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In 1982 Mahaney ([Mahaney 1982℄) proved this weaker 
onje
ture showingthat there exist sparse NP-hard sets if and only if P = NP. After this, awhole stream of resera
h developed around the issue of redu
tions to \small"sets (see [Arvind, Han, Hema
handra, K�obler, Lozano, Mundhenk, Ogiwara,S
h�oning, Silvestri, and Thierauf 1993℄).In a di�erent line of resear
h, Blum, Shub and Smale introdu
ed in [1989℄a theory of 
omputability and 
omplexity over the real numbers with the aimof modelling the kind of 
omputations performed in numeri
al analysis. The
omputational model de�ned in that paper deals with real numbers as basi
entities, and performs arithmeti
 operations on them as well as sign tests.Inputs and outputs are ve
tors in IRn and de
ision problems are subsets ofIR1, the disjoint union of IRn for all n � 1. The 
lasses PIR and NPIR |whi
hare analogous to the well known 
lasses P and NP| are then de�ned andone of the main results in [Blum, Shub, and Smale 1989℄ is the existen
e ofnatural NPIR-
omplete problems.Clearly, the sparseness notion de�ned above for sets over f0; 1g will notde�ne any meaningful 
lass over IR sin
e now the set of inputs of size n is IRnand this is an in�nite set. A notion of sparseness over IR 
apturing the mainfeatures of the dis
rete one (independen
e of any kind of 
omputability notionand 
apture of a notion of \smallness"), however, was proposed in [Cu
ker,Koiran, and Matamala 1997℄. Let S � IR1. We say that S is sparse if, forall n � 1, the set Sn = fx 2 S j x 2 IRnghas dimension at most logq n for some �xed q. Here dimension is the dimen-sion, in the sense of algebrai
 geometry, of the Zariski 
losure of Sn. Notethat this notion of sparseness parallels the dis
rete one in a very pre
ise way.For a subset Sn � f0; 1gn its 
ardinality gives a measure of its size and asparse set is one for whi
h, for all n, this 
ardinality is polylogarithmi
 in thelargest possible (i.e. 2n the 
ardinality of f0; 1gn). For a subset Sn � IRn, wetake the dimension to measure the size of Sn, and again de�ne sparseness bythe property of having this measure polylogarithmi
 in the largest possible(whi
h is now n, the dimension of IRn).Using this de�nition of sparseness for subsets of IR1 the main resultof [Cu
ker, Koiran, and Matamala 1997℄ proves that there are no sparseNP-
omplete sets in the 
ontext of ma
hines over IR whi
h do not performmultipli
ations or divisions and bran
h on equality tests only. Note that thisresult is not 
onditioned to the inequality P 6= NP sin
e this inequality isknown to be true in this setting (
f. [Meer 1992℄).2



A variation on the BSS model attempting to get 
loser to the Turingma
hine (in the sense that iterated multipli
ation is somehow penalized) wasintrodu
ed by Koiran in [1997℄. This model, whi
h Koiran 
alled weak, takesinputs from IR1 but no longer measures the 
ost of the 
omputation as thenumber of arithmeti
 operations performed by the ma
hine. Instead, the 
ostof ea
h individual operation xÆy depends on the sequen
es of operations whi
hlead to the terms x and y from the input data and the ma
hine 
onstants.In this paper we extend Mahaney's theorem to ma
hines over IR endowedwith the weak 
ost. Again, this is not a 
onditional result sin
e it is knownthat P 6= NP in this 
ontext too (
f. [Cu
ker, Shub, and Smale 1994℄). IfNPW denotes the 
lass of sets de
ided in non-deterministi
 polynomial 
ost,our main result is the following.Theorem 1 There are no sparse NPW -hard sets.2 The weak 
ostLet M be a ma
hine over IR, let �1; : : : ; �s be its 
onstants and a =(�1; : : : ; �s) 2 IRs. Let x = (x1; : : : ; xn) 2 IR1. At any step � of the
omputation of M with input x, the intermediate value z 2 IR produ
ed inthis step 
an be written as a rational fun
tion of a and x, z = '(a; x). Thisrational fun
tion only depends on the 
omputation path followed by M upto � (i.e. on the sequen
e steps previously performed by M) and is a
tually a
oordinate of the 
omposition of the arithmeti
 operations performed alongthis path (see [Blum, Cu
ker, Shub, and Smale 1998℄ for details). Let ' = g�h�be the representation of ' obtained by retaining numerators and denomina-tors in this 
omposition. For example, the representation of the produ
t gh � rsis always grhs and the one of the addition gh + rs always gs+hrhs . We will nowuse g� and h� to de�ne weak 
ost.De�nition 1 The weak 
ost of any step � is de�ned to be the maximum ofdeg(g�), deg(h�), and the maximum bit size of the 
oeÆ
ients of g� and h� .For any x 2 IR1 the weak 
ost of M on x is de�ned to be the sum of the
osts of the steps performed by M with input x.The 
lass PW of sets de
ided within weak polynomial 
ost is now de�nedby requiring that for ea
h input of size n the weak 
ost of its 
omputation isbounded by a polynomial in n. A set S is de
ided in weak nondeterministi
polynomial 
ost (we write S 2 NPW ) if there is a ma
hine M working within3



