A Zero-Test and an Interpolation Algorithm for the Shifted Sparse Polynomials

Dima Grigoriev^{*1} and Marek Karpinski **²

Abstract. Recall that a polynomial $f \in F[X_1, \ldots, X_n]$ is t-sparse, if $f = \sum \alpha_I X^I$ contains at most t terms. In [BT 88], [GKS 90] (see also [GK 87] and [Ka 89]) the problem of interpolation of t-sparse polynomial given by a black-box for its evaluation has been solved. In this paper we shall assume that F is a field of characteristic zero. One can consider a t-sparse polynomial as a polynomial represented by a straight-line program or an arithmetic circuit of the depth 2 where on the first level there are multiplications with unbounded fan-in and on the second level there is an addition with fan-in t.

In the present paper we consider a generalization of the notion of sparsity, namely we say that a polynomial $g(X_1,\ldots,X_n)\in F[X_1,\ldots,X_n]$ is shifted t-sparse if for a suitable nonsingular $n\times n$ matrix A and a vector B the polynomial $g(A(X_1,\ldots,X_n)^T+B)$ is t-sparse. One could consider g as being represented by a straight-line program of the depth 3 where on the first level (with the fan-in n+1) a linear transformation $A(X_1,\ldots,X_n)^T+B$ is computed. One could also consider a shifted t-sparse polynomial as t-sparse with respect to other coordinates $(Y_1,\ldots,Y_n)^T=A(X_1,\ldots,X_n)^T+B$.

We assume that a shifted t-sparse polynomial g is given by a black-box and the problem we consider is to construct a transformation $A(X_1,\ldots,X_n)^T+B$. As the complexity of the designed below algorithm (see the Theorem in which we describe the variety of all possible A,B and the corresponding t-sparse representations of $g(A(X_1,\ldots,X_n)^T+B)$) depends on d^{n^4} where d is the degree of g, we could first interpolate g within time $d^{O(n)}$ and suppose that g is given explicitly. It would be interesting to get rid of d in the complexity bounds as it is usually done in the interpolation of sparse polynomials ([BT 88], [GKS 90], [Ka 89]). The main technical tool we rely on is the criterium of t-sparsity based on Wronskian ([GKS 91], [GKS 92]), the latter criterium has a parametrical nature (so we can select t-sparse polynomials from a given parametrical family of polynomials) unlike the approach in [BT 88] using BCH-codes.

Dept. of Computer Science, the Pennsylvania State University, University Park, PA 16802

Dept. of Computer Science, University of Bonn, 5300 Bonn 1, and International Computer Science Institute, Berkeley, California

^{*} Work partially done while visiting the Dept. of Computer Science, University of Bonn. On leave from the Steklov Mathematical Institute, Fontanka 27, St. Petersburg, 191011 Russia

^{**} Supported in part by Leibniz Center for Research in Computer Science, by the DFG Grant KA 673/4-1 and by the SERC Grant GR-E 68297

We could directly consider (see the Theorem) the multivariate polynomials (section 3), but to make the exposition clearer before that we first study (see the proposition) the one-variable case (section 2). First at all we recall (section 1) the criterium of t-sparsity and based on it interpolation method for t-sparse multivariable polynomials.

In the last section 4 we design a zero-test algorithm for shifted t-sparse polynomials with the complexity independent on d.

A Criterium of t-sparsity and the Interpolation

Let p_1, \ldots, p_n be pairwise distinct primes and denote by D a linear operator mapping $D: X_1 \to p_1 X_1, \ldots, D: X_n \to p_n X_n$. We recall a criterium of tsparsity (cf. also [BT 88]).

Lemma 1. ([GKS 91], [GKS 92]) A polynomial $f \in F[X_1, ..., X_n]$ is t-sparse if and only if the Wronskian

$$W_f(X_1, \dots, X_n) = \det \begin{pmatrix} f & Df & \dots D^t f \\ Df & D^2 f & \dots D^{t+1} f \\ \vdots & \vdots & & \vdots \\ D^t f & D^{t+1} f & \dots D^{2t} f \end{pmatrix} \in F[X_1, \dots, X_n]$$

vanishes identically.

