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RELATION BETWEEN RANK AND MULTIPLICATIVE COMPLEXITY OF A BILINEAR 

FORM OVER A COMMUTATIVE NOETHERIAN RING 

D. Yu. Grigor'ev UDC 512.715+518.5 

The concept of multiplicative complexity of a bilinear form is introduced for a 

commutative Noetherian ring. Rings are described for which the multiplieative 

complexity coincides with the rank for all forms. It is shown that for regular 

rings of dimension ~ 3 the multiplicative complexity can exceed the rank by an 

arbitrarily large number. 

In this article we study a notation which arises in the theory of algebraic complexity of 

computation (the main concepts and problems of this theory are presented very completely in 

[i]). One of the problems in algebraic complexity of computation is to estimate the complex- 

ity of computing a family of bilinear forms. The tasks of estimating the complexity of com- 

puting a product of polynomials or matrices lead to this problem [I]. The complexity of com- 

puting a family of bilinear forms is usually estimated over a field (see, e.g., [i, 2])+ In 

this paper we attempt to study the analogous problem for bilinear forms over a commutative 

ring (a computational interpretation of this problem is discussed below). The problem of 

complexity of a family of bilinear forms over a ring causes difficulties even in the case of 

a single form, and we restrict ourselves to this case. 

It is shown in [2] that the smallest number of nonlinear operations required to compute 

a family of bi!inear forms is equal to the multiplicative complexity of the family, as de- 

fined below (under certain conditions this assertation can also be proved for bilinear forms 

Translated from Zapiski Nauchnykh Seminarov Leningradskogo Otdeleniya Matematieheskogo 
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over a ring). The multiplicative complexity hF(A4~ ~A~h of a family of bilinear forms 

~{~ ...~ A~ over a field F is defined [2] as the smallest N such that there exist bilinear 

forms ~ ~{~N) each of rank 1 which contain ~{~...~ A~ in their S -linear span. 

We note that the computation of a bilinear form of rank 1 requires a single multiplication 

of linear forms. It is obvious that ~qF ~ is equal to the ordinary rank of the bilinear 

form A (in what follows we consider the matrices of coefficients instead of the bilinear 

forms). If F is algebraically closed and we have a pair of matrices, an explicit formula 

is given in [3] (a closely related result is obtained in [12]) for the multiplicative com- 

plexity in terms of the parameters of the canonical Weierstrass--Kronecker form of the pair 

of matrices. 

In this article, we consider matrices over a ring K which is assumed to be commutative 

Noetherian with identity in what follows. The rank X~ ~ is defined as usual as the largest 

~t such that the Ux If matrix A has an ~-x~ minor different from zero. We define the 

multiplicative complexity ~ as the smallest N such that A={~N~ ~ for certain ~ 

of the form X~'~ , i.e., a product of the column vector X~ by the row vector ~ (i~/V~ 

More formally, if ~6 ~ [~ ~ ]=~ ~ (~] ~[~ ~ (~ ~]] then 

As in the case of matrices over a field, one proves the inequality ~A >i ~ ~ . As we will 

see in what follows, the reverse inequality is not always valid. 

We give another inequality. Let hL~...,~ ~ be ~x~ matrices over a field F and let 

~=F[~L{, ..~][r ] be a ring of polynomials. Then ,A h . In 

the situation which we consider, ~ can be interpreted as the multiplicative complexity 

in computing the bilinear form (over F) from some parametric family (depending on d param- 

eters), where it is required that the method of the computation involve all values of the 

parameters in a "unified" way. The reason for studying ~ over a ring (and not over the 

field of quotients) is that the method used to compute the bilinear form must be suitable 

for all values of the parameters Dt~, .... ~[&. Matrices of the form ~t~A~+...+~&~& considered 

in detail in Sec. 2 correspond to bilinear forms which run over a linear subspace of dimension 

~;~ in the space of bilinear forms over the field F. 

