
Tseitin's Tautologies and Lower Bounds for Nullstellensatz ProofsD. Grigoriev1Departments of Mathematics and Computer ScienceThe Pennsylvania State UniversityUniversity Park, PA 16802dima@cse.psu.eduWe use the known linear lower bound for Tseitin'stautologies for establishing linear lower bounds on thedegree of Nullstellensatz proofs (in the usual booleansetting) for explicitly constructed systems of polyno-mials of a constant (in our construction 6) degree. Itholds over any �eld of characteristic distinct from 2.Previously, a linear lower bound was proved [14] for anexplicitly constructed system of polynomials of a loga-rithmic degree.Introduction.In the theory of e�ective Nullstellensatz the double ex-ponential upper bound d2O(n) [15] on the degrees forgeneral ideals and dO(n) [2], [8] for the unit ideal arewell known (here d is the degree and n is the numberof variables of the input polynomials). These boundsare known to be sharp due to [13] for the �rst boundand for the second bound due to the example of Lazard-Mora-Philippon (see [2]).In the proof system theory (see e.g. [3], [7], [6], [4],[14], [10] ) a similar question is studied when among in-put polynomials f1; : : : ; fk 2 F [X1; : : : ; Xn] necessarilythe polynomials X2i �Xi, 1 � i � n appear (let us callsuch a system of input polynomials a boolean system).Then the known methods [13], [5] for obtaining lowerbounds on the degrees of g1; : : : ; gk 2 F [X1; : : : ; Xn]such thatP figi = 1 (the latter representation is calleda boolean Nullstellensatz refutation), provided it doesexist (i.e. f1; : : : ; fk have no common zero), fail.Notice that one could assume all gi to be multilinear,in particular, their degrees are at most n. So, the goal isto establish the linear in n lower bounds on the degrees1Partially supported by NSF Grant CCR-9424358.

of g1; : : : ; gk.In [14] the �rst such method was designed whichallowed to prove linear lower bounds (even for the poly-nomial calculus, being a more powerful proof systemrather than the Nullstellensatz proofs) for a system ofpolynomials of a logarithmic degree which describes amodi�cation of the into pigeon-hole principle (an expo-sition of this method see also in [10]). It holds over anarbitrary �eld. But for many other systems of polyno-mials the issue of lower bounds still remains open. Letus also mention that in the earlier papers [3], [7], [6], [4]the methods for obtaining somewhat weaker than linearbounds were exhibited.It seems to be an interesting general question, howto obtain lower bounds for boolean Nullstellensatz refu-tations. In this paper we develop an approach whichallows to produce explicitly a system of polynomials ofdegree 6 and to prove a linear lower bound on the degreeof its boolean Nullstellensatz refutation. This approachborrows an idea from [13] to reduce the issue of Null-stellensatz refutations to Thue systems. First, we in-troduce and study (see section 1) boolean multiplicativeThue systems (basically, they consist of binomials nec-essarily containing among them the polynomialsX2i �1,1 � i � n). They extend slightly Tseitin's tautologies[16], [9], [17], [18]. We exploit the construction of theTseitin's tautologies ([9], [17], [18]), based on expanders([1], [11], [12]) and give a somewhat simpler proof of alinear lower bound for the case of used in section 1 no-tion of refutations (lemma 4). Relying on it, we �rstprove a linear lower degree bound for Nullstellensatzrefutations for the systems which include the polyno-mials X2i � 1; 1 � i � n (theorem 1) and thereupon, forthe more customary boolean case of the polynomialsX2i �Xi, 1 � i � n (corollary 1 in section 2).Some shortcoming is that theorem 1 (and thereby,corollary 1) does not hold over �elds of characteristic2. To get rid of the latter restriction, at the end ofsection 2 we consider boolean Thue systems relative thepolynomialsX2i �Xi, 1 � i � n. Unfortunately, in thiscase the best established bound is merely 