An interpolation method from [BT 88] (see also [KY 88]) actually considers the Wronskian $W_f(1,\ldots,1)$ at the point $(1,\ldots,1)$ and is based on the following **Lemma 2.** ([BT 88]) If f is exactly t-sparse (i.e., f contains exactly t terms), then the reduced Wronskian does not vanish

$$\bar{W}_f(1,\ldots,1) = \det \begin{pmatrix} f(1,\ldots,1) & (Df)(1,\ldots,1) & \dots & (D^{t-1}f)(1,\ldots,1) \\ \vdots & \vdots & & \vdots \\ (D^{t-1}f)(1,\ldots,1) & (D^tf)(1,\ldots,1) & \dots & (D^{2t-2}f)(1,\ldots,1) \end{pmatrix} \neq 0$$

Thus, if $f = \sum_{0 \le j \le t} \alpha_I X^I$ is exactly t-sparse and if a (characteristic) polynomial $\chi(Z) = \sum_{0 \le j \le t} \gamma_j Z^j \in \mathbb{Z}[Z]$ has as its t roots p^I for all exponent vectors I occurring in f (where for $I = (i_1, \ldots, i_n)$ we denote $p^I = p_1^{i_1} \cdots p_n^{i_n}$), then $\sum_{0 \le j \le t} \gamma_j D^j f = 0$

in
$$f$$
 (where for $I = (i_1, \ldots, i_n)$ we denote $p^I = p_1^{i_1} \cdots p_n^{i_n}$), then $\sum_{0 \le i \le t} \gamma_i D^j f = 0$

and hence

$$\begin{pmatrix} f & Df & \dots D^t f \\ \vdots & \vdots & \vdots \\ D^t f & D^{t+1} f & \dots D^{2t} f \end{pmatrix} (\gamma_0, \dots, \gamma_t)^T = 0.$$

Therefore, a linear system

$$\begin{pmatrix} f(1,\ldots,1) & (Df)(1,\ldots,1) & \dots & (D^tf)(1,\ldots,1) \\ \vdots & \vdots & & \vdots \\ (D^tf)(1,\ldots,1) & (D^{t+1}f)(1,\ldots,1) & \dots & (D^{2t}f)(1,\ldots,1) \end{pmatrix} (Y_0,\ldots,Y_t)^T = o$$

has (up to a constant multiple) a unique (by lemma 2) solution (Y_0, \ldots, Y_t) = $(\gamma_0, \ldots, \gamma_t)$ which gives the coefficients of χ , thereby its roots p^I and finally I.

2 One-variable Shifted Sparse Polynomials

A polynomial $g \in F[X]$ is called *shifted t-sparse* if for an appropriate b a polynomial g(X-b) is t-sparse (so the origin is shifted from 0 to b). If t is the least possible, we say that g is minimally shifted t-sparse, this notion relates also to the multivariable case. Let $F = \mathbb{Q}$. Usually we take b from the algebraic closure \mathbb{Q} (we could also consider b from \mathbb{R}). Assume that the bit-size of the (rational) coefficients of g does not exceed M.

Consider a new variable Y and an $\mathbb{Q}(Y)$ -linear transformation of the ring $\mathbb{Q}(Y)[X]$ mapping $D_1: X \to p_1X + (p_1 - 1)Y$. Denote

$$\mathcal{W}_g(X,Y) = \det \begin{pmatrix} g & D_1 g & \dots D_1^t g \\ \vdots & \vdots & \vdots \\ D_1^t g & D_1^{t+1} g & \dots D_1^{2t} g \end{pmatrix} \in \mathbb{Q}[X,Y]$$

Lemma 3. g is shifted t-sparse if and only if for some Y = b a polynomial $W_g(X,b)$ vanishes identically. Moreover in this case a polynomial g(X-b) is t-sparse.

