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Abstract. We discuss a method of approximate model reduction for networks of biochemical
reactions. This method can be applied to networks with polynomial or rational reaction rates
and whose parameters are given by their orders of magnitude. In order to obtain reduced
models we solve the problem of tropical equilibration that is a system of equations in max-plus
algebra. In the case of networks with nonlinear fast cycles we have to solve the problem of
tropical equilibration at least twice , once for the initial system and a second time for an
extended system obtained by adding to the initial system the differential equations satisfied by
the conservation laws of the fast subsystem. The two steps can be reiterated until the
fast subsystem has no conservation laws different from the ones of the full model.
Our method can be used for formal model reduction in computational systems biology.
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1. Introduction

Networks of chemical reactions are widely used in chemistry for modeling catalysis, combustion, chemical
reactors, or in biology as models of signaling, metabolism, and gene regulation. In order to cope with
growing amounts of data, these models tend to be as comprehensive as possible by integrating many
variables and processes with many different timescales. For many of the problems in computation and
analysis of complex systems, the upper limit on the size of the system that can be studied has been reached.
This limit can be very low, namely tens of variables for system identification, symbolic calculation or
bifurcation of attractors of large dynamical systems. Model reduction is a way to bypass these limitations
by replacing large scale models with ones containing less parameters and variables, that are easier to
analyse.

There are several traditional numerical methods for reducing networks of chemical reactions. These
methods, such as computational singular perturbation (CSP, [12]), intrinsic low dimensional manifold
(ILDM, [13]) exploit the separation of timescales of various processes and variables of the model. In
dissipative systems, fast variables relax rapidly to some low dimensional attractive manifold called in-
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variant manifold [8] that carries the slow mode dynamics. A projection of dynamical equations onto this
manifold provides the reduced dynamics [13].

In the last decade, the rapidly growing field of computational and systems biology produced biochemical
reaction networks models for cell physiology, of increasing size and complexity. Model reduction has been
identified as a highest-priority challenge for these fields, expected to tame the complexity and simplify the
analysis of biological models. However, these models came with peculiarities and the extant traditional
model reduction methods are not entirely suitable for this endeavour. Biological models suffer from
structural and parametric uncertainty and one rarely has precise information about kinetic parameters.
One of the main problem of computational biology is the parameter space exploration and analysis of
possible model behaviors. Therefore, formal, symbolic, or semi-quantitative model reduction methods
are more appropriate than numerical methods that need precise parameters.

Formal model reduction can be based on conservation laws, exact lumping [6], and more generally,
symmetry [3]. For chemical reactions networks with fast reaction cycles and fast species, lowest order
approximations of attractive invariant manifolds are provided by quasi-equilibrium or quasi-steady state
approximations [7]. These two approximations allow model reduction by graph reconstruction via linear
lumping, pruning, and algebraic elimination of fast variables [18, 19]. Graphical reduction methods use
elementary modes [2], or the Laplacian defined on the graph of complexes of the reaction network [20],
but have little or no connection with singular perturbation methods and do not exploit multi-scaleness of
biochemical networks. A fully formal reduction method exploiting orders of magnitude of variables and
parameters is still missing.

In this paper we present a new model reduction method, inspired by tropical geometry and analysis.
This method is particularly suited for computational biology because it combines graphical approaches,
semi-quantitative reasoning and symbolic manipulation.

We consider biochemical networks described by mass action kinetics

dxi
dt

=
∑
j

kjSijx
αj . (1.1)

where kj > 0 are kinetic constants, Sij are the entries of the stoichiometric matrix (uniformly bounded

integers, |Sij | < s, s is small), αj = (αj1, . . . , α
j
n) are multi-indices, and xαj = x

αj
1

1 . . . x
αj

n
n . We consider

that αji are positive integers. However, the approach can be extended to rational or real indices.

The choice (1.1) is not restrictive, because most kinetic laws used in computational biology can be
decomposed into simpler steps each one obeying mass action law [11,27]. Extensions of our approach,
directly applicable to models whose rate functions are ratios of two polynomials (such as
Michaelis-Menten or Hill functions) without expanding them into mass action elementary
steps, were briefly discussed in [16] and will be presented in detail in future work. S-systems,
used to model metabolic networks and for which αj are rational or real multi-indices [23], are also covered
by our approach.

For slow/fast systems, the slow invariant manifold is approximated by a system of polynomial equations
for the fast species. This crucial point allows us to find a connection with tropical geometry.
We introduce now the terminology of tropical geometry needed for the presentation of our
results, and refer to [14] for a comprehensive introduction to this field.

Let f1, f2, . . . , fk be multivariate polynomials, fi ∈ C[x1, x2, . . . , xn]. By considering
sums of products of these polynomials by arbitrary polynomials we define the ideal
I ⊂ C[x1, x2, . . . , xn] generated by them. The ideal is important in the context of solving
systems of algebraic equations because any solution of the system f1(x) = 0, . . . , fk(x) = 0 is
also a solution of f(x) = 0 where f ∈ I. Important reasons for considering the generated
ideal in the context of model reduction will be discussed in the first section of this paper.