In Sec. 1 of this article we describe the class of rings K such that the equality 

~ = ~ A  holds for every matrix A over ~ . The most important assumption is that the 

global cohomological dimension of K not exceed two. In Sec. 2 we characterize ~ A  for 

matrices of the form ~{A{+...+~t&A& �9 In particular, this gives the result that the differ- 

ence ~ - ~ A  can be arbitrarily large for regular rings of dimension greater than two. 

I express my sincere thanks to A. A. Suslin for his interest in this work and for valuable 

remarks. 

i. In what follows we will use the following reformulation of ~A (we will sometimes 

omit the subscript K), where A is a t[x~[ matrix over the field K. Let /~c ~r be the 

module (all modules considered over K) givenbythe rows of A. Then ~ is equal to the 
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smallest N such that there exists amodule ~{ ,~<~{(-~f which is generated over K by 

N elements. If K is an integral domain then ~ A is equal to the largest number of K- 

independent elements of the module M. The ring K is called an -ring if  A: gA 
for every matrix A over K. 

THEOREM i. A ring K is an 

~t~...~ such that 

l )  ~ = K ~ ' - ' ~  , 

2) ~ ~ ~({L~L_R] , where 

7 ] ) ;  

-ring if and only if there exist integral domains 

~R is the global cohomological dimension ([4~ Chap. 

3) every projective module over ~ is free i{{6i~R} (in the ease of an integral domain 

K, this formulation was suggested by A. A. Suslin). 

COROLLARY i.i. Let I be a principal ideal domain. Then 

(a) I is an ~ -ring; 

(b) ][~I is an ~-ring. 

(In Sec. 2 we will use the fact that F[~] is an h'-ring~ where F is a field.) 

Part 2) of Theorem 1 in this case follows from the Syzygy theorem [5]; part 3) for case 

(b) follows from a theorem of Seshadri [6]. 

We turn to the proof of Theorem i, which will be broken up into two s~eps~ viz.~ reducing 

the general case to the case of integral domains and then proving the result for integral 

domains. 

where every ~ is LEMHA I. A ring K is an -ring if and only if ~=~ ~'"~ 

an integral domain and an ~ -ring ([_~[mp~] (such a decomposition is unique). 

The uniqueness of the decomposition (assuming it exists) follows from general arguments. 

If ~i~'"~S ~ ""'~'i where the Kc(i&~S],~(i_Li_~i]. are integral domains and co>,i 

then we choose nonzero ~{e~i~"'~ ~S ~g.' expand ~ =~{~rt~(i~{~$~(~.m ' ~]' , and consider the 

sets of indices ~t=[i:t~01 . Then the sets ][[{~[L$) are pariwise disjoint~ so 

S=~ and the I% all consist of a single element: ~{=[~[t]l ~][ a permutation of the 

{ 1 -' 
set {,...,~ ). In this case~ ~t--~%~<~. 

In one direction, i.e., the fact that the ~% [ { ~  are ~-rings implies that 

~=~i~'"e~ is an ~ -ring, the lemma is proved as follows. Let A be a matrix over 

K. Then ~=~...~ where A t is a matrix over ~t[[&[~ and ~C=~=~U~At ~ A[. 

Since the ~are ~-rings, there ~ exist columns ~{i ~[ and rows ~s 6(~7)~([&{A~{m~&<} 

such that ~ = ~ T t ~  ({~-[~t~ . Then A=~(~_~ I~i~ , and therefore 

We turn to the proof of the converse, i.e., that every" ~-ring is a direct sum of 

integral domains. The fact that each of the summands is also an ~-ring is already obvious. 

1989 



Let ~ be an ~ -ring and denote by ~$ its complete ring of fractions, i.e., the 

localization of ~ relative to the multicatively closed set ~ of all nondivisors 

of zero in ~ �9 We verify that K 5 is an ~ -ring (this holds for any 6 not 

containing zero divisors). Let A--~(i~/~- be a matrix over K 5 , where Ot%is 

A'= S ~  Putting $=9~{~ , we then ha vs the matrix ((i~S/~ over K. 