Proof. If g(X-b) is t-sparse, then the expansion $g = \sum_j \beta_j (X+b)^j$ into the powers of (X+b) contains at most t terms. Lemma 1 implies that $\mathcal{W}_g(X,b)$ vanishes identically. The other direction follows also from lemma 1 which completes the proof.

Observe that for almost every b the polynomial g(X-b) has exactly (d+1) terms, where $d=\deg(g)$, since in the polynomial $g(X-Y)\in\mathbb{Q}[X,Y]$ the coefficient in the power X^S is a polynomial in Y of degree exactly d-S, $0\leq S\leq d$.

Lemma 3 provides an algorithm for finding t such that g is minimal shifted t-sparse which runs in time $d^{O(1)}$ (trying successively $t=1,2,\ldots$), moreover this algorithm finds all $Y=Y_0$ such that $g(X-Y_0)$ is t-sparse. Namely, one writes down a polynomial system in Y equating to zero all the coefficients in the powers of X, thus the system contains $d^{O(1)}$ equations of degrees at most $d^{O(1)}$. So, one can prove the following proposition.

Proposition. There is an algorithm which for one-variable polynomial g finds the minimal t and all Y_0 for which $g(X - Y_0)$ is t-sparse in time $(Md)^{O(1)}$. The number of such Y_0 does not exceed $d^{O(1)}$.

One of the purposes of the sparse analysis is to get rid of d in the complexity bounds. We can write down a system in b with a less (for small t) number of equations, when b is supposed to belong to \mathbb{R} . So, assume that the expansion $g = \sum_{j} \beta_{j}(X+b)^{j}$ contains at most t terms for some $b \in \mathbb{R}$. Then for any

fixed
$$Y = Y_0 \in \mathbb{R}$$
 a polynomial $(D_1^K g)(X, Y_0) = \sum_j \beta_j (p_1^K (X + Y_0) - Y_0 + b)^j$

for $K \geq 0$. Therefore the polynomial $\mathcal{W}_g(X,Y_0)$ has at most $2^{O(t^4)}$ real roots because of [Kh 91] since one can consider (2t+1)t powers of linear polynomials $(p_1^K(X+Y_0)-Y_0+b)^j$, $0 \leq K \leq 2t$ as the elements of a Pfaffian chain [Kh 91].

Thus Y satisfies the conditions of lemma 3 if and only if it satisfies the following system of polynomial equations (cf. lemma 5 below)

$$W_q(0,Y) = W_q(1,Y) = \ldots = W_q(2^{O(t^4)},Y) = 0$$
.

Each of the polynomials from the latter system can be represented by a blackbox for its evaluation. As each of these polynomials $\mathcal{W}_g(s,Y)$ contains (2t+1)t powers $(p_1^K(s+Y)-Y+b)^j$, $0 \le K \le 2t$ the system has at most $2^{O(t^4)}$ real solutions (by the same argument relying on [Kh 91] as above), thus the number of such $Y=Y_0$ that $g(X-Y_0)$ is t-sparse is less than $2^{O(t^4)}$.

3 Multivariate Shifted Sparse Polynomials

Consider now n^2+n new variables $Z_{i,j},Y_i, \quad 1 \leq i,j \leq n$ and a $\mathbb{Q}(\{Z_{ij},Y_i\}_{1 \leq i,j \leq n})$ -linear transformation D_n of the ring $\mathbb{Q}(\{Z_{ij},Y_i\}_{1 \leq i,j \leq n})[X_1,\ldots,X_n]$ mapping

$$D_n X = ZPZ^{-1}(X - Y) + Y$$

where vectors $X = (X_1, \dots, X_n)^T$, $Y = (Y_1, \dots, Y_n)^T$, matrices $Z = (Z_{ij})$, $P = \begin{pmatrix} p_1 & 0 \\ \ddots \\ 0 & p_n \end{pmatrix}$. Similarly, as above denote

$$\mathcal{W}_g(X, Y, Z) = \det \begin{pmatrix} g & D_n g & \dots D_n^t g \\ \vdots & \vdots & \vdots \\ D_n^t g & D_n^{t+1} g & \dots D_n^{2t} g \end{pmatrix} \in \mathbb{Q}(Z)[X, Y].$$

Lemma 4. g is shifted t-sparse if and only if for some Z_0 , Y_0 such that $\det Z_0 \neq 0$, the polynomial $\mathcal{W}_g(X, Y_0, Z_0)$ vanishes identically. Moreover, in this case a polynomial $g(Z_0X + Y_0)$ is t-sparse.