(logn).In section 3 we consider boolean Nullstellensatz refu-



tations for the Knapsack problem over any in�nite �eldand prove a linear lower bound for it. For zero charac-teristic �elds a similar result for the subset sum problemwas shown in [10].1 Boolean Multiplicative Thue Proof SystemsLet F be a �eld with characteristic distinct from 2.De�nition 1 A boolean multiplicative Thue system overF in variables X1; : : : ; Xn is a family T which consistsof terms of two types:X2i for all 1 � i � n (1)�Xj11 � � �Xjnn ; j1; : : : ; jn 2 f0; 1g ; � 2 f�1; 1g (2)The system T is satis�able if all the terms from (1),(2) equal to 1 for certain X1; : : : ; Xn (evidently, allX1; : : : ; Xn belong to f�1; 1g).Using (1) repeatedly one can reduce each term�Xj11 � � �Xjnn with integer j1; : : : ; jn to the form (2),throughout this section we consider terms in this re-duced form, then the multiplication of monomialsXj11 � � �Xjnn corresponds to the sum of their exponentvectors (j1; � � � ; jn) over GF (2).De�nition 2 A refutation for T is a sequence of (re-duced) terms m0; : : : ;mN such that mi�1mi is one ofthe terms from (2) (after the reductions by (1)) for each1 � i � N and �mN = m0 = 1. The degree of the refu-tation is the maximum of the degrees of m1; : : : ;mN .Obviously, if there is a refutation then T is not sat-is�able. The completeness proof in the next lemma isstandard, cf. e.g. lemma 5.3 [18].Lemma 1 a) If T is not satis�able then there is arefutation.b) There is a polynomial-time (moreover, from NC)algorithm for testing satis�ability.Proof Consider the following linear system LT overGF (2) in the variables z1; : : : ; zn. For each term of type(2) include in LT the following linear equation: j1z1 +� � � + jnzn = �(�), where �(1) = 0, �(�1) = 1. Thesystem LT is solvable if and only if T is satis�able. IfLT is not solvable then a suitable linear combination(or in other words, the sum of a subset of the set) ofits equations gives 0 at the left side and 1 at the rightside. Then the product of all the terms correspondingto this subset, provides a refutation. Lemma is proved.Boolean multiplicative Thue systems extend slightlyTseitin's tautologies [16], and a refutation could beviewed as a special form of resolutions, we need justthis form for the lower degree bound on the Nullstel-lensatz refutations in the next section. We exploit theconstruction [9], [17], [18] of the Tseitin's tautologies,based on expanders with a linear degree lower bound

and give for it a somewhat simpler proof for the sake ofself-containdness.Remind (see e.g. [1]) that an expander Gn is a bipar-tite graph with two parts of vertices A = fA1; : : : ; Ang,B = fB1; : : : ; Bng, where jAj = jBj = n such that Gn is6-regular and for some constant c > 0 (the calculationsin [11], [1] show that one could take c = (6p5� 5)=18,but we will not use it) any subset D � A, contains atleast �1 + c�1� jDjn �� jDj adjacent vertices in B (theroles of A and B could be interchanged).The system Tn under producing has 6n variablesX1; : : : ; X6n. Every variable among X1; : : : ; X6n weidentify with a corresponding edge of Gn. To any ver-tex Ai 2 A, 1 � i � n corresponds the monomialXai (having the degree 6) from Tn (of type (2)), be-ing the product of the edges incident to Ai, where ai 2(GF (2))6n. Renumerating (if necessary) the variablesone can assume that X1 is incident to B1 2 B. Theninclude in Tn the monomials Xb2 ; : : : ; Xbn (each of de-gree 6) similar as above and the monomial X1Xb1 ofdegree 5. Finally, add to (2) the term �X1. The ob-tained system Tn is not satis�able because the prod-uct of all its terms of type (2) equals to �1 (obvi-ously, Xa1 � � �Xan = Xb1 � � �Xbn = X1 � � �X6n). De-note X1Xb1 = Xb01 .For any GF (2)-linear combination �1a1+ � � ��nan+�1b01+�2b2+� � �+�nbn 2 (GF (2))6n we de�ne its degreeas the number