Therefore, ~_ =~'=~ and'~there exist ~ and ~eI~) ~(i~z-~-~ such that 

�9 ' i~t ~L'" Consequently, ~[~ A ='r.. = ' ~  Pk 

The standard homomorphism ~-~s is injective. We will show below that fib is a 

dire, ct sum of fields and that the canonical projections of the ring ~ onto the components 

of this sum (in which we regard ~ as being embedded) are contained in ~ This implies 

that ~ is the direct sum of the projections. 

LEMMA i.i. The ring ~5 is a direct sum of fields. 

We first prove that ~$ is a semilocal ring (this does not use the ~ -ring property). 

Since ~ is Noetherian, its zero ideal has a minimal primary decomposition (0] = 0,[~% , 

where ~L is a p[ -primary ideal ({Z__Lb_~ [7, Theorem 7.13]. Then the set of zero 

divisors ~\$=Ut~ { ~ I7, Proposition 4.71], andevery ideal contained in ~\$ is con- 

tained in one of the pL [7, Proposition i.ii(i)]. This and Proposition 3.11(IV) in [7] 

I I t contains all the maximal ideals of the ring ~S and imply that the list ~'~ ~ ~=~ 

[~[ ~ , -~ . S_ i {0] = i.*-t S-~% is a minimal primary decomposition { S ~< is an pi -pr imary ideal) 

of the zero ideal in ~$ [7, Proposition 4.9]. 

We not prove that every principal ideal of the ring ~% is idempotent, i.e., (~[~=(~ 

for every ~Ii~. An element ~e~ S is called extremal if Dg=L~7. implies that either 
(~=(~) or [~={i~ The fact that the ring ~5 is Noetherian implies [7, Proposition 

7.3] that every element is a product of extremal elements, and therefore it suffices to prove 

(~)=~ when 0s is extremal. If (]s then ~t~=O for some ~*O. Consider 

% the matrix ~=(~] . Then ~A=i and therefore (since ~5 is an -ring) there 

exist elements ~{,ttz~Vi,~fze~5 such that ]s tO=L~{Vz~O=U~V~ ~=H~%v . If ~U~{]=(i~ , 

then ~=O and ~O �9 We show analogously that the assumption (~Zi)=(i) gives a con- 

tradiction. Therefore, [lii)=(V~)=(3[ ~ i.e., L[i=~t~Vi=}~ for certain ~,}~$ , whence 

, i.e., 

I. -i 
We recall that C h is the minimal primary decomposition of zero ideal. 

s is -primary, for every ~{ for some t, and Since the ideal ~ -~ 

therefore (since [<~L~-----(~ ~e $~t, i.e., ~-i~-~ ~-i~ (i-~{~[)~. Since the decom- 

position (<)~ --- p~ is minimal, each of the prime ideals ~ p~ is minimal. Hence by 
& 

the Chinese remainder theorem, ~--~t~[~$/Sp~. Lemma i.i is proved. 

LEMMA 1.2. Let ~ ~5 be an embedding of the -ring ~ in ~S , which by 

Lemma i.i is isomorphic to m direct sum of fields ~(9 ..-@~ and let FI-~...~F~-~L be the 

natural projections ~i_~t~-N~ Then ~(~I~[}!~] ({~-{~I~. 
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We identify ~ with its image ~(~] and let i=~L~...+~ be an expansion of the 

identity (0~6~, i~-ta~). It suffices to verify that ~(i~=fLL6~ [i~-t~-~ for all represent- 

atives 0~ having the form of a fraction ~/C [~e~ ~s , in which the ideal (~c~ 
is chosen to be maximal among the principal ideals corresponding to all possible denominators. 

Considering the matrix ~---I g 0 (-~-~I ' we then have ~=~[~-~)=O since ~/~e~ (s 

~,@~ Therefore, ~A=~ and since ~ is an ~ -ring there exist tt tt ~i "6 ~ 

such that ~:t[t{{ O=t[lL s163162 I. Since %=U{/5(t[<65 because tt~ is not a 

zero divisor) and [tl• , by the choice of C we have [UtO=<c~ , i.e., tt =lq 

for some <e~ . Hence C-%:~C i and ~ji-s [1. Lamina 1.2 is proved. 

