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Abstract

Since a tropical Nullstellensatz fails even for tropical univariate polynomials we
study a conjecture on a tropical dual Nullstellensatz for tropical polynomial systems
in terms of solvability of a tropical linear system with the Cayley matrix associ-
ated to the tropical polynomial system. The conjecture on a tropical effective dual
Nullstellensatz is proved for tropical univariate polynomials.
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Introduction

Let T be a tropical semi-ring with operations ⊕, ⊗ (see e. g. [2], [3], [6], [12]). Typically
⊕ = min, ⊗ = +. Examples of T are Z and Z∞ = Z ∪ {∞}. A tropical monomial has
a form Q = a ⊗X⊗i1

1 ⊗ · · · ⊗X⊗in
n , a ∈ T . The tropical degree trdeg(Q) := i1 + · · · + in.

From the point of view of the classical algebra a tropical monomial is a linear function.
A point x = (x1, . . . , xn) ∈ T n (with some of xi 6= ∞) is a tropical zero of a tropical
polynomial f =

⊕
l Ql if the minimum minl{Ql(x)} is attained for at least two different

tropical monomials Ql.
We study the issue of a tropical Nullstellensatz. Its direct formulation fails even for

tropical univariate polynomials: for example, two tropical polynomials X ⊕ 0, X ⊕ 1 have
no common tropical zero, while the generated by them tropical ideal does not contain 1 or
any other tropical monomial. That is why we consider a tropical ”dual” Nullstellensatz.

One can treat the (customary) Hilbert’s Nullstellensatz as a reduction of solvability
of a polynomial system to solvability of a suitable linear system. Namely, solvability of a
polynomial system is equivalent to that the Cayley matrix C associated to the system does
not contain the vector (1, 0, . . . , 0) in the linear hull of its rows. In its turn it is equivalent
to that the linear system C · (a0, a1, . . .) = 0 has a solution with a0 6= 0 (cf. Section 1).
The latter rephrasing of the Nullstellensatz we call the ”dual” Nullstellensatz. It holds
also for the infinite matrix C (we call it the infinite ”dual” Nullstellensatz) unlike the
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customary Nullstellensatz, and it holds for a finite submatrix of C with the size depending
on n and on the degrees of the polynomials in the system (we call it the effective ”dual”
Nullstellensatz).

In Section 2 we formulate the conjecture on a tropical ”dual” Nullstellensatz. In Sec-
tion 3 we give a rephrasing of the conjecture in terms of the combinatorial convex geometry.
Finally, in Section 4 we prove the tropical effective ”dual” Nullstellensatz for univariate
polynomials (n = 1).

Observe that the latter result in case of a system of two tropical polynomials f1, f2

follows from the approach of [11] which relies on the theorem due to Kapranov (see e. g.
[11], [12]) applied to the (classical) resultant of a pair of (classical) polynomials. Since
the theorem of Kapranov holds just for principal ideals, the resultant based approach fails
for overdetermined systems in the tropical setting. We mention also that the problem
of solvability of tropical polynomial systems is NP -complete even for tropical quadratic
polynomials [12].

Solvability of tropical linear systems belongs to the complexity class NP ∩ co − NP
[1], [5]. In [1], [5] two different algorithms for solving tropical linear systems were designed
with the similar complexity bounds polynomial in s.M , where s is the size of the tropical
linear system (so, of its matrix) and M majorates the absolute values of the finite (integer)
coefficients of the system. We note that the algorithm from [5] possesses an extra feature
that it has also a complexity bound polynomial in exp(s), logM . The open question is
whether it runs in fact, within complexity polynomial in s, logM (which would provide a
polynomial complexity for the problem of solvability of tropical linear systems)?

In addition, the algorithm from [5] entails as a by-product the equivalence of solvability
of a tropical linear system with the degeneration of its tropical rank and simultaneously
with the degeneration of its Kapranov rank. The latter for systems with finite coefficients
(say, from Z) was shown in [3], also a part of this equivalence just for the tropical rank
follows from [8].