Let us now consider that variables xi, i ∈ [1, n] are written as powers of a small positive
parameter ε, namely xi = x̄iε

ai , where x̄i has order zero. The orders ai indicate the order
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of magnitude of xi. Because ε was chosen small, ai are lower for larger absolute values
of xi. Furthermore, the order of magnitude of monomials xα is given by the dot product
µ =< α,a >, where a = (a1, . . . , an). Again, smaller values of µ correspond to monomials with
larger absolute values. For each multivariate polynomial f we define the tropical surface
T (f) as the set of vectors a ∈ Rn such that the minimum of < α,a > over all monomials in f
is attained for at least two monomials in f . In other words, f has at least two dominating
monomials.

A tropical prevariety is defined as the intersection of a finite number of tropical surfaces,
namely T (f1, f2, . . . , fk) = ∩i∈[1,k]T (fi).

A tropical variety is the intersection of all tropical surfaces in an ideal T (I) = ∩f∈IT (f).
The tropical variety is a tropical prevariety, but the reciprocal property is not always true.

For our purposes, we slightly modify the classical notion of tropical prevariety. A tropical
equilibration is defined as a vector a ∈ Rn such that < α,a > attains its minimum at least
twice for monomials of different signs, for each polynomial in the system f1, f2, . . . , fk. Thus,
tropical equilibrations are subsets of the tropical prevariety. Our sign condition is needed
because we are interested in approximating real positive solutions of polynomial systems
(the sum of several dominant monomials of the same sign can cancel for complex, but not
for real positive solutions).

In this paper we discuss how tropical equilibrations can be used for model reduction of
chemical reactions networks. Tropical equilibrations indicate dominant monomials whose
equality define approximated invariant manifolds. Furthermore, they can be used to com-
pute the timescales of the species, which is important for deciding which species are fast
and can be eliminated by quasi-stationarity conditions.

More precisely, we assume that parameters of the kinetic models (1.1) can be written as

kj = k̄jε
γj . (1.2)

The exponents γj are considered to be integer or rational. For instance, the following
approximation produces integer exponents:

γj = round(log(kj)/ log(ε)), (1.3)

where round stands for the closest integer (with half-integers rounded to even numbers).
Without rounding to the closest integer, changing the parameter ε should not introduce
variations in the output of our method. Indeed, the tropical prevariety is independent on
the choice of ε. However, rounding to integer or rational exponents is needed in order to
ensure that our lowest order approximations can be extended to series.

Timescales of nonlinear systems depend not only on parameters but also on species
concentrations, which are a priori unknown. In order to compute them, we introduce a
species orders vector a = (a1, . . . , an), such that x = x̄εa. Of course, species orders vary in
the concentration space and have to be calculated. To this aim, the network dynamics is
first described by a rescaled ODE system

dx̄i
dt

=
∑
j

εµj−ai k̄jSijx̄
αj , (1.4)

where
µj = γj + 〈a,αj〉, (1.5)

and 〈, 〉 stands for the dot product.
The r.h.s. of each equation in (1.4) is a sum of multivariate monomials in the concen-

trations. The orders µj indicate how large are these monomials, in absolute value. One
monomial of order µj dominates another monomial of order µj′ if µj < µj′ .

3
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The timescale of a variable xi is given by 1
xi

dxi

dt = 1
x̄i

dx̄i

dt whose order is:

νi = min{µj |Sij 6= 0} − ai (1.6)

The order νi indicates how fast is the variable xi (if νi′ < νi then xi′ is faster than νi) .
We have shown in [17] that species orders ai can be computed as solutions of the tropical

equilibration problem. As discussed above, these solutions belong to the tropical prevari-
ety of the polynomials defining the chemical kinetics. One of the problem of this approach
is that the tropical prevariety is too large, namely one can find too many tropical equi-
librations. Although all these equilibrations can formally lead to reduced models, some
are spurious. In this paper we propose to use the tropical equilibrations in a smaller set
of the tropical variety. This choice is natural, because by a result of Speyer and Sturm-
fels [26] the tropical variety is related to Newton-Puiseux series and ensure extension of
tropical solutions to series. Furthermore, using the tropical variety allows us to overcome
another limitation of our previous application of tropical geometry ideas to model reduc-
tion. Namely, in [17] our reduced models were obtained by tropical truncation (consisting
in neglecting dominated monomials and keeping only lowest order monomials in the differ-
ential equations). This method leads to unbounded errors when fast cycles are present in
the reaction network. Indeed, tropical truncation can generate fast subsystems that have
conservation laws not present in the initial system. Although this kind of truncation is
accurate on short timescales, it does not cope with slow relaxation of the mass carried by
the fast cycles. From a geometrical point of view, these conservation laws define sums of
polynomials belonging to the ideal and contribute to the definition of the tropical variety.
From a biochemical point of view, the conservation laws provide pools of species whose
total mass relaxes slowly and should stand as supplementary slow variables. By this new
approach, we use both pruning and pooling in order to reduce the biochemical reaction
networks.

The plan of the paper is the following. In the second section we discuss the relation
between tropical variety and Newton-Puiseux series. In the third section we provide general
results of existence of an invariant manifold for biochemical systems with fast cycles. We
also discuss how to chose slow and fast variables in this case, and how to define reduced
models describing the slow dynamics on the invariant manifold and the fast relaxation
towards this manifold. In the fourth section we apply these results to a nonlinear cycle of
reactions.