weak polynomial 
ost satisfying the following: for ea
h x 2 IR1, x 2 S if andonly if there is y 2 IR1 with size polynomial in n su
h that M a

epts thepair (x; y).Remark 1 The de�nitions above do not fully 
oin
ide with those givenin [Koiran 1997℄ sin
e this referen
e requires the representation of the ra-tional fun
tions ' above to be relatively prime. The de�nitions we give here,whi
h are taken from [Blum, Cu
ker, Shub, and Smale 1998℄, are essentiallyequivalent. For, if a set is in PW with the de�nition above, it is 
learly in PWwith Koiran's. The 
onverse is more involved to prove. Roughly speaking,any ma
hine 
an be simulated by another whi
h keeps \programs" insteadof performing the arithmeti
 operations at the 
omputation nodes. Whenthe 
omputation rea
hes a bran
h node the program for the register whosevalue is tested for positivity is evaluated at the pair (a; x) to de
ide su
hpositivity. Now note that one 
an use algorithms of symboli
 
omputation tomake the numerator and denominator of the rational fun
tion 
omputed bythe program relatively prime before evaluating.3 Proof of the main resultLet n � 1. Consider the polynomialfn = x2n1 + : : :+ x2nn � 1and let Cn = fx 2 IRn j fn(x) = 0g. The polynomial fn is irredu
ible andthe dimension of Cn is n� 1. Let C � IR1 be given by C = [Cn. We know(
f. [Cu
ker, Shub, and Smale 1994℄) that C 2 NPW but C 62 PW.Let S � IR1 be a NPW -hard set. Then C redu
es to S. That is, thereexists a fun
tion ' : IR1 ! IR1 
omputable with polynomial 
ost su
h that,for all x 2 IR1, x 2 C () '(x) 2 S. For ea
h n � 1, the restri
tionof ' to IRn is a pie
ewise rational fun
tion. Our �rst result, Proposition 2,gives some properties of this fun
tion. It uses the following simple fa
t inreal algebrai
 geometry whose proof 
an be found in Chapter 19 of [Blum,Cu
ker, Shub, and Smale 1998℄.Proposition 1 Let f 2 IR[x1; : : : ; xn℄ be an irredu
ible polynomial su
h thatthe dimension of its zero set Z(f) � IRn is n� 1. Then, for any polynomialg 2 IR[x1; : : : ; xn℄, g vanishes on Z(f) if and only if g is a multiple of f .4