of ones (thus, the degree of the corre-sponding monomial (Xa1 )�1 � � � (Xan )�n(Xb01 )�1 � � �(Xbn )�n) and its weight as the number of ones among�1; : : : ; �n; �1; : : : ; �n.Lemma 2 a) The vectors a1; : : : ; an; b01; b2; : : : ; bn arelinearly independent.b) For any constant 0 < c1 < 1 there exists a con-stant c0 > 0 such that any linear combination with aweight between c1n and (2� c1)n has the degree greaterthan c0n.Proof a) Let a = �1a1 + � � �+ �nan; b = �1b01 + �2b2 +� � �+ �nbn and a+ b = 0. Observe that the supports ofthe vectors a1; : : : ; an are pairwise disjoint, the same isvalid for the vectors b01; b2; : : : ; bn. Hence the weights ofthe vectors a and b are equal, denote this weight by s.Let �1 = � � � = �s = ��1 = � � ���s = 1. If s = n thena1+� � �+an+b01+b2+� � �+bn = (1; 0; : : :; 0), so one canassume that s < n. Applying the property of expandersto the set fA1 ; : : : ; Asg � A we get a variable Xjwhich occurs in the monomial Xa1 � � �Xas withoutoccurring in Xb�1 � � �Xb�s . Thus, the j-th coordinate ofthe vector a+ b does not vanish.b) Consider a linear combination a + b. Denoteby s the weight of a and by t the weight of b. Letfor de�niteness s � t and �1 = � � � = �s = ��1 =� � � = ��t = 1 (the case t � s is considered in a sim-2



ilar way). Then c12 n � s. Applying the property ofexpanders to the set fA1 ; : : : ; Asg � A, we obtainat least c0n = c �1� c14 � c14 n variables which occur inXa1 � � �Xas and do not occur in Xb�1 � � �Xb�t .For any boolean multiplicative Thue system T it ishelpful to consider the following graph MT of mono-mials (cf. [5]). Its 2n vertices are the monomials XI ,and two monomials XI , XJ are linked by an edge ifXIXJ is one of the monomials of type (2) (after reduc-tions by (1)). For the produced above system Tn wecall an edge inMTn between XI and XJ distinguishedif XIXJ = X1.Lemma 3 Refutations for Tn correspond exactly to cy-cles inMTn which pass through 1 and have an odd num-ber of distinguished edges.Proof Any refutation corresponds to a cycle (see def-inition 2) m0; : : : ;mN and since �1 = �m0 = mN =(m0m1)(m1m2) � � � (mN�1mN ), we conclude that amongthe edges mi�1mi of MTn there are an odd distin-guished ones. Conversely, any cycle with an odd num-ber of distinguished edges provides a refutation.Lemma 4 The degree of any refutation in Tn is at least
(n) (cf. e.g. lemma 5.9 [18]).Proof Take any refutation m0; : : : ;mN . Denote byv1; : : : ; vN1 2 (GF (2))6n the exponent vectors of the(reduced) monomials (m0m1); (m1m2); : : : ; (mN�1mN )ignoring all distinguished edges and preserving the or-der of the rest ones. Lemma 3 implies that v1 + � � �+vN1 = (1; 0; : : : ; 0). By lemma 2a) the weight of the vec-tor v1 + � � �+ vN1 equals to 2n. For a certain `1 � N1the weight of the vector v1 + � � �+ v`1 equals to n. Thevector v`1 is the exponent vector of a monomialm`�1m`for a certain ` � `1. Then the exponent vector of themonomialm` = (m0m1)(m1m2) � � � (m`�1m`) equals ei-ther to v1 + � � �+ v`1 or to v1 + � � �+ v`1 + (1; 0; : : : ; 0).Lemma 2b) entails a lower bound 
(n) on the degree ofv1 + � � �+ v`1 , that proves the lemma.2 Lower Bound on Nullstellensatz ProofsIn [13] (see also [5]) a connection between Thue sys-tems and membership problem for Thue ideals was ex-ploited, and a double exponential lower bound for thelatter problem was ascertained. Our situation is dif-ferent since we study refutations (rather than the idealmembership problem), for which in general a single ex-ponential upper bound is known ([2], [8]).Convert any Thue system T (see section 1) into aboolean multiplicative polynomial ideal P � F [X1; : : : ;Xn] replacing each term �m (where � 2 f�1; 1g and mis a monomial) in (1) or (2) by the binomial 1 � �m.Evidently, T is satis�able if and only if P is satis�able.Denote by Pn = (1 � X21 ; : : : ; 1 � X2n; f1; : : : ; ft) thepolynomial ideal converted from Tn.