The proof is similar to the proof of lemma 3 taking into account that

$$(D_n g)(ZX + Y) = g(ZPZ^{-1}(ZX + Y - Y) + Y) = g(ZPX + Y)$$
.

As in section 2 lemma 4 provides a test for minimal shifted t-sparsity trying successively $t=1,2,\ldots$ running in time $d^{O(n^4)}$ (see [CG-83] for solving system of polynomial equations and inequalities). Moreover, the algorithm finds algebraic conditions (equations and inequality $\det Z \neq 0$) on all Z,Y for which g(ZX+Y) is t-sparse.

So, these Z,Y form a constructive set $U \subset \bar{\mathbb{Q}}^{n^2+n}$ given by a system $h_1 = \ldots = h_k = 0$, $\det Z \neq 0$ where $h_1,\ldots,h_k \in \mathbb{Q}[\{Z_{ij},Y_i\}_{1\leq i,j\leq n}]$, then $\deg(h_1),\ldots,\deg(h_k)\leq d^{O(1)},\ k\leq d^{O(1)}$. Applying the algorithm from [CG 83] one can find the irreducible over \mathbb{Q} components $\bar{U}=\bigcup_{i}U^{(i)}$ of the closure (in the

Zariski topology) \bar{U} . For each component $U^{(l)}$ the algorithm from [CG 83] produces firstly, some polynomials $h_1^{(l)}, \ldots, h_{N(l)}^{(l)} \in \mathbb{Q}[\{Z_{ij}, Y_i\}]$ such that $U^{(l)} = \mathbb{Q}[\{Z_{ij}, Y_i\}]$

 $\{h_1^{(l)}=\ldots=h_{N(l)}^{(l)}=0\}$ and secondly, a general point of $U^{(l)},$ namely the following fields isomorphism

$$\mathbb{Q}(U^{(l)}) \simeq \mathbb{Q}(T_1, \dots, T_m)[\theta]$$

where $\mathbb{Q}(U^{(l)})$ is the field of rational functions on $U^{(l)}$, $m=\dim(U^{(l)})$, linear forms T_1,\ldots,T_m in variables $\{Z_{ij},Y_i\}_{1\leq i,j\leq n}$ constitute a transcendental basis of $\mathbb{Q}(U^{(l)})$ and θ is algebraic over $\mathbb{Q}(T_1,\ldots,T_m)$. The algorithm produces a minimal polynomial $\phi(Z)\in\mathbb{Q}(T_1,\ldots,T_m)[Z]$ of θ , the linear forms $T_S(\{Z_{ij},Y_i\})$, $1\leq S\leq m$, a linear form $\theta(\{Z_{ij},Y_i\})$, and the expressions for the coordinate functions $Z_{i,j}(T_1,\ldots,T_m,\theta)$, $Y_i(T_1,\ldots,T_m,\theta)$ as rational functions in T_1,\ldots,T_m,θ . The degrees of the polynomials $h_1^{(l)},\ldots,h_{N(l)}^{(l)}$ do not exceed $d^{O(n^2)}$, the bit-size of any of the (rational) coefficients occurring in these polynomials can be bounded by $M^{O(1)}d^{O(n^2)}$ and the algorithm runs in time $M^{O(1)}d^{O(n^4)}$.

Denote $\tilde{U}^{(l)} = U^{(l)} \setminus \{\det Z = 0\}$ (some of $\tilde{U}^{(l)}$ can be empty), remark that $U = \bigcup_{l} \tilde{U}^{(l)}$.

