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We use the known linear lower bound for Tseitin’s
tautologies for establishing linear lower bounds on the
degree of Nullstellensatz proofs (in the usual boolean
setting) for explicitly constructed systems of polyno-
mials of a constant (in our construction 6) degree. It
holds over any field of characteristic distinct from 2.
Previously, a linear lower bound was proved [14] for an
explicitly constructed system of polynomials of a loga-
rithmic degree.

Introduction.

In the theory of effective Nullstellensatz the double ex-
ponential upper bound 427" [15] on the degrees for
general ideals and d°() [2], [8] for the unit ideal are
well known (here d is the degree and n is the number
of variables of the input polynomials). These bounds
are known to be sharp due to [13] for the first bound
and for the second bound due to the example of Lazard-
Mora-Philippon (see [2]).

In the proof system theory (see e.g. [3], [7], [6], [4],
[14], [10] ) a similar question is studied when among in-
put polynomials fi,..., fx € F[X1, ..., X,] necessarily
the polynomials X7 — X;, 1 < i < n appear (let us call
such a system of input polynomials a boolean system).
Then the known methods [13], [5] for obtaining lower
bounds on the degrees of g1,...,9x € F[X1,..., X,]
such that >~ f;9; = 1 (the latter representation is called
a boolean Nullstellensatz refutation), provided it does
exist (i.e. fi1,..., fx have no common zero), fail.

Notice that one could assume all g; to be multilinear,
in particular, their degrees are at most n. So, the goal is
to establish the linear in n lower bounds on the degrees
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of g1,..., 9%.

In [14] the first such method was designed which
allowed to prove linear lower bounds (even for the poly-
nomial calculus, being a more powerful proof system
rather than the Nullstellensatz proofs) for a system of
polynomials of a logarithmic degree which describes a
modification of the into pigeon-hole principle (an expo-
sition of this method see also in [10]). Tt holds over an
arbitrary field. But for many other systems of polyno-
mials the issue of lower bounds still remains open. Let
us also mention that in the earlier papers [3], [7], [6], [4]
the methods for obtaining somewhat weaker than linear
bounds were exhibited.

It seems to be an interesting general question, how
to obtain lower bounds for boolean Nullstellensatz refu-
tations. In this paper we develop an approach which
allows to produce explicitly a system of polynomials of
degree 6 and to prove a linear lower bound on the degree
of its boolean Nullstellensatz refutation. This approach
borrows an idea from [13] to reduce the issue of Null-
stellensatz refutations to Thue systems. First, we in-
troduce and study (see section 1) boolean multiplicative
Thue systems (basically, they consist of binomials nec-
essarily containing among them the polynomials X?—1,
1 < i < n). They extend slightly Tseitin’s tautologies
[16], [9], [17], [18]. We exploit the construction of the
Tseitin’s tautologies ([9], [17], [18]), based on expanders
([1], [11], [12]) and give a somewhat simpler proof of a
linear lower bound for the case of used in section 1 no-
tion of refutations (lemma 4). Relying on it, we first
prove a linear lower degree bound for Nullstellensatz
refutations for the systems which include the polyno-
mials X? — 1,1 < i < n (theorem 1) and thereupon, for
the more customary boolean case of the polynomials
X? — X;, 1 <i<n (corollary 1 in section 2).

Some shortcoming is that theorem 1 (and thereby,
corollary 1) does not hold over fields of characteristic
2. To get rid of the latter restriction, at the end of
section 2 we consider boolean Thue systems relative the
polynomials X? — X;, 1 < i < n. Unfortunately, in this
case the best established bound is merely Q(logn).

In section 3 we consider boolean Nullstellensatz refu-



tations for the Knapsack problem over any infinite field
and prove a linear lower bound for it. For zero charac-
teristic fields a similar result for the subset sum problem
was shown in [10].

1 Boolean Multiplicative Thue Proof Systems

Let F be a field with characteristic distinct from 2.