Lemma 1.2 implies that ; but every is an integral domain  

which completes the proof of Lemma i. We note that we only used the ~ -ring property for 

~• matrices in proving the existence of a decomposition of the ring ~ as a direct sum of 

integral domains. It remains to describe the 9 -rings which are integral domains. 

LEMMA 2. An integral domain K is an ~ -ring if and only if 

2) every projective K-module is free. 

We prove an intermediate lemma. 

LEMMA 1.3. An integral domain K is an ~ -ring if and only if, for every module 

~c~ ~ , Y ( ~  i=O (i.e., ~/~ has no torsion) implies ~ is free ( ~[~{~ is the 

torsion submodule of ~! , cf. [7, Chap. 3, Ex. 12]). 

Let ~ be an integral domain and an .% -ring, ~c~ ~ and 7[~/~)=O . Let 

~c~c~ ", %=~L~ ~ and ~ be generated by ~ elements (by the ~ -ring property), so 

that X~{=% . Assume that M#M .and let CLi,...~f~z be K-independent elements of 

and r ~ Then for some ~.~?...,~z~ (~O) we have ~+~7~L=O, i.e., 

~O~e~ ; but together with the condition ~[~m/~] this implies 6t~ This contradic- 

tion shows that ~=~{ , which means that ~ is generated by ~L elements which form a 

free-module basis. 

Conversely, let ~c~ ~ and ~_=~ We define the module ~{=ICt~" such that 

~(~ for some O ~  1 Then ~t~{=~ Moreover, I[~/~]=O. Therefore 

~i is a free module of rank ~. , which completes the proof of Lemma 1.3. 

We prove Lemma 2 using Lemma 1.3. Assume the ring ~ satisfies the condition stated in 

Lemma 1.3 and let p be a projective module, p ~ m  Then ~[~}~]=y[~)=O, and 

therefore p is free. Assume that ~~,-~ Then by [4, Corollary 1,5 and Chap. VII, 

Ex. 2] ~[C[~I=~[d~{~IL~, where I- is an ideal in ~=i*~/~[d~ where ~ is 

an ideal in ~] . That is, for some ideal Lc~ we have ~ 5 ~ . Let ~ be generated 

by t elements &i ..... ~t eK- Let ~ be the epimorphism ~-~L , where ~t=W~Kq)...,Wt K 

and q(~f6~=~ I~[&~ . Then the sequence O----~t~__~O is exact,and since d~L~ , 

the module ~L q is not projective. On the other hand, ]-(~t/~)--]-(~=O, so th~t 

~ is free. 
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Conversely, let 

~i~ ~ for some 

;"I and 

i. Consider the exact sequence 

There exists a monomorphism 

where ~l is the composition of the projection of ~ onto ~i and the monomorphism 

Since ~ ~ Z  , ~ is projective and therefore free. Lemma 2 is proved. 

Theorem 1 follows from Lemmas 1 and 2. We make a few remarks. 

COROLLARY 1.2. Let ~ be a commutative Noetherian local ring and assume ~ ~  . 

Then ~ is an % -ring. 

The fact that ~ is an integral domain follows from [5, Chap. IV, Theorem 5 and its 

Corollary 4]. For theproof that every projective module over a local ring is free, cf. [6]. 

In connection with Theorem i, the question arises whether it is possible to estimate 

R~A~ in terms of ~ A and, perhaps, certain other characteristics of the ring 

It turns out that this is easy to do if ~ ~ .  This shows that the condition ~ ~  

is very important in Lemma 2 and Theorem i. 

COROLLARY 1.3. Let the integral d~main ~ be a commutative Noetherian local ring and 

~ = ~ 2 ,  A a matrix over ~ Then h A ~ A §  (in particular, if ~ is a 

Dedekind domain [7, Chap. 9] then ~ ~~+i~. 