Besides, we mention that in [7] the tropical (customary) Nullstellensatz was established
for an introduced there a ”ghost” tropical semi-ring. In [10] the radical of a tropical ideal
was explicitly described.

1 ”Dual” Nullstellensatz

Let F1, . . . , Fs ∈ K[X1, . . . , Xn] be polynomials over an algebraically closed field K. Denote
by C := C(F1, . . . , Fs) the (infinite size) Cayley matrix over K consisting of the coefficients
of F1, . . . , Fs. The columns of C correspond to all the monomials XI := X i1

1 · · ·X in
n , I =

(i1, . . . , in), and the rows of C correspond to all the polynomials of the form XI · Fj, 1 ≤
j ≤ s. Let the first column of C correspond to the monomial X0 = 1. For an integer N
denote by CN the (finite size) submatrix of C formed by the rows XI · Fj, 1 ≤ j ≤ s with
the degrees degXI = i1 + · · · + in ≤ N and the corresponding columns which contain a
non-zero entry in at least one of these rows.
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Nullstellensatz states that a polynomial system

F1 = · · · = Fs = 0 (1)

has a solution in Kn iff for any N the linear hull of the rows of CN does not contain the
vector (1, 0, . . . , 0). An effective Nullstellensatz provides an upper bound on N for which
the latter equivalence holds. The bound N < (maxj{deg(Fj)})O(n) close to optimal was
obtained in [4], [9].

Thus, the effective Nullstellensatz is equivalent to the following. System (1) has a
solution iff the linear system CN · (y1, y2, . . .) = 0 has a solution with y1 6= 0 for an
appropriate N depending on n and on maxj{deg(Fj)}. We call the latter statement the
effective dual Nullstellensatz. The equivalence that (1) has a solution iff the linear system
CN · (y1, y2, . . .) = 0 has a solution with y1 6= 0 for any N , we call the dual Nullstellensatz.
Finally, the statement (also equivalent to Nullstellensatz) that (1) has a solution iff the
infinite linear system C · (y1, y2, . . .) = 0 has a solution with y1 6= 0, we call the infinite
dual Nullstellensatz. The latter infinite linear system makes sense because each row of C
contains just a finite number of non-zero entries.

2 Conjecture on a tropical dual Nullstellensatz

Below we assume that the tropical semi-ring T = R∞ := R ∪ {∞}, but for the sake of
simplifying the exposition we study tropical zeroes defined over R (although, one could

also consider zeroes defined over R∞). For each monomial Ql = al⊗X
⊗i1,l

1 ⊗· · ·⊗X⊗in,l
n of

a tropical polynomial f =
⊕

l Ql we plot the point (i1,l, . . . , in,l, al) ∈ Zn×R ⊂ Rn+1. Then
a point x = (x1, . . . , xn) ∈ Rn is a tropical zero of f iff the linear function (i1, . . . , in, a)→
a+ i1 · x1 + · · · in · xn attains its minimum at the plotted points at least twice.

Therefore, without changing the set of tropical zeroes of f one can replace the plotted
points by their convex hull. Moreover, w.l.o.g. for any point (b1, . . . , bn, a) ∈ Rn+1 from
this convex hull one can add the ray {(b1, . . . , bn, b) : b ≥ a}. The resulting convex set
P (f) ⊂ Rn+1 we call the (extended) Newton polyhedron of f . Thus, w.l.o.g. one can
modify f replacing it by a tropical polynomial whose plotted points are just the points of
the form (i1, . . . , in, a) ∈ (Zn×R)∩P (f) with the minimal possible a. Finally, so modified
tropical polynomial has the same set of tropical zeroes as f , and (in abuse of notations)
we keep for it the same notation. We say that the modified tropical polynomial is in the
convex form, and from now on we consider tropical polynomials only in the convex form.
Observe that x is a tropical zero of f iff for the minimal b ∈ R such that the hyperplane
{(z1, . . . , zn+1) : x1 · z1 + · · · + xn · zn + zn+1 = b} ⊂ Rn+1 has a non-empty intersection
with P (f), the hyperplane has at least two common points with P (f).