Proposition 2 Let n be suÆ
iently large. There exist x 2 Cn and U � IRnan open ball 
entered at x su
h that the restri
tion of ' to U is a rationalmap h : U ! IRm for some m bounded by a polynomial in n. In addition,if h1; : : : ; hm are the 
oordinates of h, then the degrees of the numerator anddenominator of hi are also bounded by a polynomial in n for i = 1; : : : ;m.Proof. Let M be a ma
hine 
omputing ' within weak polynomial 
ost.By unwinding the 
omputation of M in a standard manner we obtain analgebrai
 
omputation tree of depth polynomial in n. To ea
h bran
h � inthis tree one asso
iates a set D� � IRn su
h that the D� partition IRn (i.e.[D� = IRn and D� \D
 = ; for � 6= 
). In addition, ea
h bran
h � 
omputesa rational map h� and 'jD� = h�. The set D� is the set of points in IRnsatisfying a systems�̂i=1 qi(x1; : : : ; xn) � 0 ^ t�̂i=s�+1 qi(x1; : : : ; xn) < 0 (1)where the qi(X1; : : : ;Xn) are the rational fun
tions tested along the bran
h.Sin
e M works within weak 
ost, the numerators and denominators of the qias well as those of h� have degrees bounded by a polynomial in n.Everything we need now to see is that for some bran
h �, D� 
ontains anopen neighbourhood of a point x 2 Cn.To do so �rst noti
e that, by repla
ing ea
h qi by the produ
t of itsnumerator and denominator, we 
an assume that the qi are polynomials.Also, by writing qi � 0 as qi = 0_ qi > 0 and distributing the disjun
tions in(1) we 
an express D� as a �nite union of sets satisfying a systemŝi=1 qi(x1; : : : ; xn) = 0 ^ t̂i=s+1 qi(x1; : : : ; xn) < 0: (2)We have thus des
ribed IRn as a union of sets whi
h are solutions of systemslike (2). Sin
e this union is �nite there exists one su
h set D 
ontaining asubset H of Cn of dimension n�1. Let D be the solution of a system like (2).We 
laim that there are no equalities in su
h system. Assume the 
ontrary.Then there is a polynomial q su
h that H � Z(q). Sin
e dimH = n� 1 andCn is irredu
ible this implies that q(Cn) = 0 and, by Proposition 1, that q isa multiple of fn. Sin
e deg fn = 2n this is not possible for suÆ
iently largen. The above implies that D is an open set from whi
h the statement follows.5



For the next result we keep the notation of the statement of Proposition 2.Proposition 3 Let k = dimh(U).(i) There exist indi
es i1; : : : ; ik 2 f1; : : : ;mg, a polynomial g 2 IR[y1; : : : ; yk℄and a rational fun
tion q 2 IR(x1; : : : ; xn) with both numerator anddenominator relatively prime with fn su
h thatg(hi1 ; : : : ; hik) = fǹqfor some ` > 0.(ii) Let n be suÆ
iently large. Then k � n.Proof. For part (i), �rst, noti
e that, sin
e dim(h(U)) = k, there existi1; : : : ; ik 2 f1; : : : ;mg su
h that the fun
tions hi1 ; : : : ; hik are algebrai
allyindependent. We want to show that dim(U \ Cn) < k. To do so let X =h(U); Y = h(U � Cn) and Z = h(U \ Cn). We have that all X;Y and Z aresemialgebrai
 subsets of IRm. In addition, Z is 
ontained in the 
losure of Ywith respe
t to the Eu
lidean topology relative to X sin
e h is 
ontinuousand Y \ Z = ; sin
e h is the restri
tion of ' to U and ' is a redu
tion.From here it follows that Z is in
luded in the boundary of Y relative toX. Hen
e, dimZ < dimY = dimX (see e.g. Proposition 2.8.12 of [Bo
hnak,Coste, and Roy 1987℄).The above shows that dimh(U \ Cn) < k. Therefore, there existsg 2 IR[y1; : : : ; yk℄ su
h that, for all x 2 U \ Cn, g(hi1(x); : : : ; hik(x)) = 0.Write this as a rational fun
tion g(h) = a=b with a; b 2 IR[x1; : : : ; xn℄relatively prime. Then a(Cn) = 0 and a 6= 0 (sin
e hi1 ; : : : ; hik are al-gebrai
ally independent). By Proposition 1 this implies that there existsr 2 IR[x1; : : : ; xn℄ su
h that a = rfn. If ` is the largest power of fn dividing athen the result follows by taking q = r0b where r0 is the quotient of r dividedby f `�1n .We now pro
eed to part (ii). To simplify notation, assume that ij = j forj = 1; : : : ; k. Also, let d be a bound for the degrees of the numerators anddenominators of the hj . Re
all from Proposition 2 that d is bounded by apolynomial in n.By part (i) there exists q 2 IR(x1; : : : ; xn) relatively prime with fn su
hthat fǹq = g(h1; : : : ; hk)6



