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Abstract. In this paper we prove that, in the context of weak ma-
chines over IR, there are no sparse NP-hard sets.

1 Introduction

In [1977] Berman and Hartmanis conjectured that all NP-complete sets are
polynomially isomorphic. That is, that for all NP-complete sets A and B,
there exists a bijection ¢ : ¥* — 3* such that 2 € A if and only if p(z) € B.
In addition both ¢ and its inverse are computable in polynomial time. Here
¥ denotes the set {0,1} and £* the set of all finite sequences of elements in
3.

Should this conjecture be proved, we would have as a consequence that
no “small” NP-complete set exists in a precise sense of the word “small”. A
set S C X* is said to be sparse when there is a polynomial p such that for
all n € IN the subset S, of all elements in S having size n has cardinality
at most p(n). If the Berman-Hartmanis conjecture is true, then there are no
sparse NP-complete sets.
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In 1982 Mahaney ([Mahaney 1982]) proved this weaker conjecture showing
that there exist sparse NP-hard sets if and only if P = NP. After this, a
whole stream of reserach developed around the issue of reductions to “small”
sets (see [Arvind, Han, Hemachandra, Kobler, Lozano, Mundhenk, Ogiwara,
Schéning, Silvestri, and Thierauf 1993]).

In a different line of research, Blum, Shub and Smale introduced in [1989]
a theory of computability and complexity over the real numbers with the aim
of modelling the kind of computations performed in numerical analysis. The
computational model defined in that paper deals with real numbers as basic
entities, and performs arithmetic operations on them as well as sign tests.
Inputs and outputs are vectors in R and decision problems are subsets of
R, the disjoint union of IR™ for all n > 1. The classes Pr and NP —which
are analogous to the well known classes P and NP— are then defined and
one of the main results in [Blum, Shub, and Smale 1989] is the existence of
natural NPr-complete problems.

Clearly, the sparseness notion defined above for sets over {0,1} will not
define any meaningful class over IR since now the set of inputs of size n is R"
and this is an infinite set. A notion of sparseness over R capturing the main
features of the discrete one (independence of any kind of computability notion
and capture of a notion of “smallness”), however, was proposed in [Cucker,
Koiran, and Matamala 1997]. Let S C IR®°. We say that S is sparse if, for
all n > 1, the set

Sn={re€S|zeR"}

has dimension at most log? n for some fixed ¢q. Here dimension is the dimen-
sion, in the sense of algebraic geometry, of the Zariski closure of S,,. Note
that this notion of sparseness parallels the discrete one in a very precise way.
For a subset S, C {0,1}" its cardinality gives a measure of its size and a
sparse set is one for which, for all n, this cardinality is polylogarithmic in the
largest possible (i.e. 2" the cardinality of {0,1}"). For a subset S,, C R", we
take the dimension to measure the size of S, and again define sparseness by
the property of having this measure polylogarithmic in the largest possible
(which is now n, the dimension of R").

Using this definition of sparseness for subsets of R® the main result
of [Cucker, Koiran, and Matamala 1997] proves that there are no sparse
NP-complete sets in the context of machines over IR which do not perform
multiplications or divisions and branch on equality tests only. Note that this
result is not conditioned to the inequality P # NP since this inequality is
known to be true in this setting (cf. [Meer 1992]).



A variation on the BSS model attempting to get closer to the Turing
machine (in the sense that iterated multiplication is somehow penalized) was
introduced by Koiran in [1997]. This model, which Koiran called weak, takes
inputs from IR* but no longer measures the cost of the computation as the
number of arithmetic operations performed by the machine. Instead, the cost
of each individual operation zoy depends on the sequences of operations which
lead to the terms z and y from the input data and the machine constants.

In this paper we extend Mahaney’s theorem to machines over R endowed
with the weak cost. Again, this is not a conditional result since it is known
that P # NP in this context too (cf. [Cucker, Shub, and Smale 1994]). If
NPy denotes the class of sets decided in non-deterministic polynomial cost,
our main result is the following.

Theorem 1 There are no sparse NPy -hard sets.

2 The weak cost

Let M be a machine over IR, let «aq,...,as be its constants and a =
(1,...,05) € R5. Let x = (z1,...,2,) € R>®. At any step v of the
computation of M with input z, the intermediate value z € IR produced in
this step can be written as a rational function of a and z, z = ¢(a,x). This
rational function only depends on the computation path followed by M up
to v (i.e. on the sequence steps previously performed by M) and is actually a
coordinate of the composition of the arithmetic operations performed along
this path (see [Blum, Cucker, Shub, and Smale 1998] for details). Let ¢ = {*
be the representation of ¢ obtained by retaining numerators and denomina-

tors in this composition. For example, the representation of the product % s

is always = and the one of the addition { + % always %. We will now
use g, and h, to define weak cost.

