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Abstract

We prove an existence of a topological decision tree which solves the range

searching problem for a system of real polynomials, in other words, the tree finds

all feasible signs vectors of these polynomials, with the (topological) complexity

logarithmic in the number of signs vectors. This answers the problem posed in

[FK98].

1 Range Searching Problem

Let polynomials f1, . . . , fm ∈ R[X1, . . . , Xn]. Our purpose is to solve the range search-

ing problem [FK98] by means of topological decision trees (TDT) [S87]. Namely, TDT

allows tests of the form ”P (x) > 0?” for arbitrary polynomials P ∈ R[X1, . . . , Xn]

(thus, we ignore the cost of the computations). We say that a TDT solves the range

searching problem for the polynomials f1, . . . , fm if any two input points x, y ∈ R
n

with different signs vectors (sgn(f1), . . . , sgn(fm))(x) 6= (sgn(f1), . . . , sgn(fm))(y) ar-

rive to different leaves of the TDT. As usual, sgn could attain three values. By the

topological complexity of a TDT we mean its depth.

Denote by N the number of all feasible signs vectors (sgn(f1), . . . , sgn(fm))(x). It

is well known (see e.g. [G88]) that N ≤ (md)O(n) where deg(fi) ≤ d, 1 ≤ i ≤ n, or

in [BPR96] a better bound N ≤ ((2n +
(

m
n

)

)dn)O(1). The following result answers the

problem posed in section 4.2 [FK98].
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Theorem. There exists a TDT solving the range searching problem with a topo-

logical complexity at most O(log N).

Obviously, the bound is sharp.

Let us also mention that for linear polynomials deg(fi) = 1, 1 ≤ i ≤ m the range

searching problem can be solved even with a small computational complexity logO(1) N

by linear decision trees [M88],[M93].

2 Divide-and-conquer of the signs vectors

The desired in the theorem TDT will be designed (notice that the proof is non-

constructive) in two stages. At the first one we design a TDT T0 which solves the

range searching problem with respect to the equality to zero, i.e. if for two input points

x, y truncated signs vectors (sgn0(f1), . . . , sgn0(fm))(x) 6= (sgn0(f1), . . . , sgn0(fm))(y)

are different (where sgn0 attains just two values distinguishing zero and nonzeroes),

then x, y should arrive in different leaves.

For conveniency reasons we represent a truncated signs vector

(sgn0(f1), . . . , sgn0(fm))(x) by a subset I ⊂ {1, . . . , m} consisting of all 1 ≤ i ≤ m

such that fi(x) = 0. Denote by N0 ≤ N the number of all feasible truncated signs

vectors.

For a subset I ⊂ {1, . . . , m} denote f [I] =
∑

i∈I f 2
i . Ordering all subsets I

corresponding to the feasible truncated signs vectors in any way compatible with

non-increasing of their cardinalities, we take in this ordering the first [N0/2] subsets

and denote the family of these subsets by S. The polynomial fS =
∏

I∈S f [I] is the

first testing polynomial attached to the root of TDT T0 which we design. Observe that

the inputs with truncated signs vectors from S satisfy the test fS = 0 (or equivalently

fS ≤ 0) and the inputs with the truncated signs vectors from the rest of N0 − [N0/2]

ones satisfy the test fS > 0.

Continuing this divide-and-conquer process we each time take the first half of the

set of truncated sign vectors w.r.t. the chosen ordering. This completes the design

of TDT T0. In fact, one could diminish the degrees of testing polynomials by taking

the products only over the minimal (now w.r.t. the set inclusion relation) subsets

I (say, from the family S in the first testing polynomial above), but anyway we are

interested just in the topological complexity and do not need this remark.

To design the entire TDT T we fix for the time being a certain truncated signs

vector I0 and consider any leaf a of T0 which corresponds to I0. The next purpose is

to design a TDT T1 which deals just with I0 and to glue T1 to a. The design of T1

relies on the following lemma.
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Lemma. Let vectors u1, . . . , uN ∈ GF (2)k be pairwise distinct (N ≥ 6). Then

there exists a vector v ∈ GF (2)k such that

(1/3)N ≤ |{1 ≤ i ≤ N : vui = 0}| ≤ (2/3)N .

Proof. Suppose the contrary. Consider the subset V of all vectors v ∈ GF (2)k

such that |{1 ≤ i ≤ N : vui = 1}| < (1/3)N . We claim that

(i) V is a subspace;

(ii) dim(V ) ≥ k − 1.

To prove (i) take any two vectors v1, v2 ∈ V , then N1 = |{1 ≤ i ≤ N : (v1+v2)ui =

1}| < (2/3)N , therefore, due to the supposition, N1 < (1/3)N which proves (i). To

prove (ii) take any two vectors w1, w2 ∈ GF (2)k − V , then N2 = |{1 ≤ i ≤ N :

(w1 + w2)ui = 1}| < (2/3)N , hence again due to the supposition N2 < (1/3)N , i.e.

w1 + w2 ∈ V which proves (ii).

For each vector ui, 1 ≤ i ≤ N except, perhaps, ui = 0 and a unique vector

presumably orthogonal to V (which does exist if dim(V ) = k−1), exactly half among

the inner products vui, v ∈ V are equal to zero. Thus, there exists v ∈ V such that

|{1 ≤ i ≤ N : vui = 0}| ≥ (N − 2)/2 that contradicts the supposition. The lemma

is proved.

We apply the lemma to the set of N (0) ≤ N signs vectors in GF (2)m−|I0| ob-

tained from vectors of GF (2)m by deleting coordinates at the positions from I0, and

moreover, replacing each sign ”<” by 1 and each sign ”>” by 0. Take a vector

v ∈ GF (2)m−|I0| provided by the lemma, and as the first testing polynomial of T1 at-

tached to its root we consider
∏

j /∈I0
f v(j)

j where v(j) are the coordinates of v indexed

by the elements from the set {1, . . . , m} − I0. Then the input points with the signs

vectors u ∈ GF (2)m−|I0| satisfying uv = 0 or uv = 1, respectively, are separated just

by the first test.

Continuing this divide-and-conquer process (in a similar way to the first stage)

we apply the lemma at each step to the current set of signs vectors. The depth of the

designed TDT T1 is thereby O(log N (0)). Together with the design of T0 at the first

stage this completes the proof of the theorem.

3 Comments and an open question

Similar to [M88] one can prove that any problem which can be solved with a polyno-

mial parallel complexity over the reals (in other words, belonging to the class PARR

[FK98]) has also a polynomial topological complexity.

It would be also interesting to design a TDT with a small (similar to the theorem)

topological complexity solving the range searching problem for a set of polynomials
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f1, . . . , fm ∈ F [X1, . . . , Xn] where F is an algebraically closed field and the sign

vectors are understood as the truncated ones (see above).
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