Similarly to the classical algebra to a system of tropical polynomials

f1, . . . , fs (2)

in n variables we associate the Cayley matrix C := C(f1, . . . , fs) over R∞ consisting of
the coefficients of (2). The columns of C correspond to the tropical monomials of the
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form X⊗I , I ∈ Zn, and the rows of C correspond to the tropical polynomials of the form
X⊗I ⊗ fj, I ∈ Zn, 1 ≤ j ≤ s. Note that unlike the classical algebra the tropical Cayley
matrix is infinite in all 4 directions. Actually, one could consider the tropical Cayley matrix
infinite in two directions, i. e. with multiindices I = (i1, . . . , in), ij ≥ 0, 1 ≤ j ≤ n (similar
to the classical algebra). This consideration would strengthen the conjectures below and
would not change Theorem 4.1. However, in the tropical setting the Cayley matrix infinite
in 4 directions looks more natural.

Conjecture 1 on a tropical infinite dual Nullstellensatz. System (2) has a
tropical zero iff the matrix C has a tropical zero.

The latter statement is obvious in the direction that if (2) has a zero then C has a zero
(the similar is true for two conjectures below as well).

Observe that being a particular case of tropical polynomials (of the tropical degree
1) matrix C = (ci,I) (or in other words, a tropical linear system) has a tropical zero
(. . . , yI , . . .) if for every row i of C (in the language of classical algebra) the minimum
minI{ci,I + yI} is attained at least for two different coordinates I. Note that a tropical
zero of C makes sense because every row of C contains just a finite number of finite (so,
from R) entries.

Similarly to the classical algebra for an integer N denote by CN a (finite) submatrix of
C formed by the rows X⊗I ⊗ fj, I = (i1, . . . , in) ∈ Zn, 1 ≤ j ≤ s with |i1|+ · · ·+ |in| ≤ N ,
and by the columns of C which contain at least one finite entry at one of these rows.

Conjecture 2 on a tropical dual Nullstellensatz. System (2) has a tropical zero
iff for any N the matrix CN has a tropical zero.

Conjecture 3 on a tropical effective dual Nullstellensatz. There is a function
N on n and on trdeg(fj), 1 ≤ j ≤ s such that (2) has a tropical zero iff the matrix CN has
a tropical zero.

Clearly, Conjecture 3 implies Conjecture 2, which in its turn implies Conjecture 1.

3 Convex-geometric rephrasing of the tropical dual

Nullstellensatz

In the present Section we give a rephrasing of Conjecture 1 (and similarly of Conjectures
2, 3) in terms of the convex geometry in Rn+1. Thus, assume that Cayley matrix C has a
tropical zero (. . . , yI , . . .), I ∈ Zn.

For any I ∈ Zn consider the shift P (fj) + (I, 0) ⊂ Rn+1, 1 ≤ j ≤ s of the Newton
polyhedron. We say that a set U ⊂ Rn+1 lies above (with respect to the last coordinate)
a set V ⊂ Rn+1 if for any pair of points (w1, . . . , wn, u) ∈ U, (w1, . . . , wn, v) ∈ V we have
u ≥ v.

Proposition 3.1 The following statement is equivalent to Conjecture 1.
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For I ∈ Zn, 1 ≤ j ≤ s take the minimal a ∈ R such that the polyhedron P (fj) + (I, a)
lies above the set Y := {(J, −yJ) : J ∈ Zn}. Assume that for any I ∈ Zn, 1 ≤ j ≤ s
the polyhedron and Y have at least two common points. Then there exists a hyperplane
H ⊂ Rn+1 defined by a linear equation b1 · z1 + · · · + bn · zn + zn+1 = 0 such that for each
1 ≤ j ≤ s for the minimal b ∈ R with the property that the polyhedron P (fj) lies above the
hyperplane H − (0, b), the intersection of P (fj) and H − (0, b) has at least two points.