Definition 1 The weak cost of any step v is defined to be the maximum of
deg(gy), deg(hy), and the maximum bit size of the coefficients of g, and h,,.
For any z € IR® the weak cost of M on z is defined to be the sum of the
costs of the steps performed by M with input z.

The class Pw of sets decided within weak polynomial cost is now defined
by requiring that for each input of size n the weak cost of its computation is
bounded by a polynomial in n. A set S is decided in weak nondeterministic
polynomial cost (we write S € NPy ) if there is a machine M working within



weak polynomial cost satisfying the following: for each z € R*, z € S if and
only if there is y € R® with size polynomial in n such that M accepts the

pair (z,y).

Remark 1 The definitions above do not fully coincide with those given
in [Koiran 1997] since this reference requires the representation of the ra-
tional functions ¢ above to be relatively prime. The definitions we give here,
which are taken from [Blum, Cucker, Shub, and Smale 1998], are essentially
equivalent. For, if a set is in Pyw with the definition above, it is clearly in Pw
with Koiran’s. The converse is more involved to prove. Roughly speaking,
any machine can be simulated by another which keeps “programs” instead
of performing the arithmetic operations at the computation nodes. When
the computation reaches a branch node the program for the register whose
value is tested for positivity is evaluated at the pair (a,z) to decide such
positivity. Now note that one can use algorithms of symbolic computation to
make the numerator and denominator of the rational function computed by
the program relatively prime before evaluating.

3 Proof of the main result
Let n > 1. Consider the polynomial
fo=23 +... 422 -1

and let C, = {z € R" | f(z) = 0}. The polynomial f, is irreducible and
the dimension of C,, is n — 1. Let C' C R*> be given by C' = UC,,. We know
(cf. [Cucker, Shub, and Smale 1994]) that C € NPy but C ¢ Pw.

Let S C IR* be a NPyy-hard set. Then C reduces to S. That is, there
exists a function ¢ : R*® — RR* computable with polynomial cost such that,
for all z € R™®, x € C <= ¢(z) € S. For each n > 1, the restriction
of p to R is a piecewise rational function. Our first result, Proposition 2,
gives some properties of this function. It uses the following simple fact in
real algebraic geometry whose proof can be found in Chapter 19 of [Blum,
Cucker, Shub, and Smale 1998].

Proposition 1 Let f € R|zy,...,z,] be an irreducible polynomial such that
the dimension of its zero set Z(f) CIR™ is n — 1. Then, for any polynomial
g € Rlz1,...,2,), g vanishes on Z(f) if and only if g is a multiple of f. O



Proposition 2 Let n be sufficiently large. There exist x € C, and U C R"
an open ball centered at x such that the restriction of ¢ to U is a rational
map h : U — IR™ for some m bounded by a polynomial in n. In addition,
if hi,..., hy, are the coordinates of h, then the degrees of the numerator and
denominator of h; are also bounded by a polynomial inn for i =1,...,m.

ProoOF. Let M be a machine computing ¢ within weak polynomial cost.
By unwinding the computation of M in a standard manner we obtain an
algebraic computation tree of depth polynomial in n. To each branch 7 in
this tree one associates a set D, C IR™ such that the D, partition R™ (i.e.
UD, = R™ and D,ND, = () for n # ). In addition, each branch n computes
a rational map hy and ¢p, = hy. The set Dy is the set of points in IR"
satisfying a system

Sp ty
/\qi(zpl,...,xn)ZO/\ /\ qi(z1,...,2y) <0 (1)
i=1 1=sp+1

where the ¢;(X1,...,X,) are the rational functions tested along the branch.
Since M works within weak cost, the numerators and denominators of the ¢;
as well as those of h, have degrees bounded by a polynomial in n.

Everything we need now to see is that for some branch 1, D, contains an
open neighbourhood of a point = € C,,.

To do so first notice that, by replacing each ¢; by the product of its
numerator and denominator, we can assume that the g; are polynomials.
Also, by writing ¢; > 0 as ¢; = 0V ¢; > 0 and distributing the disjunctions in
(1) we can express D, as a finite union of sets satisfying a system

S

t
Aalei o) =0A A Gler....a,) <0 (2
i=1 i=s+1

We have thus described IR™ as a union of sets which are solutions of systems
like (2). Since this union is finite there exists one such set D containing a
subset H of C), of dimension n— 1. Let D be the solution of a system like (2).
We claim that there are no equalities in such system. Assume the contrary.
Then there is a polynomial ¢ such that H C Z(g). Since dimH =n — 1 and
C,, is irreducible this implies that ¢(C}) = 0 and, by Proposition 1, that ¢ is
a multiple of f,,. Since deg f,, = 2" this is not possible for sufficiently large

n.
The above implies that D is an open set from which the statement follows.

O



For the next result we keep the notation of the statement of Proposition 2.
Proposition 3 Let k = dimh(U).

(1) There exist indices iy, ...,ir € {1,...,m}, a polynomial g € Ry, ..., yi]
and a rational function ¢ € R(zy,...,z,) with both numerator and
denominator relatively prime with f, such that

g(hi17'-- 7h'lk) = ff;q
for some £ > 0.

