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In 1982 Mahaney ([Mahaney 1982℄) proved this weaker onjeture showingthat there exist sparse NP-hard sets if and only if P = NP. After this, awhole stream of reserah developed around the issue of redutions to \small"sets (see [Arvind, Han, Hemahandra, K�obler, Lozano, Mundhenk, Ogiwara,Sh�oning, Silvestri, and Thierauf 1993℄).In a di�erent line of researh, Blum, Shub and Smale introdued in [1989℄a theory of omputability and omplexity over the real numbers with the aimof modelling the kind of omputations performed in numerial analysis. Theomputational model de�ned in that paper deals with real numbers as basientities, and performs arithmeti operations on them as well as sign tests.Inputs and outputs are vetors in IRn and deision problems are subsets ofIR1, the disjoint union of IRn for all n � 1. The lasses PIR and NPIR |whihare analogous to the well known lasses P and NP| are then de�ned andone of the main results in [Blum, Shub, and Smale 1989℄ is the existene ofnatural NPIR-omplete problems.Clearly, the sparseness notion de�ned above for sets over f0; 1g will notde�ne any meaningful lass over IR sine now the set of inputs of size n is IRnand this is an in�nite set. A notion of sparseness over IR apturing the mainfeatures of the disrete one (independene of any kind of omputability notionand apture of a notion of \smallness"), however, was proposed in [Cuker,Koiran, and Matamala 1997℄. Let S � IR1. We say that S is sparse if, forall n � 1, the set Sn = fx 2 S j x 2 IRnghas dimension at most logq n for some �xed q. Here dimension is the dimen-sion, in the sense of algebrai geometry, of the Zariski losure of Sn. Notethat this notion of sparseness parallels the disrete one in a very preise way.For a subset Sn � f0; 1gn its ardinality gives a measure of its size and asparse set is one for whih, for all n, this ardinality is polylogarithmi in thelargest possible (i.e. 2n the ardinality of f0; 1gn). For a subset Sn � IRn, wetake the dimension to measure the size of Sn, and again de�ne sparseness bythe property of having this measure polylogarithmi in the largest possible(whih is now n, the dimension of IRn).Using this de�nition of sparseness for subsets of IR1 the main resultof [Cuker, Koiran, and Matamala 1997℄ proves that there are no sparseNP-omplete sets in the ontext of mahines over IR whih do not performmultipliations or divisions and branh on equality tests only. Note that thisresult is not onditioned to the inequality P 6= NP sine this inequality isknown to be true in this setting (f. [Meer 1992℄).2



A variation on the BSS model attempting to get loser to the Turingmahine (in the sense that iterated multipliation is somehow penalized) wasintrodued by Koiran in [1997℄. This model, whih Koiran alled weak, takesinputs from IR1 but no longer measures the ost of the omputation as thenumber of arithmeti operations performed by the mahine. Instead, the ostof eah individual operation xÆy depends on the sequenes of operations whihlead to the terms x and y from the input data and the mahine onstants.In this paper we extend Mahaney's theorem to mahines over IR endowedwith the weak ost. Again, this is not a onditional result sine it is knownthat P 6= NP in this ontext too (f. [Cuker, Shub, and Smale 1994℄). IfNPW denotes the lass of sets deided in non-deterministi polynomial ost,our main result is the following.Theorem 1 There are no sparse NPW -hard sets.2 The weak ostLet M be a mahine over IR, let �1; : : : ; �s be its onstants and a =(�1; : : : ; �s) 2 IRs. Let x = (x1; : : : ; xn) 2 IR1. At any step � of theomputation of M with input x, the intermediate value z 2 IR produed inthis step an be written as a