Let ~c~ ~ and ~ ~=~. As in the proof of Lemma 1.3, we construct the module 

~i =L~'~:~W~ for some 0 ~  I. Then ~ ~ =~M and T(~n/~i~=O. As in 

__~t where ~z = ~l~i, and an exact the proof of Lemma 2, we construct a monomorphism ~z , 

sequence 0--~ ~n--~'~/~z'-~O. Since ~ ~  , ~i is projective. 

We use a result due to Swan [8]. Writing ~(~) for the smallest number of generating 

elements of the module ~I , the main result in [8] and the Syzygy theorem [5] imply that 

~(~'~ ~ ~.~(~#p~, where {~i~- is the localization of ~i' by the prime ideal 

pc~ The module (~i~p is free since it is projective over the local ring ~p 

Moreover, ~(~i) ~ = ~  , and therefore ~t~((~p~=~ Finally, ~ ( ~ + ~  . Corollary 

1.3 is proved. 

As in the case of matrices over a field, the function % can be extended to families 

of matrices over a ring ~ (here we assume that ~ is an integral domain) and the question 

posed in Theorem 1 can be considered, viz., what are the conditions on ~ in order for 

~...~A~=NF{A,...~A ~ to hold for every ~i and all matrices A~...~ ~n over ~ , where 

is the field of quotient of ~ ? It can be shown by carrying the proof of the main result in 

[9] (for the case of an exterior product) over to the case of tensor products that the above 

equality holds only if ~=F. 

2. In this second section we consider rings of dimension greater than two. As follows 

from Theorem i, % ~  for certain matrices A over suchrings.~_ ----We willstrengthen this 

inequality below and show in particular that the difference ~ - % ~  is unbounded from 

above for an extremely large class of rings of dimension greater than two (it is of interest 
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to compare this result with Corollary 1.3), 

Let ~ be a commutative Noetherian regular ring and an integral domain and assume 

~=~d~ (in our problem, the important example is the case ~=F[~{ .... ,~&], which we 

keep in mind in developing our arguments). We also impose a not very burdensome constraint 

of a geometric character on the ring ~ , i.e., the ring ~ embeds in residue field ~=~/nl 

modulo its a maximal ideal ~I~ of height ~ (in this section we consider only rings satisfy- 

ing this restriction). We denote by ~i~.-.,El elements of the ideal ~ which project in 

the ~ -vector space ~/~%a to form a basis (the existence of such elements follows from 

results in [7, Chap. ii, Sec. 3]). The above restriction is satisfied, e.g., when the ring 

is the coordinate ring of a variety of dimension greater than two. 

In this section we limit ourselves to considering matrices of the following form and 

characterize %~ for them. A matrix over the ring ~ is said to be square-free if its 

elements are F -linear forms in ]tlq .~ &. In what follows we will use the following re- 

formulation o f  the definition of %~ ( A 

smallest N such that for a certain L[zN matrix 

A=SC 

LEMMA 2.1. Let the matrix A be square-free. 

such that ~ can be transformed into the form 

matrix): __ is equal to the 

and ~ ~ ~ matrix C we have 

Then ~A is equal to the smallest 

q, ~-q, 

tt~P 

using elementary transformations over the field ~ (here and below the displayed matrices are 

broken up into blocks, and if the form of the submatrices in any block is known, this is 

specifically indicated). 

Since elementary transformations do not change % ~ the inequality ~A~N is 

Conversely, assume that A=~6 , where ~ is ~xN matrix, C an obvious. 

matrix (~=~A~- since ~= ~§ there exist nonsingular F -matrices 6~ and m~ 

such that 

G,5 

P N-P 

P ["* 
O "",&,-~,, I 

u.-p~ 0 "1 + ~ '  

where O~L E F(i~;p ~ and all the elements of the matrix 

Since GiA=(GiSG~)t~C ) and 6A' is square-free, 
i 

~' belong to the ideal 

"d 

Gz 6' = Cz 
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where all the elements of the p x ~ submatrix ~t belong to I't'L. 