2. Newton-Puiseux series and tropical equilibrations.

In this section we introduce the Newton-Puiseux series and discuss their relation with the
tropical equilibrations.

By K = C((ε1/∞)) we denote the field of Newton-Puiseux series, i.e. all the series of the type

x(ε) = c1ε
a1
q + c2ε

a2
q + . . . , (2.1)

where ci ∈ C, a1 < a2 < . . . are integers, q is a positive integer. The series are convergent in some
neighborhood of the origin, the origin being excluded if a1 < 0.

The Puiseux theorem [5] says that K is algebraically closed, i.e. that every nonconstant polynomial in
K[x] has a root in K. In particular, any root of a polynomial whose coefficients are powers
of ε can be written as a Newton-Puiseux series in ε. Furthermore, the leading term order a1

q can
be calculated using the Newton polygon construction. Suppose we want to solve the equation

P (x, ε) =
∑
j

kjε
γjxαj = 0, (2.2)

4
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where γj are integers and αj are positive integers. In this case, Puiseux theorem ensures that Eq.(2.2)

has solutions of the type (2.1). By substituting in (2.2) x(ε) = c1ε
a1
q (1 + x1(ε)) (where x1(ε) denotes

terms of order larger than zero in ε) we get

P (x, ε) =
∑
j

kjc
αj

1 εγj+a1αj/q + r1(ε) = 0,

where r1(ε) collects higher order terms. Necessary conditions for P (x, ε) = 0 read at lowest order∑
j,γj+a1αj/q=m

kjc
αj

1 = 0 (2.3)

m = min
j

(γj + a1αj/q) (2.4)

In order to satisfy (2.3), the minimum in (2.4) should be attained at least twice. Furthermore, if one looks
for real solutions c1 ∈ R, then from (2.3) it follows that at least two kj corresponding to the minimum
(2.4) should have opposite signs, namely:

minj,kj>0(γj + a1αj/q) = minj,kj<0(γj + a1αj/q). (2.5)

We should note that (2.5) is a necessary, but not sufficient condition for real solutions (for instance
x2 − x + 1 = 0 satisfies the condition but has no real solutions). The above condition means that the
lowest order a1/q in the Newton-Puiseux series solution has to satisfy a tropical equilibration problem.
Geometrically, −a1/q is the slope of an edge of the Newton polygon, defined as the upper convex hull
(or in other words the bottom) of the points of planar coordinates (αj , γj) (i.e. the convex hull including
with any point the vertical half-line emanating up from this point). For instance, the leading terms in
solutions of x3 + εx2 − x+ ε2 = 0 have orders ε0 or ε2 (see Figure 1). The Newton polygon method
can be generalized to multivariate polynomials and we have implemented it in an automatic
algorithm for computing tropical equilibrations presented elsewhere [22].

x

ε

(3, 0)
•

(1, 0)
•

(2, 1)
•

(0, 2)
•

a) b)

Figure 1. Newton polygon and roots of the polynomial x3 + εx2 − x + ε2. a) The New-
ton polygon edges are indicated by thick lines and the limiting monomials all satisfy the sign
condition. The slopes of the edges are 0 and −2 corresponding to leading terms in the Newton-
Puiseux series of orders ε0 or ε2, respectively. b) The absolute values of the polynomial’s roots
are represented vs. ε, in logarithmic scale; the slopes are the roots valuations.

Fast variables of chemical reaction networks with multiple timescales satisfy quasi-
stationarity equations. These are multivariate polynomial equations of the type

P (x1, x2, . . . , xn, ε) =
∑
j

kjε
γjx

(αj)1
1 x

(αj)2
2 . . . x(αj)n

n = 0, (2.6)

5
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where γj are integers and (αj)k are positive integers. Let us note that P (x) ∈ K[x1, x2, . . . , xn].
Like in the case of the univariate equation (2.2), the tropical equilibrations provide lowest
order approximations of the solutions of (2.6). We want to represent solutions of (2.6) by
series, in other words we want to lift the tropical solutions to Newton-Puiseux series. In
the univariate case, this is always possible by the Puiseux theorem. In the multivariate case,
the lifting as Newton-Puiseux series of any tropical solution is ensured by a theorem of Kapranov [4]. In
order to formulate this result let us introduce the valuation function V al(x) defined as the lowest power
of ε occurring in some Newton-Puiseux series x(ε). When applied to species concentrations xi, kinetic
parameters ki and monomials kix

αi the valuation gives the orders ai, γi and µi, respectively. As it can
be easily checked

V al(x(ε)) = lim
ε→0

logε |x(ε)|

Suppose that the following condition is satisfied

min
j,kj>0

(γj + (αj)1a1 + . . .+ (αj)nan) = min
j,kj<0

(γj + (αj)1a1 + . . .+ (αj)nan) (2.7)

for some ai, i = 1, . . . , n.
Note that (2.7) is precisely the tropical equilibration condition. By the same method as in the

univariate case it can be shown that (2.7) is a necessary condition to have real Newton-Puiseux
solutions. The Kapranov theorem [4] states that (2.7) is also a sufficient condition for having Newton-
Puiseux solutions with prescribed lowest orders (a1, . . . , an). More precisely, there are xi(ε) ∈ K such
that V al(xi) = ai and such that P (x1(ε), x2(ε), . . . , xn(ε), ε) = 0.