For an equivalent statement to Conjecture 2 one has for any N to consider all I =
(i1, . . . , in) such that |i1| + · · · + |in| ≤ N . Respectively, for Conjecture 3 one has to take
N as a suitable function in n and in trdeg(fj), 1 ≤ j ≤ s.

4 Tropical effective dual Nullstellensatz for univariate

polynomials

Now let n = 1. In this case for a pair of tropical polynomials f1, f2 a tropical effective dual
Nullstellensatz follows from [11] with the bound N ≤ trdeg(f1) + trdeg(f2), but since this
approach relies on the (classical) resultant of a pair of (classical) polynomials being liftings
of f1, f2, respectively, the approach fails for overdetermined tropical systems (s ≥ 3).

Theorem 4.1 A tropical effective dual Nullstellensatz for univariate tropical polynomials
f1, . . . , fs holds with N ≤ 4 · (trdeg(f1) + · · ·+ trdeg(fs)).

Proof. Fix 1 ≤ j ≤ s for the time being. For the convex polyhedron P := P (fj) ⊂ R2

and i ∈ Z take the minimal ai ∈ R such that the shifted polygon Pi := P (fj) + (i, ai) lies
above the set Y = {(l, −yl) : l ∈ Z} (see Proposition 3.1). By the assumption for any
i ∈ Z there exist at least two points (l1, u1), (l2, u2) ∈ Pi∩Y, l1 < l2. Points from the latter
intersection we call extremal points of Pi.

Lemma 4.2 The function i→ ai is convex.

Proof of Lemma 4.2. Suppose the contrary and let 2 · ai > ai−1 + ai+1 for a certain
i. Let (l1, u1), (l2, u2) ∈ Pi ∩ Y . Denote by

S = {(w, v) : v−w·(ai−ai−1) ≤ u1−l1·(ai−ai−1), v+w·(ai−ai+1) ≥ u1+l1·(ai−ai+1)} ⊂ R2

the sector with the vertex at the point (l1, u1) between two rays R+ = (l1, u1)+{λ·(−1, ai−
ai+1) : λ ≥ 0} and R− = (l1, u1) + {λ · (1, ai − ai−1) : λ ≥ 0}. We claim that Pi ⊂ S.

Indeed, consider a left adjacent to (l1, u1) point (l1 − 1, u+) ∈ ∂Pi on the boundary of
Pi (provided that such a point does exist). If u+ < u1 + l1 · (ai− ai+1) (in other words, the
point (l1 − 1, u+) lies strictly below the ray R+, cf. the description of S) then the point
(l1 − 1, u+) + (1, ai+1 − ai) ∈ Pi+1 lies strictly below Y , the achieved contradiction implies
that (l1 − 1, u+) ∈ S. In a similar way a right adjacent to (l1, u1) point (l1 + 1, u−) ∈ ∂Pi

(provided that it does exist) belongs to S, which justifies the claim.
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By the same token the parallel shift S+(l2, u2)− (l1, u1) of the sector S (with its vertex
at the point (l2, u2)) also contains Pi. This contradicts to the convexity of Pi and completes
the proof of Lemma 4.2.

Denote by E := E(fj) ⊂ R2 the polygon with the vertices at the extremal points of Pi

for all i ∈ Z. Each edge of E connects an adjacent (with respect to the first coordinate)
pair of extremal points. Below we enumerate the (finite) edges of the polygon P from the
left to the right. Denote by (1, br) the vector parallel to the r-th edge of P .

Lemma 4.3 Let (l1, u1), . . . , (lt, ut) ∈ Pi, l1 < · · · < lt be all the extremal points of Pi. Let
the point (lt, ut)− (i, ai) ∈ P lie in the r-th (finite) edge of P (when the latter point belongs
both to the r-th and to the (r + 1)-th edges we agree that the point lies in the r-th edge).
Then ai+1 − ai ≥ br.