Analogously, there exist nonsingular F -matrices HI and ~z such that 

P N-p q" "6-Q 

~'t 0 P 0 0 
-. 0 P 

0 "~F 
0 N-p N-f'- o~ 0 0 

where all the elements of C' belong to m; O# ~F [t~L~-q~. 
-i -i 

A = BC then takes the form (~{~z~{)(~{[azQ~)=G{~z, and if 

The matrix equality 

of ~-gr 

I I G A H z 
I u . - - p  

then using the form of the matrices f~i~f~-i i and ~iG-~(--~a we obtain that all the 

elements of the s matrix A' belong to ~z ; but on the other hand, they are 

-linear forms in ~...,~&. Since the ~ .... ~& are ~-linearly independent, 

A'=O We conclude the proof of Lemma 2.1 on the basis of the inequality ~ = ~ >ip+~. 

Remark 2.1. The lemma just proved permits a reduction of the calculation of square-free 

matrices over rings which satisfy the restriction stated above to solving a system of 

equations and inequalities over the field ~. Therefore, in the situation which we consider 

it is enough to study ~ over the ring ~_~Ct~,..~K~, 

The following reformulation of Lemma 2.1 will be used in the sequel. Namely, ~A = 

~L[+~-~ ~z~,-where ~ = O  for certain F-matrices ~ and C such that ~=~i~C=~ 

L r ~  2 2. ~et  the matr ix  A be s q u a r e - f r e e  and ~ave the form I A ' A ~ / '  where A~- and 
�9 O A  z 

are t[x~ and U~z~ z matrices. Then q A # ~ + M A  z . 

Proof�9 Let ~=O and ~=X.i~=~-z (with dimensions ~-&~tt and ~x?_ z ). We 

write down the above matrix equality in block form: 

By our assumption, the intersections of the left and right kernels satisfy 

(1) 

Writing ~ = ~ ~. ~ ~=~.~, we have 

It follows from (i) that ~t~t~t)~)=~ , ~.CLi~%Lz~=C. Then (2) and Lemma 2.1 give 

the inequalities 
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i where  o n l y  the  forms [ ~ , " ' , ~ t  

Adding these and again applying Lemma 2.1, we conclude the proof of Lemma 2.2. 

COROLLARY 2.2. %IAo%I=%AI%~ (~ square-free). 

We introduce the following functions defined on the positive integers and study their 

Put R~kNz~=~ip-~K~ , where t h e =  ~I~ is taken over square-free matrices properties. 

A and rings K satisfying-- xg~ ~the conditions ~i~ ~=&~-~=~/~rt~ for some maximal ideal g~ 

of height d. Since the elements :ILI~...~E & are algebraically independent over ~ (cf. [7, 

Corollary 11.21]), weaRy by Remark 2.1 take K to be F[~<, :.,E&] . We also define RF{~] 

= ~ ~;~ Since the subsequent results are valid for any field [, we omit tile subscript 
& 

F in ~fd (I conjecture that in fact ~F and~p ~F do not depend on F)o Corollary 2.2 

implies 

We now estimate the function ~d(%) from above. 

LEMMA 2.3. For every ~C~l we have the inequalities ~@'i~} -~ t+ [~I+ ~[~le'"<Zk, 

where the number of terms in the sum is fi-[ i~7z2) ( [~ is the integer part of e). 

The proof is by induction on ~ and T~ . The induction is started using the equalities 

~Zq~u)-/k (Corollary I.i) and ~(1)$i (which follows from the fact that the ring 

~[][~,- -~][~l is factorial and Remark 2.1). 