There is no analogue of Kapranov theorem working for systems of equations. In this case, the condition
(2.7) though necessary, is not sufficient for guaranteeing the existence of Newton-Puiseux solutions.

In general, in order to obtain tropical equilibrations that can be lifted to Newton-Puiseux
series we need to find a so-called tropical basis [1]. Let us consider that we want to find
approximate solutions of n equations of the form (2.6), namely

P1(x, ε) = 0, . . . , Pn(x, ε) = 0 (2.8)

We first look for vectors (a1, . . . , an) ∈ Rn satisfying the tropical equilibration condition (2.7)
for each polynomial Pk, k ∈ [1, n]. This set is included in the tropical prevariety. Contrary to
the case of one equation, it is not longer guaranteed that there are solutions x1(ε), . . . , xn(ε)
of (2.8) such that

V al(x1, . . . , xn) = (a1, . . . , an), (2.9)

where V al means here application of the valuation coefficientwise. Solutions of (2.8) that
satisfy (2.9) can be found if we solve a more complex problem. Let us supplement the
system (2.8) with sums of products of the polynomials P1, . . . , Pn by arbitrary polynomials
and solve the tropical equilibration problem for the augmented system. In other words,
let us look for solutions in the tropical variety of the ideal I generated by P1, . . . , Pn. By
a result of [26] in this case there are Newton-Puiseux solutions that satisfy the property
(2.9). Although the ideal has an infinite number of elements, it can be shown that it is
enough to solve the tropical problem for a finite set of polynomials in the ideal. A final set
of polynomials f1, . . . , ft generating the ideal I and such that T (f1)∩ . . .∩T (ft) = T (I) is called
tropical basis. An algorithm for computing a tropical basis can be found in [1]. However,
the complexity of this algorithm can be double-exponential in the size of the system, both
in time and in space. In the remaining of this section we state a simple method for finding
tropical solutions that can be lifted to Newton-Puiseux series.

Generically, a system of n tropical equations in n variables has a finite number of solutions. Indeed,
the equality of two n-variate monomials corresponds to a (n − 1)-dimensional hyperplane in the space
of coordinates log(xi), or, equivalently, in the orders ai. The intersection of n hyperplanes of dimension

6
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(n−1) in a n-dimensional space is generically a point. Because the combinations of monomials that can be
equilibrated are finite, the total number of solutions is finite. However, chemical reactions systems often
have infinite branches of tropical equilibrations. For instance, a reversible reaction can equilibrate both
reactants and reaction products. In quasi-equilibrium conditions, the forward and reverse rate monomials
of this reaction are dominant, have equal orders and occur in equilibration equations of several variables.
Therefore, some of the hyperplanes resulting from different tropical equations coincide. In these cases,
there are infinite sets of tropical equilibrations.

As an example, we can consider the following system of equations:

y − x− εx4 = 0

x− y + εy2 = 0 (2.10)

The tropical equations for this system read min(a1, 1 + 4a1) = min(a1, 1 + 2a2) = a2. The condition
min(a1, 1+4a1) = a1, leads to the infinite branch of solutions a1 = a2 ≥ −1/3. The condition min(a1, 1+
4a1) = 1 + 4a1 leads to min(a1, 1 + 2a2) = min(a1, 3 + 8a1) = 3 + 8a1 = 1 + 4a1, therefore a1 = −1/2,
a2 = −1, or to min(a1, 3 + 8a1) = a1 = 1 + 4a1, hence a1 = a2 = −1/3 solution already found. Thus
the system (2.10) has an infinite branch of tropical equilbrations a1 = a2 ≥ −1/3 and a isolated solution
a1 = −1/2, a2 = −1.

However, only two of these solutions lead to Newton-Puiseux solutions of (2.10). Indeed, the system
(2.10) has 7 complex solutions, namely (0, 0), (x,±x2), where x is a solution of εx3 ∓ x + 1 = 0. Using
the Newton polygon construction we find that the possible valuations of x are 0 or −1/2. It follows that
valuations of real Newton-Puiseux solutions of Eq. (2.10) are (0, 0), or (−1/2,−1). The only tropical
solutions leading to Newton-Puiseux series is (0, 0), a point on the continuous, infinite branch of tropical
solutions and (−1/2,−1), the isolated solution.

We conjecture that all the isolated tropical equilibrations can be extended to Newton-Puiseux series.
Therefore, if by supplementing the original system with sums or products of the original equations with
arbitrary polynomials (i.e. considering the ideal generated by these equations) we find a system with only
isolated tropical equilibrations, we believe that all of them can be lifted to Newton-Puiseux series. For
instance, in the above example, let us add to the equations (2.10) their sum and consider the extended
tropical system min(a1, 1+4a1) = min(a1, 1+2a2) = a2, a1 = 2a2. This system has only two solutions,
(0, 0) and (−1/2,−1). These two solutions are isolated. We have already shown that they can be lifted to
Newton-Puiseux series. An ansatz for finding linear combinations of equations leading to isolated tropical
equilibrations is to consider conservations laws of the fast subsystem. This ansatz will be used in the
Sections 3,4.

