith the action of (Z,)™ on each variable X;, 1 < i < n is isomorphic to the
action of the additive group of F, by the shifts.

The quantum machine under description starts with the initial configuration (cf.
1, 14, 15, 17, 19]).

1
C=——= ‘ozl,...,ozn,f(Xl—|—0z1,...,Xn—|—ozn)>,
A 0 2

i.e. each basic state ‘ozl, cenyan, f( Xy Fag,. o X F ozn)> is taken with the ampli-

. . . . . ntd . .
tude W. Notice that each basic state is a basic ort in <q" . q( d )>—d1mens1ona1
C-space with the Hermitean metric. Let w™, ... w(™ ¢ F, be a basis over F,.
Then one can represent each basic state |ay, ..., ap, f(X1 + a1,...,Xn + ay)) in

the form |0z§1),...,agm),...,ozgll),...,oz%m),f(Xl +a1,..., X, + ap)) where ap =

> ozgj)w(j), Oégj) € F,, 1 <€ <n. The additive group of Fy acts on the first nm
1<7<m
components as a direct product (Z,)"™.

Denote @ = q(njd). The quantum machine applies to C' the matrix (see above)
Pp@- - -@¢,@Ig where the tensor product of ¢, is taken nm times (cf. [19]). Then in
the resulting configuration any basic state |\1,..., Xnm, f) where x¢ : Z/pZ — C,
1 < ¢ < nm are the characters of the cyclic additive group of F,, i.e. ye(a) =
exp <2”;%b> for a suitable b and f = (X1 + B1,..., Xn + Bn) € B[ X1, ..., X,] for

some (B1,...,0n) €Fy, o= ﬂéj)w(j), ﬂéj) € F,, 1 <{<n,occurs with the
1<7%m
amplitude (cf. [14, 15, 19])

1 m "
" . i@+ 80) (™ ™)
(X o wi) e wi))es; ;

Xnm—m—I—l(ag) + ﬂle)) e Xnm(agzm) + 61(17”))

1 1 m 1 m
= Sl O (B5) 3 xi(adV) - X (al™)

(T ot wl), 3 ol wli))es; ¢
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For every restriction of the character

{0 if %1

«ESy ¢
where o = (> ozgj)w(j), . ozglj)w(j)). Thus, each of the basic states |1, ..., Xnm, f)
for which vy ® --- ® X"m‘sfyf = 1 (and only these basic states) occurs in the re-
sulting configuration with the same for each of them probability (which equals to
the square of the absolute value of the amplitude, see [1, 14, 15, 17, 19]) (#52#.

Hence, each vector (x1,..., Xnm) such that y; ® --- ® X"m‘sf , = 1, occurs as the

first nm coordinates of the basic states in the resulting configuration with the same

#5¢,¢
qn

for each of them probability , because for the rest of () coordinates there are

qn
#5511

Since Sy ¢ is an abelian subgroup of the additive group of (F,)", the order

possibilities for f, each of them appearing with the same probability.

#5S; 5 = p* for acertain 0 < k < nm. All the vectors of the characters (X1, - -, Xnm)
such that the restriction y; ®- - '®X"m‘sf7f = 1 constitute the (multiplicative) group
S being isomorphic to the vector space (F,)"™~* over F,,.

Applying nm times independently the described quantum machine and each
time observing the projection onto the first nm coordinates of a basic state of
the resulting configuration, we obtain a sequence of nm elements from §. The
probability that the first nm — k vectors (one can assume that they are chosen
independently as each of them appears with the same probability, see above) among

them form a basis of & over F, is greater or equal to

1=p A —p)1=p*) -2 (1=27H(1 =277)(1—-27")

>-(1-(2774270+--4)) >

N | —
| =

Therefore, making 4 rounds each consisting of nm described applications of the
quantum machine, with the probability greater than 1 —(1— i)‘l > %, the quantum
algorithm yields at one of the rounds a basis for the space S over F,,. The algorithm
returns as a basis the maximal set of linearly independent over F, elements of S

obtained at one of 4 rounds.
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Having a basis of S, the algorithm can uniquely select the subgroup Sy r. Indeed,

for every element (x1,...,Xnm) from the yielded basis let y(«) = exp <27ripfta>7

1 <t < nm for appropriate 0 < {; < p, then for any element

> ozgj)w(j),..., > ol ) e Sy we have Xl(agl))---xnm(a%m)) =1,
1<7<m 1<7<m
ie. p‘ﬁlagl) + o+ ﬁnmaﬁf‘). Conversely, if the latter divisibility holds for every
element from the basis then > ozgj)w(j), ey DL o)) e Ss.r. These
1<5<m 1<5<m

divisibility conditions constitute a (homogeneous) linear system over F,. Producing
a basis of this linear system, the algorithm produces thereby a basis of Sy ¢. This
completes the description of the algorithm which computes Sy ;.