rational funtion of a and x, z = '(a; x). Thisrational funtion only depends on the omputation path followed by M upto � (i.e. on the sequene steps previously performed by M) and is atually aoordinate of the omposition of the arithmeti operations performed alongthis path (see [Blum, Cuker, Shub, and Smale 1998℄ for details). Let ' = g�h�be the representation of ' obtained by retaining numerators and denomina-tors in this omposition. For example, the representation of the produt gh � rsis always grhs and the one of the addition gh + rs always gs+hrhs . We will nowuse g� and h� to de�ne weak ost.De�nition 1 The weak ost of any step � is de�ned to be the maximum ofdeg(g�), deg(h�), and the maximum bit size of the oeÆients of g� and h� .For any x 2 IR1 the weak ost of M on x is de�ned to be the sum of theosts of the steps performed by M with input x.The lass PW of sets deided within weak polynomial ost is now de�nedby requiring that for eah input of size n the weak ost of its omputation isbounded by a polynomial in n. A set S is deided in weak nondeterministipolynomial ost (we write S 2 NPW ) if there is a mahine M working within3



weak polynomial ost satisfying the following: for eah x 2 IR1, x 2 S if andonly if there is y 2 IR1 with size polynomial in n suh that M aepts thepair (x; y).Remark 1 The de�nitions above do not fully oinide with those givenin [Koiran 1997℄ sine this referene requires the representation of the ra-tional funtions ' above to be relatively prime. The de�nitions we give here,whih are taken from [Blum, Cuker, Shub, and Smale 1998℄, are essentiallyequivalent. For, if a set is in PW with the de�nition above, it is learly in PWwith Koiran's. The onverse is more involved to prove. Roughly speaking,any mahine an be simulated by another whih keeps \programs" insteadof performing the arithmeti operations at the omputation nodes. Whenthe omputation reahes a branh node the program for the register whosevalue is tested for positivity is evaluated at the pair (a; x) to deide suhpositivity. Now note that one an use algorithms of symboli omputation tomake the numerator and denominator of the rational funtion omputed bythe program relatively prime before evaluating.3 Proof of the main resultLet n � 1. Consider the polynomialfn = x2n1 + : : :+ x2nn � 1and let Cn = fx 2 IRn j fn(x) = 0g. The polynomial fn is irreduible andthe dimension of Cn is n� 1. Let C � IR1 be given by C = [Cn. We know(f. [Cuker, Shub, and Smale 1994℄) that C 2 NPW but C 62 PW.Let S � IR1 be a NPW -hard set. Then C redues to S. That is, thereexists a funtion ' : IR1 ! IR1 omputable with polynomial ost suh that,for all x 2 IR1, x 2 C () '(x) 2 S. For eah n � 1, the restritionof ' to IRn is a pieewise rational funtion. Our �rst result, Proposition 2,gives some properties of this funtion. It uses the following simple fat inreal algebrai geometry whose proof an be found in Chapter 19 of [Blum,Cuker, Shub, and Smale 1998℄.Proposition 1 Let f 2 IR[x1; : : : ; xn℄ be an irreduible polynomial suh thatthe dimension of its zero set Z(f) � IRn is n� 1. Then, for any polynomialg 2 IR[x1; : : : ; xn℄, g vanishes on Z(f) if and only if g is a multiple of f .4