In the general case (d>~,~l~] we carry out the following ~-elementary transformations 

with a li~ square-free matrix A. (We say that a linear form contains the variable 

D[%[{-~) if the coefficient of ][s in the form is nonzero~) If some element of A con- 

tains ~t{, then we move it into the upper left corner and then arrange that no other element 

in the first row or first column contains ~[l. Consider the [tl-i)~(~-i) gubmatrix A ~ of 

A obtained by crossing out the first row and first column. If some element of ~_he~ matrix 

A~ contains ~t~ , we treat it just as we did A' , etc. Assume that after ~{ steps 

( ~>zO ) the elements of the (LL-~)~[~-~L~) submatrix of A obtained by crossing out the 

first s rows and columns does not contain a[~ . 

We then move some element of this submatrix containing ~ (if it exists) into the upper 

left corner and arrange that no other element in the first row or column contains agz ~ etc. 

After ~ such steps ~#O~ the elements of the remaining (tl-i~-t#~(Z-~f~ submatrix do 

not contain ~ z  ; we carry out the procedure analogously with D~ , etc. 

As a result of the F-elementary transformations, the matrix A is reduced to the form 

q'" L~... 

Z 
c o n t a i n  t h e  v a r i a b l e  ~L i ; o n l y  forms ~ ,  ~.. -~ ~ , . ~  
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~L z in the ihl-~(l~-~]submatrix obtained from A by crossing out the first i~ rows and 

columns; and only the forms ~ ~.~ { .... , (i~[-~ct~s } contain the variable 3[[ 

in the submatrix obtained by crossing our the first ~"'+Itd rows and columns. 

We put ~=t~+.-'te. Then the ~ xl submatrix in the upper left-hand corner of A is 

nonsingular. Indeed, the monomial X~]L .... " ~[t appears in its determinant with a nonzero 

coefficient. Therefore, ~ = ~ ,  . 

On the other hand, ~ + ~ L %  Without loss of generality we may assume that 

~ [~-/2] We also remark that the elements of the matrices B and C do not contain vari- 

able ~ Therefore, ~ ~§163 which completes the proof of Lemma 2.3. 

We now use the foliowing well-known fact [i0, Problem 98]: if ~,... are real numbers 

with ~,~- ~+~ for all t,~ and [~I is bounded from below, then the limit "~ ~ 

exists. Using Corollary 2.3 and Learns 2.3, we apply this result to the sequences [-~r 

and ~=~ (%~]~.~ We calculate the limit ~ 

THEOREM 2 ~ ~ = 

Remark 2.4. The following sharpened form of the theorem is obtained from the proof given 

below and Corollary 2.3: ~ ~z~) ~.~r~ {~) gc[-~ �9 --~ ~_ ~--- ~ ~ ~ .  This gives in particular 

the result promised above, saying that the difference ~ A - ~  is unbounded for matrices 

A over a ring of dimension greater than two. Moreover, the properties of the matrix ~z~Z 

constructed below, together with Lemma 2.3 and Corollary 2.3 give ~(~L] = L~-I . 

In what follows we construct a sequence of square free matrices = ~A~! (An over the {za.-t ~ By 

ring ~...,~_~, R=i~Z,... ) satisfying ~=~-~A =C g~-Z~-i ) ~ ~ m-I ~ " 

Lemma 2.3, this will imply the theorem. 

We construct the family of matrices A~,i(5,{@{) by induction on s and t in the 

following six steps: 

i) As, [ has dimensionL~,e~<{ %,i=C $-i ~ ~%,t:( S*s 

2) every nonzero element of the matrix A %~{ is equal to • ~ ({-~-~S+6-{)] 

3) every variable ~[({a_i~_$~[_i) appears in exactly ~s,{=(SS_il Z) elements of the 

matrix ~ %,s :, and these ~{ elements lie in different rows and columns; 

4) every row of the matrix ~5~ contains ~ nonzero elements and every column con- 

tains S nonzero elements; 

5) A~I~ ~. As,~. ~=o ~s{~{~; 

The matrix A~,~ is the S~i column ~ ,  A~,i is the ~ [  row l ~ ' " ~ J  
i~-~ ...~i 

t%,~l} Conditions i)-4) and 6) hold for the matrices As,~ and A~,~ a~d A~,~ A~,co. 