(ii) Let n be sufficiently large. Then k > n.

ProoOF. For part (i), first, notice that, since dim(h(U)) = k, there exist
i1,...,0 € {1,...,m} such that the functions h; ,...,h; are algebraically
independent. We want to show that dim(U N C,) < k. To do so let X =
h(U),Y =h(U — Cy) and Z = h(U N C,). We have that all X,Y and Z are
semialgebraic subsets of R™. In addition, Z is contained in the closure of Y’
with respect to the Euclidean topology relative to X since h is continuous
and Y N Z = ) since h is the restriction of ¢ to U and ¢ is a reduction.

From here it follows that Z is included in the boundary of Y relative to
X. Hence, dim Z < dimY = dim X (see e.g. Proposition 2.8.12 of [Bochnak,
Coste, and Roy 1987]).

The above shows that dimh(U N C,) < k. Therefore, there exists
g € Rlyi,...,yk] such that, for all z € U N Cy, g(hi, (z),...,h; (x)) = 0.
Write this as a rational function g(h) = a/b with a,b € Rlzy,...,z,]
relatively prime. Then a(C,) = 0 and a # 0 (since h;,,...,h;,
gebraically independent). By Proposition 1 this implies that there exists
r € R[zy,...,z,] such that a = rf,,. If £ is the largest power of f,, dividing a

rl

then the result follows by taking ¢ = 7 where r’ is the quotient of r divided
by fi7!

We now proceed to part (ii). To simplify notation, assume that i; = j for
j=1,...,k. Also, let d be a bound for the degrees of the numerators and
denominators of the h;. Recall from Proposition 2 that d is bounded by a
polynomial in n.

By part (i) there exists ¢ € R(z1,...,x,) relatively prime with f, such
that

are al-

fla=g(h,... hy)



for a certain ¢ > 1. Taking derivatives on both sides we obtain that, for all
z € R,
V(faa)(x) = V(9)(h(x)) o Dh(x) (3)
where V denotes the gradient and Dh(z) is the Jacobian matrix of h at z.
Assume that k < n. Transposing (3) one sees that V(fq)(z) is the image

of a vector of dimension k. Thus, there exists a linear dependency among the
first k + 1 coordinates of V(f*q)()

k+1 afn

Z Ai = (4)

and the coefficients \; of this linear dependency are the determinants of some
minors of Dh(z). Thus, for i = 1,...,k + 1, ); is a rational function of z
whose numerator and denominator have degrees bounded by kd. Since the
submatrix of Dh(z) obtained by keeping its first k 4+ 1 rows contains at most
k(k + 1) different denominators, multiplying equation (4) by the product of
all of all of them allows one to assume that the \; are polynomials with degree
at most kd(k + 1).
By the product rule we get

%Al(fz 10 feBQ>
=1

k+1 k+1
+ 8fn +

fe qZA ZA

Since f! divides the second term above it must also divide the first from
which, using that f, and ¢ are relatively prime, it follows that f, divides
Zkﬂ )\ngf— That is, there exists a polynomial p such that

1.e.

k+1 afn

fnp—z)\

e n k+1
p(Zaz?n—1> 2”2)\ 21
i=1

Now, for n large enough, the degrees of the )\i are smaller than 2™ — 1 since
kd(k + 1) is polynomial in n. This implies that the degree of p must also be
bounded by kd(k + 1). But then, for each i < k + 1, pz?" = )\ix?n_l, ie.,
pzr; = A;. And from here it follows that —p = 0, a contradiction. O



Theorem 1 now readily follows. For all n € IN, Proposition 2 ensures the
existence of an open ball U C IR™ whose image by the reduction ¢ is included
in R™ with m polynomially bounded on n. But for all n sufficiently large
this image, by Proposition 3 (ii), has dimension at least n and therefore it
can not be polylogarithmic on m.

Remark 2 The result of Theorem 1, together with that in [Cucker, Koiran,
and Matamala 1997], supports the conjecture that there are no sparse NP-
hard sets over the reals unless P = NP. There are two main settings where
this remains to be proved. On the one hand, machines which do not mul-
tiply nor divide but which branch over sign tests. On the other hand, the
unrestricted case in which the machine can multiply or divide (and branch
over sign tests) with unit cost. In these two cases, the result seems harder
since there is no proof that P # NP. In the first case, we would like to
remark that, if many-one reductions are replaced by Turing reductions and
we assume that P # NP then Mahaney’s conjecture is false. This is due to
a result of Fournier and Koiran [Fournier and Koiran 2000] proving that any
NP-complete set in the Boolean setting (i.e. over {0,1}) is NP-complete over
the reals with addition and order for Turing reductions. Since the subsets of
elements of size n of any such set S have dimension 0 the sparseness of S is
immediate. For more on this see [Fournier 2000].
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