For any point $(Z_0, Y_0) \in \tilde{U}^{(l)}$ the polynomial $g(Z_0X + Y_0)$ is exactly t-sparse, therefore by lemma 2 the following linear system

$$\begin{pmatrix} g(X_0, Y_0, Z_0) & D_n g(X_o, Y_0, Z_0) & \dots & D_n^t g(X_0, Y_0, Z_0) \\ \vdots & \vdots & & \vdots & & \vdots \\ D_n^t g(X_0, Y_0, Z_0) & D_n^{t+1} g(X_0, Y_0, Z_0) & \dots & D_n^{2t} g(X_0, Y_0, Z_0) \end{pmatrix} (\gamma_0, \dots, \gamma_{t-1}, 1) = 0$$

has a unique solution, where the vector $X_0 = Z_0^{-1}((1,\ldots,1)^T - Y_0)$. As $\gamma_0,\ldots,\gamma_{t-1} \in \mathbb{Z}$ (see section 1) and $\gamma_0,\ldots,\gamma_{t-1}$ can be represented as the rational functions in $(Z,Y) \in \tilde{U}^{(l)}$, we conclude taking into account the irreducibility of $U^{(l)}$ that $\gamma_0,\ldots,\gamma_{t-1}$ are constants on $\tilde{U}^{(l)}$. Thus, the exponent vectors I (see section 1) are the same for all the points $(Z,Y) \in \tilde{U}^{(l)}$.

So, for $(Z,Y) \in \tilde{U}^{(l)}$ one can write t-sparse representation of the polynomial

$$g = \sum_{I} C_{I}(Z, Y)(Z^{-1}(X - Y))^{I}$$
(1)

where the coefficients $C_I(Z,Y)$ depend on Z,Y. The equality (1) is equivalent to a system of equalities

$$g(ZX^{(0)} + Y) = \sum_{I} C_{I}(Z, Y) (Z^{-1}(X^{(0)} - Y))^{I}$$

where $X^{(0)}$ runs over all the vectors from $\{0,\ldots,d\}^n$. Adding to the latter system the system $\det Z \neq 0, \ h_1^{(l)} = \ldots = h_{N(l)}^{(l)} = 0$ determining $\tilde{U}^{(l)}$ we come to a parametrical (with the parameters $\{Z_{ij},Y_i\}$) linear in C_I system which one can solve invoking the algorithm from [H 83] (see also [CG 84]) in time $M^{O(1)}d^{O(n^4)}$. This algorithm yields some disjoint decomposition of $\tilde{U}^{(l)} = \bigcup_S U_S^{(l)}$ where each $U_S^{(l)}$ is a constructive set and also yields the rational functions $\bar{C}_{I,S}^{(l)}(\{Z_{ij},Y_i\}) \in$

 $\mathbb{Q}(\{Z_{ij}, Y_i\})$ such that $C_I = \bar{C}_{I,S}^{(l)}(\{Z_{ij}, Y_i\})$ for every point $\{Z_{ij}, Y_i\} \in U_S^{(l)}$ (thus each C_I is a piecewise-rational function on $\tilde{U}^{(l)}$).

The algorithm yields also polynomials $h_{S,0}^{(l)},\ldots,h_{S,N_S^{(l)}}^{(l)}\in\mathbb{Q}[\{Z_{ij},Y_i\}]$ such that $U_S^{(l)}=\{h_{S,0}^{(l)}\neq 0,\ h_{S,1}^{(l)}=\ldots=h_{S,N_S^{(l)}}^{(l)}=0\}$. From [H 83] (see also [CG 84]) we get the bounds on the degrees $\deg(h_{S,q}^{(l)}),\deg(\bar{C}_{I,S}^{(l)})\leq d^{O(n^2)}$ and the bound $M^{O(1)}d^{O(n^2)}$ for the bit-size of every (rational) coefficients of all the yielded rational functions.

Thus, we have proved the following theorem (cf. proposition above).