3. Model reduction of biochemical reaction newtworks with fast cycles.

In this section we introduce our model reduction method. We also state and prove our
main result on the existence of invariant manifolds for networks with fast species and fast
cycles.

Let us call tropically truncated system associated to the tropical equilibration (a1, a2, . . . , an), the
system obtained by pruning all the dominated monomials of (1.1) revealed by the rescaling (1.4), i.e.

dxi
dt

=
∑
j∈J(i)

kjSijx
αj , i ∈ [1, n] (3.1)

where J(i) = argmin(µj′ , Sij′ 6= 0) is the set of dominating reaction rates of reactions acting on species
i.

Like in the introduction, we introduce the orders νi = µJ(i) − ai, with µJ(i) = min(µj , Sij 6= 0). The
rescaled truncated system reads

dx̄i
dt

= ενi
∑
j∈J(i)

k̄jSijx̄
αj , i ∈ [1, n]. (3.2)

7
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Variables xi with smaller orders νi are faster. After reordering the variables we can consider that ν1 ≤
ν2 ≤ . . . ≤ νn. Let us assume that the following gap condition is fulfilled:

there is f < n such that νf+1 − νf > 0. (3.3)

The variables xf = (x1, x2, . . . , xf ) are fast (change significantly on timescales of order of mag-
nitude ενf or shorter). The remaining variables xs = (xf+1, xf+2, . . . , xn) are slow (have little
variation on timescales of order of magnitude ενf ).

We call linear conservation law of a system of differential equations, a linear form c(x) =< c,x >=
c1x1 + . . . + cnxn that is identically constant on trajectories of the system. It can be easily checked
that vectors in the left kernel Kerl(S) of the stoichiometric matrix S provide linear conservation laws
of the system (1.1). Indeed, system (1.1) reads dx

dt = SR(x), where Rj(x) = kjx
αj . If cTS = 0, then

d<c,x>
dt = cTSR(x) = 0, where cT = (c1, . . . , cn).
Let us assume that the truncated system (3.1), restricted to the fast variables has a number of linear

conservation laws, defined by vectors c1, c2, . . . , cr. These conservation laws can be calculated
by recasting the truncated system as the product of a new stoichiometric matrix and a
vector of monomial rate functions and further computing left kernel vectors of the new
stoichiometric matrix.

We now define the new variables yk =
∑
l cklxl, where k ∈ [1, r]. These new variables satisfy the

equations
dyk
dt

=
∑
j

∑
l

cklSljx
αj . (3.4)

Let (a1, . . . , an) be a solution of the tropical equilibration problem for the augmented system obtained
by putting together (1.1) and (3.4). We define bk = min(al, ckl 6= 0) and ρk = µJc(k) − bk where
µJc(k) = min(µj , ckl 6= 0, Slj 6= 0), Jc(k) = argmin(µj , ckl 6= 0, Slj 6= 0). In rescaled variables yk = ȳkε

bk

we have the following truncated rescaled system

dȳk
dt

= ερk
∑

j∈Jc(k)

∑
l

cklSljx̄
αj . (3.5)

We assume that νf < ρk, meaning that the variables yk, k ∈ [1, r] are slower than the variables
xi, i ∈ [1, r].

Since we have r conservation laws, we can eliminate r fast variables from the truncated system. One
can suppose that these fast variables are xf−r+1, ..., xf can be expressed via the remaining variables xi,
i ∈ [1, f − r] and yk, k ∈ [1, r]. Let us introduce vectors

Xr = (x̄1, ..., x̄f−r), Xs = (x̄f+1, ..., x̄n), ȳ = (ȳ1, ..., ȳr).

Then any function of x̄ can be expressed via Xr,Xs and ȳ. As a result, we obtain the following
decomposition

dx̄i
dt

= ενiFi(Xr, ȳ,Xs, ε) i ∈ [1, f − r], (3.6)

where

Fi(Xr, ȳ,Xs, ε) =
∑
j∈J(i)

k̄jSijx̄
αj ,

dx̄i
dt

= ενiSi(Xr, ȳ,Xs, ε), i ∈ [f + 1, n], (3.7)

Si(Xr, ȳ,Xs, ε) =
∑
j∈J(i)

k̄jSijx̄
αj ,

8



“tropical˙reduction˙final” — 2015/3/1 — 18:12 — page 9 — #9i
i

i
i

i
i

i
i

Ovidiu Radulescu, Sergei Vakulenko, Dima Grigoriev tropical reduction

dȳk
dt

= ερkYk(Xr, ȳ,Xs, ε), k ∈ [1, r], (3.8)

Yk(Xr, ȳ,Xs, ε) =
∑

j∈Jc(k)

∑
l

cklSljx̄
αj ,

where Y , S and F are analytic functions.

The system (3.6) describes the evolution of fast modes. Because it was obtained from the truncated
versions of the first f − r equations of (1.1), let us call it the fast truncated subsystem. As a matter of
fact, the system (3.6) coincides with the first f − r equations of (3.2).