for a 
ertain ` � 1. Taking derivatives on both sides we obtain that, for allx 2 IRn, r(fǹq)(x) = r(g)(h(x)) ÆDh(x) (3)where r denotes the gradient and Dh(x) is the Ja
obian matrix of h at x.Assume that k < n. Transposing (3) one sees that r(f `q)(x) is the imageof a ve
tor of dimension k. Thus, there exists a linear dependen
y among the�rst k + 1 
oordinates of r(f `q)(x)k+1Xi=1 �i�fǹq�xi = 0 (4)and the 
oeÆ
ients �i of this linear dependen
y are the determinants of someminors of Dh(x). Thus, for i = 1; : : : ; k + 1, �i is a rational fun
tion of xwhose numerator and denominator have degrees bounded by kd. Sin
e thesubmatrix of Dh(x) obtained by keeping its �rst k+1 rows 
ontains at mostk(k + 1) di�erent denominators, multiplying equation (4) by the produ
t ofall of all of them allows one to assume that the �i are polynomials with degreeat most kd(k + 1).By the produ
t rule we getk+1Xi=1 �i �`f `�1n q�fn�xi + fǹ �q�xi� = 0i.e. `f `�1n q k+1Xi=1 �i�fn�xi + fǹ k+1Xi=1 �i �q�xi = 0:Sin
e fǹ divides the se
ond term above it must also divide the �rst fromwhi
h, using that fn and q are relatively prime, it follows that fn dividesPk+1i=1 �i �fn�xi . That is, there exists a polynomial p su
h thatfnp = k+1Xi=1 �i�fn�xii.e. p nXi=1 x2ni � 1! = 2n k+1Xi=1 �ix2n�1i :Now, for n large enough, the degrees of the �i are smaller than 2n � 1 sin
ekd(k + 1) is polynomial in n. This implies that the degree of p must also bebounded by kd(k + 1). But then, for ea
h i � k + 1, px2ni = �ix2n�1i , i.e.,pxi = �i. And from here it follows that �p = 0, a 
ontradi
tion.7



Theorem 1 now readily follows. For all n 2 IN, Proposition 2 ensures theexisten
e of an open ball U � IRn whose image by the redu
tion ' is in
ludedin IRm with m polynomially bounded on n. But for all n suÆ
iently largethis image, by Proposition 3 (ii), has dimension at least n and therefore it
an not be polylogarithmi
 on m.Remark 2 The result of Theorem 1, together with that in [Cu
ker, Koiran,and Matamala 1997℄, supports the 
onje
ture that there are no sparse NP-hard sets over the reals unless P = NP. There are two main settings wherethis remains to be proved. On the one hand, ma
hines whi
h do not mul-tiply nor divide but whi
h bran
h over sign tests. On the other hand, theunrestri
ted 
ase in whi
h the ma
hine 
an multiply or divide (and bran
hover sign tests) with unit 
ost. In these two 
ases, the result seems hardersin
e there is no proof that P 6= NP. In the �rst 
ase, we would like toremark that, if many-one redu
tions are repla
ed by Turing redu
tions andwe assume that P 6= NP then Mahaney's 
onje
ture is false. This is due toa result of Fournier and Koiran [Fournier and Koiran 2000℄ proving that anyNP-
omplete set in the Boolean setting (i.e. over f0; 1g) is NP-
omplete overthe reals with addition and order for Turing redu
tions. Sin
e the subsets ofelements of size n of any su
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