Proposition 2 Let n be suÆiently large. There exist x 2 Cn and U � IRnan open ball entered at x suh that the restrition of ' to U is a rationalmap h : U ! IRm for some m bounded by a polynomial in n. In addition,if h1; : : : ; hm are the oordinates of h, then the degrees of the numerator anddenominator of hi are also bounded by a polynomial in n for i = 1; : : : ;m.Proof. Let M be a mahine omputing ' within weak polynomial ost.By unwinding the omputation of M in a standard manner we obtain analgebrai omputation tree of depth polynomial in n. To eah branh � inthis tree one assoiates a set D� � IRn suh that the D� partition IRn (i.e.[D� = IRn and D� \D = ; for � 6= ). In addition, eah branh � omputesa rational map h� and 'jD� = h�. The set D� is the set of points in IRnsatisfying a systems�̂i=1 qi(x1; : : : ; xn) � 0 ^ t�̂i=s�+1 qi(x1; : : : ; xn) < 0 (1)where the qi(X1; : : : ;Xn) are the rational funtions tested along the branh.Sine M works within weak ost, the numerators and denominators of the qias well as those of h� have degrees bounded by a polynomial in n.Everything we need now to see is that for some branh �, D� ontains anopen neighbourhood of a point x 2 Cn.To do so �rst notie that, by replaing eah qi by the produt of itsnumerator and denominator, we an assume that the qi are polynomials.Also, by writing qi � 0 as qi = 0_ qi > 0 and distributing the disjuntions in(1) we an express D� as a �nite union of sets satisfying a systemŝi=1 qi(x1; : : : ; xn) = 0 ^ t̂i=s+1 qi(x1; : : : ; xn) < 0: (2)We have thus desribed IRn as a union of sets whih are solutions of systemslike (2). Sine this union is �nite there exists one suh set D ontaining asubset H of Cn of dimension n�1. Let D be the solution of a system like (2).We laim that there are no equalities in suh system. Assume the ontrary.Then there is a polynomial q suh that H � Z(q). Sine dimH = n� 1 andCn is irreduible this implies that q(Cn) = 0 and, by Proposition 1, that q isa multiple of fn. Sine deg fn = 2n this is not possible for suÆiently largen. The above implies that D is an open set from whih the statement follows.5



For the next result we keep the notation of the statement of Proposition 2.Proposition 3 Let k = dimh(U).(i) There exist indies i1; : : : ; ik 2 f1; : : : ;mg, a polynomial g 2 IR[y1; : : : ; yk℄and a rational funtion q 2 IR(x1; : : : ; xn) with both numerator anddenominator relatively prime with fn suh thatg(hi1 ; : : : ; hik) = fǹqfor some ` > 0.(ii) Let n be suÆiently large. Then k � n.Proof. For part (i), �rst, notie that, sine dim(h(U)) = k, there existi1; : : : ; ik 2 f1; : : : ;mg suh that the funtions hi1 ; : : : ; hik are algebraiallyindependent. We want to show that dim(U \ Cn) < k. To do so let X =h(U); Y = h(U � Cn) and Z = h(U \ Cn). We have that all X;Y and Z aresemialgebrai subsets of IRm. In addition, Z is ontained in the losure of Ywith respet to the Eulidean topology relative to X sine h is ontinuousand Y \ Z = ; sine h is the restrition of ' to U and ' is a redution.From here it follows that Z is inluded in the boundary of Y relative toX. Hene, dimZ < dimY = dimX (see e.g. Proposition 2.8.12 of [Bohnak,Coste, and Roy 1987℄).The above shows that dimh(U \ Cn) < k. Therefore, there existsg 2 IR[y1; : : : ; yk℄ suh that, for all x 2 U \ Cn, g(hi1(x); : : : ; hik(x)) = 0.Write this as a rational funtion g(h) = a=b with a; b 2 IR[x1; : : : ; xn℄relatively prime. Then a(Cn) = 0 and a 6= 0 (sine hi1 ; : : : ; hik are al-gebraially independent). By Proposition 1 this implies that there existsr 2 IR[x1; : : : ; xn℄ suh that a = rfn. If ` is the largest power of fn dividing athen the result follows by taking q = r0b where r0 is the quotient of r dividedby f `�1n .We now proeed to part (ii). To simplify notation, assume that ij = j forj = 1; : : : ; k. Also, let d be a bound for the degrees of the numerators anddenominators of the hj . Reall from Proposition 2 that d is bounded by apolynomial in n.By part (i) there exists q 2 IR(x1; : : : ; xn) relatively prime with fn suhthat fǹq = g(h1; : : : ; hk)6