Theorem. There is an algorithm which finds a minimal t and produces a constructive set $U \subset \mathbb{Q}^{n^2+n}$ of all $\{Z_{ij},Y_i\}_{1 \leq i,j \leq n}$ such that g(ZX+Y) is t-sparse, in the form $U = \bigcup_{i} \mathcal{U}^{(l)}$ and for each constructive set $\mathcal{U}^{(l)}$ the algorithm produces polynomials $\mathcal{H}_0^{(l)}, \ldots, \mathcal{H}_{\mathcal{N}^{(l)}}^{(l)} \in \mathbb{Q}[\{Z_{ij},Y_i\}]$ such that $\mathcal{U}^{(l)} = \{\mathcal{H}_0^{(l)} \neq 0, \mathcal{H}_1^{(l)} = \ldots = \mathcal{H}_{\mathcal{N}^{(l)}}^{(l)} = 0\}$. Also the algorithm produces t exponent vectors and for each exponent vector I a rational function $\mathcal{C}_I^{(l)}(\{Z_{ij},Y_i\}) \in \mathbb{Q}(\{Z_{ij},Y_i\})$ which provide t-sparse representations of

$$g = \sum_{I} C_{I}^{(l)}(\{Z_{ij}, Y_{i}\})(Z^{-1}(X - Y))^{I}$$

which is valid for every point $(\{Z_{ij}, Y_i\}) \in \mathcal{U}^{(l)}$. The degrees of all produced rational functions $\mathcal{H}_S^{(l)}$, $\mathcal{C}_I^{(l)}$ do not exceed $d^{O(n^2)}$, the bit-size of the coefficients of these rational functions can be bounded by $(Md^{n^2})^{O(1)}$ and the running time of the algorithm is at most $(Md^{n^4})^{O(1)}$.

Again when Z_{ij}, Y_i belong to \mathbb{R} we could write down a polynomial system on Z, Y with a less number of equations. For this purpose we need the following **Lemma 5.** If g is a shifted t-sparse polynomial, then for any Z_0, Y_0 such that $\det Z_0 \neq 0$ for at least one of $X_1^{(0)} = 1, \ldots, n^{O(n)} 2^{O(t^4)}$, a polynomial $\mathcal{W}_g(X_1^{(0)}, X_2, \ldots, X_n, Y_0, Z_0) \in \mathbb{R}[X_2, \ldots, X_n]$ does not vanish identically, provided that $\mathcal{W}_g(X, Y_0, Z_0) \in \mathbb{R}[X]$ does not vanish identically.

Proof. Let for some $Z^{(0)}$, $Y^{(0)}$ a polynomial $g(Z^{(0)}X + Y^{(0)})$ be t-sparse, i.e.

$$g = \sum_{J} \beta_{J} \prod_{1 \le i \le n} ((Z^{(0)})^{-1} (X - Y^{(0)}))_{i}^{j_{i}}$$

where $J = (j_1, \ldots, j_n)$ and the sum has at most t items (by $((Z^{(0)})^{-1}(X - Y^{(0)}))_i$ we denote i-th coordinate of the vector $(Z^{(0)})^{-1}(X - Y^{(0)})$). Then

$$(D_n^K g)(X, Y_0, Z_0) = \sum_J \beta_J \prod_{1 \le i \le n} ((Z^{(0)})^{-1} ((Z_0 P^K Z_0^{-1} (X - Y_0) + Y_0) - Y^{(0)}))_i^{j_i} \quad \text{for } 0 \le K \le 2t.$$

Thus $W_g(X, Y_0, Z_0)$ is a polynomial in (2t + 1)t products of the form like in the latter expression and these products can be considered as the elements of a Pfaffian chain. [Kh 91] entails (cf. also [GKS 93]) that the sum of Betti numbers

of the variety $\{W_g(X, Y_0, Z_0) = 0\} \subset \mathbb{R}^n$ is less than $n^{O(n)}2^{O(t^4)}$. As in particular (n-1)-th Betti number $b^{n-1} < n^{O(n)}2^{O(t^4)}$ we conclude the statement of the lemma (cf. [GKS 93]).