Let us recall some notions of the dynamical systems theory. Let dx/dt = F (x) be a system of ordinary
differential equations defined on an open domain Ω of an Euclidean space with smooth boundary. Here
F is a smooth function, for example, F ∈ Cr, where r > 1. Let us consider an equilibrium (steady state)
φ (i.e., the relation F (φ) = 0 holds) of this system. Let A be a linear operator that gives a linearization
of r.h.s. of this system at φ:

F (x) = A(x− φ) +O((x− φ)2).

We say that this equilibrium is hyperbolic [21], if the distance d between the spectrum SpecA of A and
the imaginary axis I = {z ∈ C : Re z = 0} is not zero:

d = dist(SpecA, I) 6= 0. (3.9)

If the spectrum lies in the left-half plane {z ∈ C : Re z < 0}, then this equilibrium is stable and locally
attracting. In our case all systems depend on the parameter ε > 0, therefore, d in (3.9) can depend on ε.

We can now formulate our main result.

Theorem 3.1 Assume the gap condition (3.3) holds and that νf < ρk, k ∈ [1, r]. Assume that for all
values ȳ and Xs the fast truncated system (3.6) has a stable hyperbolic steady state

x̄i = φi(ȳ,Xs) + higher order terms, i ∈ [1, f − r],

such that the distance d(ε) admits the estimate

d > C0ε
κ

where κ ≥ 0 is small enough and C0 is independent on ε. Then for sufficiently small ε > 0 system (3.1)
has a locally attracting and locally invariant normally hyperbolic Cp (p > 1) smooth manifold defined by

x̄i = φi(ȳ,Xs, ε) + higher order terms, i ∈ [1, f − r], (3.10)

and the dynamics of the slow variables ȳ, x̄f+1, . . . , x̄n for large times takes the form

dx̄i
dt

= ενi
∑

j∈J(f+1)

kjSijx̄
αj
s + higher order terms, i ∈ [f + 1, n]

dȳk
dt

= ερk
∑

j∈Jc(k)

∑
l

cklSljx̄
αj
s + higher order terms, k ∈ [1, r] (3.11)

where x̄
αj
s = φ

αj
1

1 . . . φ
αj

f

f x̄
αj

f+1

f+1 . . . x̄
αj

n
n .

Remark: “higher order terms” means some smooth functions of ȳ,Xs, ε having higher orders in ε
with respect to principal terms.

9
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Proof. We use the standard result, which follows from the theory of normally hyperbolic invariant man-
ifolds [10]. Consider the system of differential equations

du/dτ = Au+ λF (u,v, λ) +H(u,v, λ), (3.12)

dv/dτ = λµS(u,v, λ), µ > 0, (3.13)

where u ∈ Rn, v ∈ Rm, A is a linear operator such that the spectrum of A satisfies (3.9) and lies in the
left-half plane, F,G and H are smooth functions uniformly bounded in Ck-norm on Rn ×Rm × [0, 1] for
some k > 1. Moreover, H = O(|u|2) as u→ 0.

It is clear that this system becomes slow/fast for small λ > 0, where u are fast and v are slow. For
any p < k and sufficiently small λ there exists a normally hyperbolic smooth locally attracting invariant
manifold close to 0: u = λU(v, λ), where U is bounded in Cp -norm.

To apply this result, we reduce our system (1.1) to the form (3.12), (3.13). We introduce u = Xr −φ
and makes a time change τ = εκt. We introduce the variables v by v = (Xs, ȳ). Then, if κ > 0 is small
enough we obtain that system (3.6), (3.7), (3.8) can be rewritten in the form (3.12), (3.13) with λ = ερ

for some ρ > 0. This completes the proof. �

4. A simple nonlinear cycle example.

Let us consider the following example of a cycle of reactions that includes a complex formation reaction:

A1
k1−→ A2

k2−→ A3
k3−→ A1, A1 +A2

k4


k5
A3

The mass action chemical kinetic equations for this cycle read:

dx1

dt
= −k1x1 + k3x3 − k4x1x2 + k5x3 (4.1)

dx2

dt
= k1x1 − k2x2 − k4x1x2 + k5x3 (4.2)

dx3

dt
= −k3x3 + k2x2 + k4x1x2 − k5x3 (4.3)

Consider kinetic constants that scale like ki ∼ εγi . For instance if ε = 1/10 and k1 = 1, k2 = 0.1, k3 =
0.01, k4 = 0.01, k5 = 0.001 we get

γ1 = 0, γ2 = 1, γ3 = γ4 = 2, γ5 = 3. (4.4)

The tropical equilibration for this model are the following min-plus equations

min(γ1 + a1, γ4 + a1 + a2) = min(γ3, γ5) + a3 = min(γ2 + a2, γ4 + a1 + a2) = min(γ1 + a1, γ5 + a3), (4.5)

where the first, second and third equality follow from (4.1), (4.2), (4.3), respectively. Because γ3 < γ5

we have min(γ3, γ5) = γ3. From (4) it follows that γ3 + a3 = min(γ1 + a1, γ5 + a3). Furthermore
min(γ1 +a1, γ5 +a3) = γ1 +a1 (because γ5 +a3 > γ3 +a3) . Hence, in this case, the system of min-plus
equations can be simplified to

min(γ1 + a1, γ4 + a1 + a2) = γ3 + a3 = min(γ2 + a2, γ4 + a1 + a2) = γ1 + a1 (4.6)