Now in the case of the fields characteristic p = 2 we design a quantum machine
which tests, whether Sy, # 0, and if it is the case the machine yields an element
v € Sy4. Together with the described above construction of Sy s this computes
Srq =v+ Sy . First the machine checks, whether f = ¢, and if it is the case we
are done by the above construction of Sy s, so we can suppose w.l.o.g. that f # ¢.
Then applying the described above construction, the machine computes the groups
S¢gand Sy 4. If Sy # S, , then Sy, = 0. So we can assume that Sy =S, ;.

Observe that S = Sy f US4 is a group since p = 2. Notice also that S coincides
with the group of all the shifts (aq,...,ay) € Iy which preserve the unordered
pair of the polynomials {f(X1,...,Xn),9(X1,..., X0)} = {f(X1 + a1,..., X, +
an),9(X1+ar,....Xn +an)}.

To compute S the quantum machine as the basic states takes

lar, ooy {f(X1 +ar,.. . Xn +an),9(Xa +ar,.... Xn +an)})

where (aq1,...,0,) € 7. Thus, a basic state could be treated as an ort from C-

L%—H). As in the above construction, the

space of the dimension ¢" - a, where a =
quantum machine applies the Fourier transform ¢ = ¢2 @ -+ - @ ¢2 (nm times) to

the first n coordinates, formally the machine multiplies the initial configuration

1
Wik Z lar, oy an, {f( Xy +ar,.... Xn+an),g( X1 +a1,..., Xy, +an})

ay,..,op €F
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by the matrix ¢ @ I;. Then as above the quantum machine computes the group S

(by means of its basis over Fy).

Obviously, Sy, # 0 <= Sy s # S, and in this case we can take as v any element
of the basis of § which does not belong to Sy s. This completes the description of

the quantum machine which computes Sy ,.

Finally, we estimate the complexity of the designed quantum machines. In
the course of computing Sy ¢ the machine computes (deterministically) for any
(ai,...,a,) € Fy the coefficients of the polynomial f(X; 4+, ..., X, + ;) which

(1)
requires <m logp("ji—d>> time. Producing Fourier transform ¢, takes pPM) time.

So, the application of the Fourier transform runs in <mp<"ji'd>> o time. The ma-
chine makes O(nm) such rounds and at the end solves (deterministically) a linear
over I, system of the size O(nm). Thus, the running time of the designed quan-
tum machine does not exceed <mp<"ji'd>> O(l). The similar bound is valid for the

quantum machine which computes Sy 4, this completes the proof of theorem 3.

Notice that this bound is always not worse that the complexity bound for the

randomized algorithm designed in the section 2 (for m = 1). When p grows like

<n—|—d>o(1)

J the running time of the designed quantum machine is polynomial which

is not the case for the randomized algorithm from the section 2.

4. Equivalence of polynomials relative to larger groups: further

research

It would be interesting to consider the equivalence of the polynomials relative to
larger groups of transformations rather than the group of the shifts studied above.
For example, we may consider the direct product of the affine groups, namely, we
may define that f and ¢ are equivalent if f(a; Xy + f1,...,0, X + Bn) = ¢g. Then
the group of equivalent affine transformations could be nontrivial already for a single
univariate polynomial, and the methods from the section 1 could not be applied

immediately. For instance, let w™ = 1, then a polynomial a(X + a)*" + B(X + a)*"
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is invariant under the affine transformation X — wX + (w — 1)a. Still, the author
believes that the algorithms from the sections 1 and 2 could be extended to the
product of the affine groups. Concerning the quantum machines, it is plausible that
one can construct the Fourier transform for the affine group {X — oX + 3}, ser,

O but after that one encounters the principal problem of how to

in time (pm)
retrieve a subgroup H of a given non-abelian group G, knowing all the irreducible

representations 7 of G such that the restriction 7|, contains the unit representation

H

of H (compare our treatment of the abelian groups H = Sy C G = (Z,)"™ in

section 3).

If we consider more nontrivial groups like the symmetric group S, or the general
linear group GL,, then the problem of equivalence of the polynomials relative to
a group becomes complete with respect to the graph isomorphism. For S, this is
obviously true already for the polynomials of the degree 2, for GL,, this was shown

by A. Chistov [3] for the polynomials of degree 4.

Finally, recall that we considered the shifts from Sy , over a specified finite field
F, in section 2 and over F, in section 3. In both cases we deal with the fields of
positive characteristic, and the answer whether f and ¢ are shift-equivalent depends
on over which field we take the shifts (unlike the zero-characteristic case where it
is independent from the field, as it was shown in the section 1). This dependence
is demonstrated by the following example, in which we have to take the shifts
in an extension of the field of coefficients in order to make the polynomials shift-
equivalent. Let f = X+ X+ X4+ X341 X214 X, g = X0+ X°+ X34+ X? € I, [X].
Then f and g are not shift-equivalent over Fy, but f(X + «) = ¢ where a € Fy such
that a? + « + 1 = 0. This example leads us to an open problem: how to construct
(in the positive characteristic case) the set S 4 of the shift-equivalences taken from

an extension (perhaps, algebraically closed) of the field of the coefficients?
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