Definition 1 A boolean multiplicative Thue system over
F in variables X1, ..., X, 1s a family T which consists
of terms of two types:

XZ foralll1 <i<n (1)

XX g i€ {01}, oe{-1,1} (2)

The system T is satisfiable if all the terms from (1),
(2) equal to 1 for certain Xi,..., X, (evidently, all
X1,..., X, belong to {—1,1}).

Using (1) repeatedly one can reduce each term
oX{' ... Xj» with integer ji,...,j, to the form (2),
throughout this section we consider terms in this re-
duced form, then the multiplication of monomials
X7 -+~ XJn corresponds to the sum of their exponent
vectors (j1, -+, jn) over GF(2).

Definition 2 A refutation for T is a sequence of (re-
duced) terms mg,...,myn such that m;_1m; is one of
the terms from (2) (after the reductions by (1)) for each
1<i:< N and —myx = mg = 1. The degree of the refu-
tation is the maximum of the degrees of my, ..., my.

Obviously, if there is a refutation then 7' is not sat-
isfiable. The completeness proof in the next lemma is
standard, cf. e.g. lemma 5.3 [18].

Lemma 1 a) If T is not satisfiable then there is a
refutation.

b) There is a polynomial-time (moreover, from NC')
algorithm for testing satisfiability.
Proof Consider the following linear system Lr over
GF(2) in the variables z1, ..., z,. For each term of type
(2) include in Lp the following linear equation: ji1z1 +
<o+ jnzn = x(0), where x(1) = 0, x(=1) = 1. The
system L7 is solvable if and only if 7" is satisfiable. If
L7 1s not solvable then a suitable linear combination
(or in other words, the sum of a subset of the set) of
its equations gives 0 at the left side and 1 at the right
side. Then the product of all the terms corresponding
to this subset, provides a refutation. Lemma is proved.

Boolean multiplicative Thue systems extend slightly
Tseitin’s tautologies [16], and a refutation could be
viewed as a special form of resolutions, we need just
this form for the lower degree bound on the Nullstel-
lensatz refutations in the next section. We exploit the
construction [9], [17], [18] of the Tseitin’s tautologies,
based on expanders with a linear degree lower bound

and give for it a somewhat simpler proof for the sake of
self-containdness.

Remind (see e.g. [1]) that an expander G, is a bipar-
tite graph with two parts of vertices A = {4;,..., 4,},
B ={Bi,..., By}, where |A| = | B| = nsuch that G, is
6-regular and for some constant ¢ > 0 (the calculations
in [11], [1] show that one could take ¢ = (6/5 — 5)/18,

but we will not use it) any subset D C A, contains at
least (1 +c (1 - %)) |D| adjacent vertices in B (the

roles of A and B could be interchanged).

The system 7, under producing has 6n variables
X1,...,Xs,. Every variable among X1, ..., Xg, we
identify with a corresponding edge of G,,. To any ver-
tex A; € A, 1 < ¢ < n corresponds the monomial
X% (having the degree 6) from T,, (of type (2)), be-
ing the product of the edges incident to A;, where a; €
(GF(2))°". Renumerating (if necessary) the variables
one can assume that X 1s incident to B; € B. Then
include in 7, the monomials X%2 ... X% (each of de-
gree 6) similar as above and the monomial X; X% of
degree 5. Finally, add to (2) the term —X;. The ob-
tained system 7, is not satisfiable because the prod-
uct of all its terms of type (2) equals to —1 (obvi-
ously, X ... X% = Xb1...Xb = X, ... Xg,). De-
note X; X0 = XL

For any GF(2)-linear combination aya; + - - - apan +
B4+ Babot- -+ Brby, € (GF(2))%" we define its degree
as the number of ones (thus, the degree of the corre-
sponding monomial (X )1 ... (X )en(X01)01. ..
(Xbn)Pn) and its weight as the number of ones among
al,...,an,ﬁl,...,ﬁn.