We now construct the matrix A i~ (~.I>~i~ " 
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A A 
Q 

where E is the identity matrix with side ~_ ( .  = SS~ ) t  " ' 

Conditions 2) and 4) are verified directly using the induction assumption. Conditions 

i) and 3)follow from the identity {~+~i-i~+ I$_+~-~I-#$~ -- - - We verify condition 5): 

by the induction assumption. This matrix equality is meaningful for $,[~Z. 

be given a meaning for 

It can also 

$=i or ~=i , and condition 5) can be verified directly for ~ucn~ 

values. 

From condition 5) we obtain 

A . ~ a E  I 

It remains to evaluate 

denote by 

variable 

A~,i,i~ i . For the sake of definiteness, we assume that 

Let ~i,~C=O ~ where ~,~ are F-matrices~ and let p'=~,%=~ we 

~L ~Q~ the i-th column (j-th row) of the matrix ~(~ For each ~ i i~-~ 

let ~ {~..., t ~ ~5~,~ .... ,~,~ be the indices of the rows (columns) in which the 

~?-=~- ~ appears. Then by condition 3) we have 

Assume the ~L~...~%p are linearly independent and let the C~...,C~ also be linearly 

independent. We write pm for the cardinality of the set {L{~ .,{pl ~[[ ~ ~ { ~ and 
�9 . ~ , ~  ~  

~ . for the ca rd ina l i t y  of l~ , . . . , i~ In iS~,~ , .... ' ~ , ' I "  Then by condit ion 4 ) ~  D 

= (~+i~p~_~s~(~§ ~ On the other hand, the inequality (n) implies that p~+~ ~h: 

Therefore, {L+%bt~{o~N - L { i , s b p # E i ~ [ ~ ( s ,  bi~ , i . e . ,  ( p~c~  s~i --~s~LL. i "  Hence by 
Lemma 2.1, ~ A%§247 Condition 6) is verified, Finally, we put AOA~,. The 

theorem is proved. 

Remark 2.5. The above construction of the matrices A 5~ is similar to the construc- 

tion of the mapping cone for complexes [4, Chap. 2]. That is~ let p=F[]c~,~..~] be the 

polynomial ring in infinitely many variables. Consider the following sequence of finite com- 

plexes consisting of free finitely generated P -modules: 

Co: 
c~: 
.c z: 

C :  

... 0 --~ P L - O  ,.. 
. . .  o_p  

..... o - - . p  0 .. 

�9 . . .o - -p -~p ... Pff"~..: PtA-~ P t~ ~o" -  
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Then the complex ~L,~ ([ WO) is the cone of the chain map ~ " C~ �9 C~ given by com- 

ponentwise multiplication of the modules by the variable ])L t, [ . Condition 5) in the state- 

ment of Theorem 2 just means that C t ([~O) is a complex. In this connection it would be 

interesting to give a "homological proof" of the estimate for u %A5~ . This would probably 

light on the properties of ~ for arbitrary matrices. shed 

In this section we have studied the behavior of % for square-free matrices. I do not 

know any analogous answers for matrices of arbitrary form; e.g., is .~_~ ~ ~ A bounded 

for ~ and ~ a regular ring of dimension greater than two? I conjecture that we always 

have the inequality % ~ ' ~ A  , where C~ depends only on the ring ~ The analog 

of Corollary 2.2 (additivity of % ) for an arbitrary regular ring is false. We give a 

/I counterexample. Put ~ = 2[~], A= Z ~i and let A~-IO/A A 0 be the matrix 

containing n copies of A along the diagonal. Then ~A,--" , and therefore since ~ is 

Dedekind, , by Corollary 1.3. On the other hand, ~ = [  . At the same time, 

I believe that additivity of ~ holds for polynomial rings. 

When the ring ~ is not commutative, I know a reasonable definition of ~ only in 

the case when ~ is a division ring (using the Dieudonne determinant [ii]). In this case 

the equality % ~ = ~ A  is satisfied for every matrix A over the division ring K. 
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