Thus, Y, Z satisfy the conditions of lemma 4 if and only if $\det Z \neq 0$ and they satisfy the following $n^{O(n^2)}2^{O(nt^4)}$ equations.

$$\mathcal{W}_g(X_1^{(0)}, \dots, X_n^{(0)}, Y, Z) = 0, \qquad X_1^{(o)}, \dots, X_n^{(0)} \in \{1, \dots, n^{O(n)} 2^{O(t^4)}\}$$

4 Zero-test for shifted sparse polynomials

Let g be shifted t-sparse polynomial. Then (see lemma 5) for at least one of $X_1^{(0)} = 1, \ldots, n^{O(n)} 2^{(t^2)}$ a polynomial $g(X_1^{(0)}, X_2, \ldots, X_n) \in \mathbb{Q}[X_2, \ldots, X_n]$ does not vanish identically. Thus for zero-test one can compute $g(X_1^{(0)}, \ldots, X_n^{(0)})$ for $n^{O(n^2)} 2^{O(nt^2)}$ points $(X_1^{(0)}, \ldots, X_n^{(0)}) \in \{1, \ldots, n^{O(n)} 2^{O(t^2)}\}^n$. Then g vanishes identically if and only if all the results of computation vanish. Thus, the complexity of zero-test does not depend on d.

Acknowledgement. The authors would like to thank C. Schnorr for initiating the question about the shifted sparse polynomials.

References

- [BT 88] Ben-Or, M. & Tiwari, P., A deterministic algorithm for sparse multivariate polynomial interpolation, Proc. 20 STOC ACM, 1988, pp. 301-309.
- [CG 83] Chistov, A. & Grigoriev, D., Subexponential-time solving systems of algebraic equations, Preprints LOMI E-9-83, E-10-83, Leningrad, 1983.
- [CG 84] Chistov, A. & Grigoriev, D., Complexity of quantifier elimination in the theory of algebraically closed fields, Lect. Notes Comp. Sci. 176, 1984, pp. 17-31.
- [GK 87] Grigoriev, D. & Karpinski, M., The matching problem for bipartite graphs with polynomially bounded permanents is in NC, Proc. 28 FOCS IEEE, 1987, pp. 166-172.
- [GKS 90] Grigoriev, D., Karpinski, M. & Singer, M., Fast parallel algorithms for sparse multivariate polynimial interpolation over finite fields, SIAM J. Comput. 19, N 6, 1990, pp. 1059-1063.
- [GKS 91] Grigoriev, D., Karpinski, M. & Singer, M., The interpolation problem for k-sparse sums of eigenfunctions of operators, Adv. Appl. Math. 12, 1991, pp. 76-81.
- [GKS 92] Grigoriev, D., Karpinski, M. & Singer, M., Computational complexity of sparse rational interpolation, to appear in SIAM J. Comput.
- [GKS 93] Grigoriev, D., Karpinski, M. & Singer, M., Computational complexity of sparse real algebraic function interpolation, to appear in Proc. Int. Conf. Eff. Meth. Alg. Geom., Nice, April 1992 (Progr. in Math. Birkhäuser).
- [H 83] Heintz, J., Definability and fast quantifier elimination in algebraically closed fields, Theor. Comp. Sci. 24, 1983, pp. 239-278.

- [Ka 89] Karpinski, M., Boolean Circuit Complexity of Algebraic Interpolation Problems, Technical Report TR-89-027, International Computer Science Institute, Berkeley, 1989; in Proc. CSL'88, Lecture Notes in Computer Science 385, 1989, pp. 138-147.
- [Kh 91] Khovanski, A., Fewnomials, Transl. Math. Monogr., AMS 88, 1991.
- [KY 88] Kaltofen, E. & Yagati, L., Improved sparse multivariate interpolation, Report 88-17, Dept. Comput. Sci., Rensselaer Polytechnic Institute, 1988.