Only one of the possible outputs of the first min operation (4.6) has to be considered, namely
min(γ1 + a1, γ4 + a1 + a2) = γ1 + a1, whereas the second min leads to two situations. It follows
that there are thus two branches of tropical solutions, namely:

a1 ≥ γ2 − γ4, a2 = a1 + γ1 − γ2, a3 = a1 + γ1 − γ3 (4.7)

a1 ≤ γ2 − γ4, a2 = γ1 − γ4, a3 = a1 + γ1 − γ3 (4.8)
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The tropical equilibration solutions vary continuously on each of the branch and are non-
isolated. It is thus possible that some tropical solutions or an entire branch can not be lifted
to Newton-Puiseux series. In order to find solutions that can be lifted we will consider
equations in the ideal of (4.1), (4.2), (4.3), starting with the conservation laws of the fast
subsystem. It will come out that this is enough, as adding these conservation laws leads to
isolated tropical equilibrations.

Let us first consider the branch (4.7). By keeping dominating monomials of lowest order in ε
and pruning all the others we get the following truncated system:

(T )


dx̄1

dt = εγ1(−k̄1x̄1 + k̄3x̄3)
dx̄2

dt = εγ2(k̄1x̄1 − k̄2x̄2)
dx̄3

dt = εγ3(−k̄3x̄3 + k̄2x̄2),

(4.9)

The truncated system (4.9) have the linear first integral (conservation law)

y = x1 + x2 + x3. (4.10)

The variable y is not a first integral of the full system, which implies that the truncated system (T )
can not be a good approximation at large times. The exact dynamics of y is obtained by summing the
equations (4.1),(4.2),(4.3):

dy

dt
= −k4x1x2 + k5x3. (4.11)

We consider that y ∼ εay and further equilibrate the equations (4.10),(4.11). We therefore get two more
min-plus equations:

ay = min(a1, a2, a3) (4.12)

γ4 + a1 + a2 = γ5 + a3 (4.13)

Assume the particular choice (4.4) of parameter orders. Then, for the tropical solution (4.7), it follows
a1 = 0, a2 = −1, ay = a3 = −2, ν1 = 0, ν2 = 1, ν3 = 2, νy = 3 which means that y is slower than
xi, i = 1, . . . , 3. The resulting tropical equilibration is in fact unique and thus isolated.
Indeed, considering the second branch of tropical equilibrations for the variables x1, x2, x3

(4.8) we find that y can not be equilibrated because (4.13) and (4.8) imply γ5 = γ3 which is
not satisfied. The polynomial defining the dynamics of y being in the ideal of polynomials
defining the dynamics of x1, x2, x3, it follows that the branch (4.8) is not in the tropical
variety and can be discarded.

We will now use this isolated tropical equilibration to obtain reduced models. We will
discuss three reduced models: the truncated model (T ) in (4.9) that describes the relaxation
dynamics towards the attractive invariant manifold, the reduced model (3.11) given by
Theorem 3.1 and describing dynamics on the invariant manifold, and a third reduced model
combining these two.

The truncated system (4.9) copes only with the fast relaxation onto the invariant manifold. The tropical
approximation of the invariant manifold is obtained by setting the l.h.s of (4.9) to zero, i.e. computing
the steady states of the truncated system. This approximation is the half-line x2 = k1k

−1
2 x1, x3 =

k1k
−1
3 x1, x1 < k2k

−1
4 . By using the new tropically truncated equation:

y = x3, (4.14)

we compute x1, x2, x3 from y and obtain the reduced model:

(R)

{
dy
dt = −k−1

1 k−1
2 k2

3k4y
2 + k5y

x1 = k−1
1 k3y, x2 = k−1

2 k3y, x3 = y
(4.15)
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The reduced model (R) (4.15) cope with the slow dynamics on the invariant manifold.
In this particular example the two approximations (T ) and (R) are composable, i.e. they can be

merged in a model with broader validity. By replacing y with x3 in (4.15) and combining the resulting
equations with the truncated system (T ) we get the following model:

(M)


dx1

dt = −k1x1 + k3x3
dx2

dt = k1x1 − k2x2
dx3

dt = −k3x3 + k2x2 − k−1
1 k−1

2 k2
3k4x

2
3 + k5x3

(4.16)

The model (M) is a multiscale reduction as it gives accurate approximations of both fast and slow
parts of the trajectories.

The comparison of different approximations is shown in Figure 2. The validity of the multiscale re-
duction depends of course of the initial data. The initial concentrations should satisfy x1(0) = x̄10ε

a1 ,
x2(0) = x̄20ε

a2 , x3(0) = x̄30ε
a3 , where ai, i ∈ [1, 3] satisfy (4.7) and x̄10, x̄20, x̄30 do not depend on ε.

In the following section we will present the asymptotic behaviour of errors for ε → 0. It is more diffi-
cult to get finite ε bounds for the errors allowing us to specify the domain of variation of the constants
x̄10, x̄20, x̄30 for having accurate reduction. We have investigated this domain numerically. Starting from
the same initial data we have integrated the full model (4.1),(4.2),(4.3) and the reduced model (4.16)
and obtained the trajectories x(t) and xr(t), respectively. We have computed error such as Hausdorff-
Pompeiu distance between the sets {(log10(t), log10(x1(t)), log10(x2(t)), log10(x3(t))), variable t} and
{(log10(t), log10(xr1(t)), log10(xr2(t)), log10(xr3(t))), variable t}. We notice in Figure 3a) that we can
change the initial data on 7 decades and still keep the trajectories of the reduced model (4.16) close to
the trajectories of the full model (4.1),(4.2),(4.3).