For any extremal point (k, v) of Pi+1 the point (k, v)− (i+ 1, ai+1) ∈ P lying in the q-th
edge of P either satisfies an inequality q ≥ r or (k, v)−(i+1, ai+1) is the common vertex of
the (r− 1)-th and r-th edges of P (in the latter case (k, v) is the leftmost extremal point of
Pi+1). There exists an extremal point (k, v) for which either q = r and (k, v)− (i+ 1, ai+1)
not being the common vertex of the r-th and (r + 1)-th edges of the polygon P or (k, v)−
(i + 1, ai+1) is the common vertex of the (r − 1)-th and r-th edges of P iff ai+1 − ai = br.
Moreover, when ai+1−ai = br any extremal point (lm, um) of Pi with (lm, um)− (i, ai) lying
in the r-th edge of P is also an extremal point of Pi+1.

Proof of Lemma 4.3. Consider the point (lt, ut) − (1, br) ∈ Pi. Then the point
((lt, ut) − (1, br)) + (1, ai+1 − ai) ∈ Pi+1 should lie above the extremal point (lt, ut), this
entails the inequality ai+1 − ai ≥ br.

Let (k, v) be an extremal point of Pi+1 with (k, v)− (i+ 1, ai+1) lying in the q-th edge
of P . The point (k, v)− (1, ai+1 − ai) lies in the q-th edge of the polygon Pi. If q < r and
the point (k, v) − (i + 1, ai+1) is not the common vertex of the (r − 1)-th and r-th edges
of P then its shift (k, v) = ((k, v) − (1, ai+1 − ai)) + (1, ai+1 − ai) lies strictly inside the
polygon Pi, and therefore (k, v) can not be an extremal point. The achieved contradiction
implies that either q ≥ r or (k, v)− (i+ 1, ai+1) is the vertex of (r − 1)-th and r-th edges
of P .

When ai+1− ai > br a similar argument shows that either q > r or (k, v)− (i+ 1, ai+1)
is the common vertex of the r-th and (r + 1)-th edges of P . Finally, when ai+1 − ai = br,
for any extremal point (lm, um) of Pi with (lm, um)− (i, ai) lying in the r-th edge of P take
the point (lm, um) − (1, ai+1 − ai) ∈ Pi, then the point (lm, um) = ((lm, um) − (1, ai+1 −
ai)) + (1, ai+1 − ai) ∈ Pi+1 is also an extremal point of Pi+1.

Remark 4.4 Lemma 4.3 is formulated for the shifts passing from the polygon Pi to Pi+1

(so, from the left to the right). By the same token a similar statement holds while passing
from Pi+1 to Pi (so, from the right to the left).

Lemma 4.5 The polygon E is convex.
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Proof of Lemma 4.5. Denote by Ei the polygon with the set of vertices being the
union of the extremal points of P0, . . . , Pi and with the edges connecting the adjacent
vertices. In particular, the leftmost and the rightmost vertices of Ei are both incident to
single edges. We prove by induction on i that the polygon Ei is convex. At the inductive
step we consider the polygon Pi+1 (so, we move from the left to the right). By the same
token one can alternatively consider the polygon P−1 (so, move from the right to the left).
This would entail Lemma 4.5.

We say that a polygon with the vertices . . . , wi−1, wi, wi+1, . . . is convex at the vertex
wi if there is a line passing through wi such that both points wi−1, wi+1 lie above this line.

Let (l′1, u
′
1), (l′2, u

′
2), . . . , l

′
1 < l′2 < · · · be all the extremal points of Pi+1 (if they exist)

being not extremal points of Pi. Lemma 4.3 implies that the point (l′1, u
′
1) − (i + 1, ai+1)

either lies in the q-th edge of P with q > r or it is the common vertex of the r-th and
(r + 1)-th edges of P (we keep the notations from Lemma 4.3).