for a ertain ` � 1. Taking derivatives on both sides we obtain that, for allx 2 IRn, r(fǹq)(x) = r(g)(h(x)) ÆDh(x) (3)where r denotes the gradient and Dh(x) is the Jaobian matrix of h at x.Assume that k < n. Transposing (3) one sees that r(f `q)(x) is the imageof a vetor of dimension k. Thus, there exists a linear dependeny among the�rst k + 1 oordinates of r(f `q)(x)k+1Xi=1 �i�fǹq�xi = 0 (4)and the oeÆients �i of this linear dependeny are the determinants of someminors of Dh(x). Thus, for i = 1; : : : ; k + 1, �i is a rational funtion of xwhose numerator and denominator have degrees bounded by kd. Sine thesubmatrix of Dh(x) obtained by keeping its �rst k+1 rows ontains at mostk(k + 1) di�erent denominators, multiplying equation (4) by the produt ofall of all of them allows one to assume that the �i are polynomials with degreeat most kd(k + 1).By the produt rule we getk+1Xi=1 �i �`f `�1n q�fn�xi + fǹ �q�xi� = 0i.e. `f `�1n q k+1Xi=1 �i�fn�xi + fǹ k+1Xi=1 �i �q�xi = 0:Sine fǹ divides the seond term above it must also divide the �rst fromwhih, using that fn and q are relatively prime, it follows that fn dividesPk+1i=1 �i �fn�xi . That is, there exists a polynomial p suh thatfnp = k+1Xi=1 �i�fn�xii.e. p nXi=1 x2ni � 1! = 2n k+1Xi=1 �ix2n�1i :Now, for n large enough, the degrees of the �i are smaller than 2n � 1 sinekd(k + 1) is polynomial in n. This implies that the degree of p must also bebounded by kd(k + 1). But then, for eah i � k + 1, px2ni = �ix2n�1i , i.e.,pxi = �i. And from here it follows that �p = 0, a ontradition.7



Theorem 1 now readily follows. For all n 2 IN, Proposition 2 ensures theexistene of an open ball U � IRn whose image by the redution ' is inludedin IRm with m polynomially bounded on n. But for all n suÆiently largethis image, by Proposition 3 (ii), has dimension at least n and therefore itan not be polylogarithmi on m.Remark 2 The result of Theorem 1, together with that in [Cuker, Koiran,and Matamala 1997℄, supports the onjeture that there are no sparse NP-hard sets over the reals unless P = NP. There are two main settings wherethis remains to be proved. On the one hand, mahines whih do not mul-tiply nor divide but whih branh over sign tests. On the other hand, theunrestrited ase in whih the mahine an multiply or divide (and branhover sign tests) with unit ost. In these two ases, the result seems hardersine there is no proof that P 6= NP. In the �rst ase, we would like toremark that, if many-one redutions are replaed by Turing redutions andwe assume that P 6= NP then Mahaney's onjeture is false. This is due toa result of Fournier and Koiran [Fournier and Koiran 2000℄ proving that anyNP-omplete set in the Boolean setting (i.e. over f0; 1g) is NP-omplete overthe reals with addition and order for Turing redutions. Sine the subsets ofelements of size n of any suh set S have dimension 0 the sparseness of S isimmediate. For more on this see [Fournier 2000℄.ReferenesArvind, V., Y. Han, L. Hemahandra, J. K�obler, A. Lozano, M. Mund-henk,M. Ogiwara, U. Sh�oning, R. Silvestri, and T. Thierauf (1993).Redutions to sets of low information ontent. In K. Ambos-Spies, S. Homer,and U. Sh�oning (Eds.), Complexity Theory: urrent researh, pp. 1{45. Cam-bridge University Press.Berman, L. and J. Hartmanis (1977). On isomorphism and density of NP andother omplete sets. SIAM Journal on Computing 6, 305{322.Blum, L., F. Cuker, M. Shub, and S. Smale (1998). Complexity and RealComputation. Springer-Verlag.Blum, L., M. Shub, and S. Smale (1989). On a theory of omputation andomplexity over the real numbers: NP-ompleteness, reursive funtions anduniversal mahines. Bulletin of the Amer. Math. So. 21, 1{46.Bohnak, J., M. Coste, and M.-F. Roy (1987). G�eom�etrie alg�ebrique r�eelle.Springer-Verlag.Cuker, F., P. Koiran, andM. Matamala (1997). Complexity and dimension.Information Proessing Letters 62, 209{212.8
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