A1

A2

A3

k
1

k
2

k3k 4
k 5

Figure 2. Two trajectories of the nonlinear cycle model defined by Eqs.(4.1),(4.2),(4.3)
starting from O1 and O2 are represented in red solid line. The blue circles are the
trajectories starting from O1 and O2 computed with the tropical truncated model (T )
defined by Eqs.(4.9). The blue crosses are the trajectories computed with the reduced
model defined by Eqs.(4.15). A is the stable steady state of the model. The half-lines
BC and BD belong to parts of tropical variety corresponding to the tropical solutions
a1 ≥ −1, a2 = a1 − 1, a3 = a1 − 2 and a1 ≤ −1, a2 = −2, a3 = a1 − 2,
respectivelly.

5. Conclusion

We have shown how to relate the tropical equilibration problem to the slow-fast decomposition and
model reduction of biochemical reactions networks. In the case of biochemical networks with mass action

12
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a) b)

Figure 3. Trajectories of full (Eqs.(4.1),(4.2),(4.3)) and multiscale reduced
model (Eqs.(4.16)) were computed starting from the same initial condi-
tions and the Hausdorff-Pompeiu distance between the corresponding sets
{(log10(t), log10(x1), log10(x2), log10(x3)), variable t} were calculated. The initial
conditions where chosen from an uniform grid in logarithmic scale −5 ≤ log10(x1) ≤ 4,
−5 ≤ log10(x2) ≤ 2, −5 ≤ log10(x3) ≤ 4. a) The positions of the initial data leading
to Hausdorff-Pompeiu distance less than 0.15 are shown by circles with color coded
values of this distance. The lines indicates the same parts of tropical variety as in Fig.2.
Initial data can vary on 7 decades with global relative errors less than 1 − 100.15 ≈ 0.4
which for ε = 1/10 and stiff trajectories is remarkably robust. b) The distribution of
Hausdorff-Pompeiu distances is shown for the set of initial data.

kinetics, we use tropical equilibration solutions to find which species are fast and which are slow.
We have proposed elsewhere two methods for solving the tropical equilibration problem, a first one by
reformulating it as a constraint satisfaction problem [25] and a second one based on Newton polyhedron
[22].

Under rather general conditions, existence of small dimensional attractive invariant man-
ifolds for reaction networks with fast cycles and species is shown.

Our model reduction recipe consists in calculating tropical equilibration solutions at least
twice. At the first step we solve the tropical equilibration problem for the initial system
of differential equations. This allows us to identify the fast species, that constitute the
fast subsystem of the model. The fast truncated system obtained by pruning dominated
monomial terms in the ordinary differential equations of the fast species provides a first
reduced that copes with relaxation towards the attracting invariant manifold. The tropical
equilibrations calculated at this step belong to the tropical variety, but not all of them
lead to reduced model. In order to filter the solutions we solve the tropical equilibration
problem a second time. If the fast truncated subsystem has conservation laws different
from the ones of the full system, we use them to define new slow variables. At the second
step, we solve the tropical equilibration problem for the augmented system that is obtained
by adding to the initial system the differential equations satisfied by the conservation laws
of the fast truncated subsystem. These new equations are linear combinations of the initial
ones. We conjecture that if the resulting solutions are isolated, then they belong to the
tropical variety. Also, they lead to reduced models obtained by expressing fast variables
in terms of the slow variables. The resulting reduced model copes with the dynamics
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on the invariant manifold. If after the second step one still has truncated systems with
conservation laws and continuous branches of tropical equilibrations, the first two steps can
be reiterated until there are no conservation laws different from the ones of the full model
and all tropical equilibrations are isolated.

The method to obtain the fast truncated approximation and the slow invariant manifold
approximation is general and can be used as formal model reduction recipes in computa-
tional biology. Some steps of the recipe are already automated, such as the calculation
of tropical equilibrations. There are automated recipes for computing conservation laws
[24], but we don’t exclude difficult cases when sums of equations are not enough for the
tropical basis. In these difficult cases calculation of the tropical variety can be based on
methods from [1]. Another difficult step is the elimination of fast variables as solutions of
polynomial equations. Although the polynomials of the fast truncated system contain only
two monomials (in which case we can apply general rapid methods for toric systems [15]) or
more generally are fewnomials, we can imagine models where this elimination is difficult.

For a simple example, we suggested, without providing a general recipe, how to combine
approximations that are valid on the fast or on the slow time scales to obtain a multiscale
approximation that is valid on both fast and slow scales. A general method for obtaining
multiscale approximations is available for networks of monomolecular reactions (in these
networks each reaction has at most one reactant and at most one product and the reaction
rates are given by the mass action law) with separated kinetic constants [9]. The problem
of obtaining multiscale approximations of nonlinear networks is much more difficult and
will be discussed elsewhere.
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