The inductive hypothesis and Lemma 4.3 entail that the polygon Ei+1 is convex at all
the vertices of Ei, perhaps, with the exception of the rightmost extremal point (lt, ut) of
Ei (and simultaneously of Pi). The point (lt, ut) lies in the r-th edge of the polygon Pi,
and both polygons Pi, Pi+1 lie above the line L spanned by this edge (due to Lemma 4.3),
whence Ei+1 is convex at its vertex (lt, ut) as well.

Since the extremal points (l′1, u
′
1), (l′2, u

′
2), . . . are located on the convex polygon Pi+1

we get that Ei+1 is convex at its vertices (l′2, u
′
2), . . .. Thus, it remains to verify that Ei+1

is convex at its vertex (l′1, u
′
1).

Denote the vector w := (l′2, u
′
2)−(l′1, u

′
1). The points p := (l′1, u

′
1)−(1, ai+1−ai), (l′2, u

′
2)−

(1, ai+1 − ai) ∈ Pi. Therefore, the point p lies in a sector S0 with the vertex (lt, ut) formed
by the rays (lt, ut) + {λ · (1, br) : λ ≥ 0} ⊂ L and (lt, ut) + {λ ·w : λ ≥ 0}. Now consider a
sector S1 ⊂ S0 parallel to S0 with the vertex p formed by the rays p+{λ·(1, br) : λ ≥ 0} and
p+{λ ·w : λ ≥ 0}. The point (l′1, u

′
1) = p+(1, ai+1−ai) is located in S1 due to Lemma 4.3

and taking into the account that the point (l′1, u
′
1) is extremal in Pi+1 and thereby, can not

lie strictly inside Pi. Hence the polygon Ei+1 is convex at its vertex (l′1, u
′
1).

Remark 4.6 The latter statement that Ei+1 is convex at its vertex (l′1, u
′
1) becomes obvious

when the point (lt, ut) is an extremal point of Pi+1, this is equivalent to the equality ai+1 −
ai = br due to Lemma 4.3. In case when ai+1 − ai > br the polygon Pi+1 has no common
extremal points with Ei.

Corollary 4.7 Any edge e = ((l, u), (l′, u′)) of the convex polygon E is one of the following
three types:

1) either (l, u), (l′, u′) ∈ Pi for a certain i ∈ Z where the point (l, u) lies in the r-th
edge of Pi, the point (l′, u′) lies in the r′-th edge of Pi for some r < r′, except the case when
(l, u) is the common vertex of the (r− 1)-th and r-th edges of Pi and (l′, u′) lies in the r-th
edge of Pi (in the latter case e is parallel to the r-th edge of Pi, cf. 3) below);

2) either the point (l, u) lies in the r-th edge of Pi for a certain i ∈ Z, the point (l′, u′)
lies in the r′-th edge of Pi+1 for some r, r′, and the point (l′, u′)− (1, ai+1 − ai) lies in the
r′-th edge of Pi, moreover either r < r′ or (l′, u′) − (1, ai+1 − ai) is the common vertex of
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the r-th and (r + 1)-th edges of Pi. Case 2) occurs when ai+1 − ai > br (see Lemma 4.3
and Remark 4.6);

3) or e is parallel to an edge of P .

The edges e of E of types 1), 2) we call intermediate and the edges of types 3) we call
r-principal when e is parallel to the r-th edge of P . For an edge of the type either 1) or 2)
we define its projection (to the first coordinate) as the interval (l− i, l′− i) for the type 1)
and as (l − i, l′ − i− 1) for the type 2).

Lemma 4.8 The polygon E lies above Y .

Proof of Lemma 4.8. Consider a point (m,−ym) ∈ Y . If (m,−ym) is a vertex of E
or m is a projection of a point strictly inside an edge of E of a type either 1) or 3) then
the claim of Lemma 4.8 is obvious.