Lemma 2 a) The vectors ay, ..
linearly independent.

b) For any constant 0 < ¢y < 1 there erists a con-

stant c¢g > 0 such that any linear combination with a
weight between cyn and (2 — cy)n has the degree greater
than cgn.
Proofa) Let a = ajay+ -+ anan, b= B16] + B2bs +
<o+ Bpb, and @ + b = 0. Observe that the supports of
the vectors aq, ..., a, are pairwise digjoint, the same is
valid for the vectors b},bs,...,b,. Hence the weights of
the vectors a and b are equal, denote this weight by s.
Let ooy, = - =y, =05, =05, = 1. If s = n then
ar+- - Fan+b+ba+--+b, = (1,0,...,0), so one can
assume that s < n. Applying the property of expanders
to the set {A4,,,..., Ay, } C A we get a variable X;
which occurs in the monomial X% ... X%s without
occurring in X1 ... X%:  Thus, the j-th coordinate of
the vector a + b does not vanish.

b) Consider a linear combination a + b. Denote
by s the weight of a and by ¢ the weight of 5. Let
for definiteness s > ¢t and oy, = - = a, = f5, =
-+ = fB5, = 1 (the case t > s is considered in a sim-
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ilar way). Then $n < s. Applying the property of
expanders to the set {A,,,..., A, } C A, we obtain
at least con = c( — %) “n variables which occur in
X% ... X% and do not occur in X% ... X8,

For any boolean multiplicative Thue system T it is
helpful to consider the following graph My of mono-
mials (cf. [5]). Its 2" vertices are the monomials X7,
and two monomials X7, X7 are linked by an edge if
X1X7 is one of the monomials of type (2) (after reduc-
tions by (1)). For the produced above system T, we
call an edge in M, between X! and X7 distinguished
if XIX7 = X,.

Lemma 3 Refutations for T, correspond exactly to cy-
cles in My, which pass through 1 and have an odd num-
ber of distinguished edges.

Proof Any refutation corresponds to a cycle (see def-
inition 2) my,...,my and since —1 = —myg = my =
(momq)(mims) -+ - (my_1mpy), we conclude that among
the edges m;_1m; of My, there are an odd distin-
guished ones. Conversely, any cycle with an odd num-
ber of distinguished edges provides a refutation.
Lemma 4 The degree of any refutation in T, is at least

Q(n) (ef eg. lemma 5.9 [18]).

Proof Take any refutation mg,...,my. Denote by
v1,...,0N, € (GF(2))°" the exponent vectors of the
(reduced) monomials (mgmy), (mims), ..., (my_1my)

ignoring all distinguished edges and preserving the or-
der of the rest ones. Lemma 3 implies that vy + -+
uvn, = (1,0,...,0). By lemma 2a) the weight of the vec-
tor v1 4+ - - - 4+ vn, equals to 2n. For a certain {1 < Ny
the weight of the vector v1 + - - -+ vy, equals to n. The
vector vy, 1s the exponent vector of a monomial me_1m,
for a certain £ > ¢;. Then the exponent vector of the
monomial my = (mgmy)(myms) - - - (me_1my) equals ei-
ther to vy + -+ -4 v, or towy +---+ v, +(1,0,...,0).
Lemma 2b) entails a lower bound £2(n) on the degree of
vy + - - -+ vg,, that proves the lemma.

2 Lower Bound on Nullstellensatz Proofs

In [13] (see also [5]) a connection between Thue sys-
tems and membership problem for Thue ideals was ex-
ploited, and a double exponential lower bound for the
latter problem was ascertained. Our situation is dif-
ferent since we study refutations (rather than the ideal
membership problem), for which in general a single ex-
ponential upper bound is known ([2], [8]).

Convert any Thue system T (see section 1) into a
boolean multiplicative polynomial ideal P C F[Xq, ...,
X,] replacing each term om (where o € {—1,1} and m
is a monomial) in (1) or (2) by the binomial 1 — om.
Evidently, T is satisfiable if and only if P is satisfiable.
Denote by P, = (1 — XZ,...,1 — X2 f1,..., ft) the
polynomial ideal converted from 7,.