Theorem 1 Any Nullstellensatz refutation for Pn hasthe degree 
(n) (over any �eld with the characteristicdistinct from 2).Proof Let 1 = P g0i(1 � X2i ) + P gjfj . Consider amodi�ed graphMPn with the same (asMTn) set of 2nvertices (i.e. monomials). For each term um0 (where0 6= u 2 F ) occurring in gj and fj = 1 � �m we drawan edge (m0m;m0) in MPn endowed with the weightu. Thus, the induced weight of its incident vertex m0equals to u, and the induced weight of the vertex m0mequals to ��u. Clearly, no edges correspond to thepolynomials 1�X2i .W.l.o.g. we can consider the connected componentof MPn which contains the monomial 1. Observe thatfor every vertex of MPn (except for just 1) the sumof the induced weights by all the incident edges equalsto 0, and for the vertex 1 this sum equals to 1. If theconnected component has a cycle with an odd numberof distinguished edges (m0X1;m0) (they correspond tothe polynomial 1 + X1) then there is a cycle with thesame property passing through 1, and we complete theproof of the theorem applying lemmata 3,4.Now suppose on the contrary that each cycle has aneven number of the distinguished edges. Then one canpartition all the vertices (of the connected component)into two parts V0; V1. The set V0 consists of all the ver-tices reachable in MPn from 1 by paths with an evennumber of the distinguished edges. Then any distin-guished edge links a vertex from V0 with a vertex fromV1. Any other edge has its incident vertices either bothin V0 or in V1.We partition the sum of the weights (see above) in-duced by all the edges into �0 + �1 over the verticesfrom V0 and from V1, respectively. Then each distin-guished edge gives an equal contribution into both �0and �1. Every other edge gives the zero contributioninto both �0 and �1. Hence �0 = �1. But on theother hand �1 = 0 and �0 = 1, which contradicts thesupposition and proves the theorem.Now we obtain a similar lower bound for more cus-tomary (see e.g. [3], [7], [6], [4], [14], [10]) boolean poly-nomial ideals (i.e. the ideals containing polynomialsX2i �Xi, for all 1 � i � n, rather thanX2i �1 as above).For each variableXi, 1 � i � nmaking the linear trans-formationXi !�2Xi+1 we transform the polynomialsX2i � 1 to 4(X2i �Xi). Denote by P 0n � F [X1; : : : ; Xn]the system obtained by this transformation from Pn(evidently, it consists of the polynomials of degrees atmost 6). Notice that P 0n is not necessary a binomialsystem (unlike Pn).Corollary 1 Any Nullstellensatz refutation for P 0n hasthe degree 
(n) (again over any �eld with the charac-teristic distinct from 2).One could also study boolean Thue systems relative3



the polynomialsX2i �Xi, 1 � i � n, rather than X2i �1.Some advantage of these systems is that it is possibleto consider them over arbitrary �elds F unlike the mul-tiplicative systems which were useless for the �elds ofcharacteristic 2 (see section 1).De�nition 3 A boolean Thue system T 0 is a family ofpolynomials of two typesX2i �Xi 1 � i � n (3)�0m0 � �00m00 (4)where �0; �00 2 F , m0;m00 are monomials.De�nition 4 A refutation of T 0 is a sequence of re-duced terms m0 = 1, m1; : : : ;mN = 0 such that for any1 � i � N there is � 2 F and a monomial m such thatmi�1 = ��0mm0, mi = ��00mm00 for an appropriatepolynomial of type (4).Unfortunately, the next obtained for this system lowerbound (which one can show by a straightforward induc-tion) is weaker than the bound from theorem 1.Proposition 1 Consider a boolean Thue system in thevariables X1; : : : ; Xn; Y1; : : : ; Yn with the following poly-nomials of type (4):X1; Y1 �X1; Y2 � Y1X2; : : : ; Yn � Yn�1Xn; 1� YnThen any refutation of this system has the degree atleast 