Else if m is a projection of a point strictly inside an edge e of the type 2) (we keep the
notations of 2) of Corollary 4.7) then the point (m,−ym) lies below the interval ((l, u), (l′−
1, u′ − ai+1 + ai)) with its endpoints on the polygon Pi, and it lies also below the interval
((l + 1, u + ai+1 − ai, ), (l′, u′)) with its endpoints on the polygon Pi+1. Hence the point
(m,−ym) lies below the edge ((l, u), (l′, u′)) of E.

Corollary 4.9 i) For a pair of adjacent intermediate edges of E their projections are also
adjacent (in the same order).

ii) For each r all r-principal edges of E (if they exist) constitute an interval in E
(parallel to the r-th edge of P ). We call it r-interval. Among these intervals there are
either two intervals infinite in one of directions or one interval infinite in both directions.

Let e− := ((l−, u−), (l′−, u
′
−)) be an edge of E adjacent to the r-interval from the left

(provided that the r-interval is not infinite to the left). Then e− is intermediate. Assume
for definiteness that (l′−, u

′
−) ∈ Pi for a certain i, while either (l−, u−) ∈ Pi in case of the

type 1) (see Corollary 4.7) or (l−, u−) ∈ Pi−1 in case of the type 2). Then the point (l′−, u
′
−)

lies in the r-th edge of Pi.
Similarly, let an edge e+ := ((l+, u+), (l′+, u

′
+)) be an edge adjacent to the r-interval from

the right (provided that the r-interval is not infinite to the right). Then e+ is intermediate.
Assume that (l+, u+) ∈ Pi for a certain i and either (l′+, u

′
+) ∈ Pi in case of the type 1) or

(l′+, u
′
+) ∈ Pi+1 in case of the type 2). Then the point (l+, u+) either lies in the r-th edge

of Pi or (l+, u+) is the common vertex of the (r − 1)-th and r-th edges of Pi.
iii) Denote by (k1, d1), (k2, d2) the endpoints of the r-th edge of P . Then for any pair of

adjacent extremal points (k′1, d
′
1), (k′2, d

′
2) in the r-interval of E we have k′2 − k′1 ≤ k2 − k1.

Finally, we complete the proof of Theorem 4.1. So far, we studied the convex polygon
E(fj) for a fixed 1 ≤ j ≤ s (see Lemma 4.5). Now we consider the intersection E :=⋂

1≤j≤sE(fj). Every edge ε of the convex polygon E is some subinterval of either an
intermediate edge of E(fj) or an r-interval for certain 1 ≤ j ≤ s and r. The total sum
of the lengths of the projections of the edges being subintervals of intermediate edges of
E(fj), 1 ≤ j ≤ s does not exceed 3 ·

∑
1≤j≤s trdeg fj due to i), ii) of Corollary 4.9.
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Observe that if ε is a subinterval of an r-interval of E(fj) for a certain 1 ≤ j ≤ s and
not all the points of ε belong to all polygons E(fj1), 1 ≤ j1 ≤ s (the latter is equivalent to
that any strictly inside point of ε does not belong to all E(fj1), 1 ≤ j1 ≤ s) then ε can not
contain extremal points strictly inside itself according to Lemma 4.8. Hence the total sum
of the lengths of the projections of all the edges of E being subintervals of some r-intervals
of E(fj), 1 ≤ j ≤ s does not exceed

∑
1≤j≤s trdeg fj by virtue of iii) of Corollary 4.9.

Thus, a truncation EN of E with the length of the projection to the first coordinate
equal N , where N ≥ 4 ·

∑
1≤j≤s trdeg fj, contains an edge which is a common subinterval

of rj-intervals for appropriate rj of all E(fj), 1 ≤ j ≤ s. Taking into the account the
Proposition 3.1 we conclude with Theorem 4.1.

It would be interesting to improve the factor 4 in Theorem 4.1.
We observe that one of the difficulties towards generalizing the proof of Theorem 4.1

to the multidimensional case n ≥ 2 is that a direct multidimensional generalization of
Lemma 4.5 does not always hold.
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