Theorem 1 Any Nullstellensatz refutation for P, has
the degree Q(n) (over any field with the characteristic
distinct from 2).

Proof Let 1 = > gi(1 — X?) + >_g;f;. Consider a
modified graph Mp_ with the same (as M, ) set of 2"
vertices (i.e. monomials). For each term wm’ (where
0 # u € F) occurring in g; and f; = 1 — om we draw
an edge (m'm,m’) in Mp_ endowed with the weight
u. Thus, the induced weight of its incident vertex m’
equals to u, and the induced weight of the vertex m'm
equals to —ou. Clearly, no edges correspond to the
polynomials 1 — X2.

W.l.o.g. we can consider the connected component
of Mp, which contains the monomial 1. Observe that
for every vertex of Mp, (except for just 1) the sum
of the induced weights by all the incident edges equals
to 0, and for the vertex 1 this sum equals to 1. If the
connected component has a cycle with an odd number
of distinguished edges (m’X;, m’) (they correspond to
the polynomial 1 + X7) then there is a cycle with the
same property passing through 1, and we complete the
proof of the theorem applying lemmata 3,4.

Now suppose on the contrary that each cycle has an
even number of the distinguished edges. Then one can
partition all the vertices (of the connected component)
into two parts Vy, V1. The set Vj consists of all the ver-
tices reachable in Mp_ from 1 by paths with an even
number of the distinguished edges. Then any distin-
guished edge links a vertex from Vj with a vertex from
Vi. Any other edge has its incident vertices either both
mn Vyorin V4.

We partition the sum of the weights (see above) in-
duced by all the edges into ¥y + X1 over the vertices
from V4 and from Vi, respectively. Then each distin-
guished edge gives an equal contribution into both X
and Y. Every other edge gives the zero contribution
ito both ¥y and ¥;. Hence ¥y = ¥;. But on the
other hand ¥; = 0 and ¥y = 1, which contradicts the
supposition and proves the theorem.

Now we obtain a similar lower bound for more cus-
tomary (see e.g. [3], [7], [6], [4], [14], [10]) boolean poly-
nomial ideals (i.e. the ideals containing polynomials
XZ—X;, for all 1 <i < n, rather than X? —1 as above).
For each variable X;, 1 < i < n making the linear trans-
formation X; — —2X;+1 we transform the polynomials
X? —1to4(X? — X;). Denote by P, C F[Xy,..., X,]
the system obtained by this transformation from P,
(evidently, it consists of the polynomials of degrees at
most 6). Notice that P/ is not necessary a binomial
system (unlike P,).

Corollary 1 Any Nullstellensatz refutation for P! has
the degree Q(n) (again over any field with the charac-
teristic distinct from 2).

One could also study boolean Thue systems relative



the polynomials X? — X;, 1 <i < n, rather than X7 —1.
Some advantage of these systems i1s that it is possible
to consider them over arbitrary fields F' unlike the mul-
tiplicative systems which were useless for the fields of
characteristic 2 (see section 1).

Definition 3 A boolean Thue system 1" is a family of
polynomials of two types
X2 - X;

K3

1<i<n (3)
am — o' m” (4)
where o', o € F', m',m" are monomials.
Definition 4 A refutation of 1" is a sequence of re-
duced terms mg = 1, my,...,mny = 0 such that for any
1 << N there is o € F and a monomial m such that
m;_1 = aa’'mm’, m; = aa’’mm’ for an appropriate
polynomial of type (4).

Unfortunately, the next obtained for this system lower
bound (which one can show by a straightforward induc-
tion) is weaker than the bound from theorem 1.
Proposition 1 Consider a boolean Thue system in the
variables X1, ..., X, Y1, ..., Y, with the following poly-
nomials of type (4):

Xl,Yl _XlaYZ _Ylea"'aYn _Yn—anal_Yn

Then any refutation of this system has the degree at
least Q(logn). Note that this bound is sharp.