(logn). Note that this bound is sharp.Notice that one can test satis�ability of a booleanThue system T 0 in polynomial time. Indeed, amongthe terms occurring in (4), there should be a nonzeroelement of F (otherwise, just zeros would satisfy thissystem). Let it be a binomial �1m1 � �2; �2 6= 0. Westart recursively augmenting a subset U of variables �rstincluding in it all the variables from m1 (the variablesfrom U should attain the value 1 to satisfy T 0). At arecursive step if all the variables from a term 0 6= �0m0belong to U (this holds in particular if 0 6= �0m0 2F ) then add to U all the variables from m00 (unless�00 = 0, in this case the algorithm yields a refutationand terminates). Continue doing this way while U isaugmented. When U can't be augmented anymore, onecan satisfy T 0 putting 1 for the variables from U andputting 0 for the rest of the variables.3 Lower Bound on Nullstellensatz Proofs for theKnapsack Problem over an In�nite FieldIn [10] the lower bound [n=2] for Nullstellensatz proofsis shown for the polynomials fX2i � Xi; 1 � i � n,P1�i�nCiXi �mg for any m and nonzero C1; : : : ; Cn,actually over any �eld of zero characteristic. Here weprove the lower bound n for the knapsack problemP1�i�nCiXi � 1 for suitable C1; : : : ; Cn over an arbi-trary in�nite �eld F .

Proposition 2 For almost any 1; : : : ; n 2 F any Null-stellensatz refutation for the system of polynomials fX2i �Xi; 1 � i � n, P1�i�n iXi�1g has the degree at leastn.Proof Let 1 = P gi(X2i � Xi) + g(P iXi � 1) forsome 1; : : : ; n 2 F . W.l.o.g. we can assume that g ismultilinear. Suppose that deg g < n.There exist not all zero constants fc�g, � 2 f0; 1gn(in fact, they lie in the prime sub�eld of F ) such thatP� c�G(�) = 0 (this identity holds for any multilin-ear polynomial G of a degree less than n). Therefore,P� c�(Pi i�i�1) = 0, where � = (�1; : : : ; �n). The lat-ter expression does not vanish for almost any 1; : : : ; nfrom an in�nite �eld F .4 Further Research and Open Questions1) Over a �eld F of characteristic 2 which containsthe �eld GF (4) one could almost literally repeat theconstruction from section 1 and theorem 1 with thefollowing minor changes. The monomials (1) we re-place by X3i , respectively, j1; : : : ; jn 2 f0; 1; 2g in (2),� 2 f1; �; �2g where � is a generator of the multiplicativegroup (GF (4))�. In the construction of the Thue sys-tem Tn one views ai; bi as the vectors from (GF (3))6n,as the distinguished term in (2) takes �X1 (replacing�X1). Then lemmas 1,2 go through, in lemma 3 oneshould replace \odd" by \not divisible by 3" and thecorresponding graph MTn has now 3n vertices. Thisleads to lemma 4. In the proof of theorem 1 we par-tition the vertices of the connected component (whichcontains 1) of the graph MPn (now the latter has 3nvertices) into 3 parts, regarding d (mod 3), where d isthe number of distinguished edges on a path from thisvertex to 1.But it is not clear how to prove corollary 1 if we'dlike just to stick with the boolean equations X2i � Xi.Over the �eld GF (2) it is even less clear, how to conducta similar to the above construction.2) How to extend theorem 1 and corollary 1 to thepolynomial calculus ([4], [14])?3) How to obtain better (rather than logarithmic,see proposition 1) lower bounds for boolean Thue sys-tems described at the end of section 2? It relates to\reversible" pebble games, in which it is allowed topropagate pebbles also backwards. Is it possible to ad-just for them the known lower bounds (the best oneis 
(n= logn)) for (the customary) pebble games (dueto S. Cook, W.Paul, R. Tarjan et al.)? But actuallyboolean Thue systems seem to be more powerful thenpebble games, and it would be interesting to obtain forthem a linear lower bound.4
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