Notice that one can test satisfiability of a boolean
Thue system 7" in polynomial time. Indeed, among
the terms occurring in (4), there should be a nonzero
element of F' (otherwise, just zeros would satisfy this
system). Let it be a binomial aymy — ae, a0 # 0. We
start recursively augmenting a subset U of variables first
including in it all the variables from m; (the variables
from U should attain the value 1 to satisfy 77). At a
recursive step if all the variables from a term 0 # o'm/
belong to U (this holds in particular if 0 # o'm’ €
F) then add to U all the variables from m’ (unless
o’ = 0, in this case the algorithm yields a refutation
and terminates). Continue doing this way while U is
augmented. When U can’t be augmented anymore, one
can satisfy 7" putting 1 for the variables from U and
putting 0 for the rest of the variables.

3 Lower Bound on Nullstellensatz Proofs for the
Knapsack Problem over an Infinite Field

In [10] the lower bound [n/2] for Nullstellensatz proofs
is shown for the polynomials {X? — X;,1 < i < n,
> icicn CiXs — m} for any m and nonzero C1,...,Cp,
actually over any field of zero characteristic. Here we
prove the lower bound n for the knapsack problem
ZKK” C; X; — 1 for suitable C1, ..., ), over an arbi-
trary infinite field F.

Proposition 2 For almost any 1, ...,v, € F any Null-
stellensatz refutation for the system of polynomials { X?—
Xi, 1 <i<n, Y cicnViXi— 1} has the degree at least

n.

Proof Let 1 = > ¢:(X? — X;) + g(>_vX; — 1) for

some Y1, ...,7n € F. W.l.o.g. we can assume that g is

multilinear. Suppose that degg < n.

There exist not all zero constants {c,}, n € {0,1}"
(in fact, they lie in the prime subfield of F') such that
Zn epG(n) = 0 (this identity holds for any multilin-
ear polynomial G of a degree less than n). Therefore,

2 DR 0, where n = (91,...,1,). The lat-

ter expression does not vanish for almost any 1, ..., v,
from an infinite field F.

4 Further Research and Open Questions

1) Over a field F of characteristic 2 which contains
the field GF(4) one could almost literally repeat the
construction from section 1 and theorem 1 with the
following minor changes. The monomials (1) we re-
place by X2, respectively, ji1,...,jn € {0,1,2} in (2),
o € {1,0,0%} where 0 is a generator of the multiplicative
group (GF(4))". In the construction of the Thue sys-
tem 7T,, one views a;, b; as the vectors from (GF(3))"",
as the distinguished term in (2) takes X, (replacing
—X1). Then lemmas 1,2 go through, in lemma 3 one
should replace “odd” by “not divisible by 3”7 and the
corresponding graph My, has now 37 vertices. This
leads to lemma 4. In the proof of theorem 1 we par-
tition the vertices of the connected component (which
contains 1) of the graph Mp, (now the latter has 3"
vertices) into 3 parts, regarding d (mod 3), where d is
the number of distinguished edges on a path from this
vertex to 1.

But it is not clear how to prove corollary 1 if we’d
like just to stick with the boolean equations X7? — X;.
Over the field GF(2) it is even less clear, how to conduct
a similar to the above construction.

2) How to extend theorem 1 and corollary 1 to the
polynomial calculus ([4], [14])7

3) How to obtain better (rather than logarithmic,
see proposition 1) lower bounds for boolean Thue sys-
tems described at the end of section 27 It relates to
“reversible” pebble games, in which it is allowed to
propagate pebbles also backwards. Is it possible to ad-
just for them the known lower bounds (the best one
is Q(n/logn)) for (the customary) pebble games (due
to S. Cook, W.Paul, R. Tarjan et al.)? But actually
boolean Thue systems seem to be more powerful then
pebble games, and it would be interesting to obtain for
them a linear lower bound.
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