Complexity of tropical Schur polynomials

Dima Grigoriev*and Gleb Koshevoy[†]

Abstract

We study the complexity of computation of a tropical Schur polynomial Ts_{λ} where λ is a partition, and of a tropical polynomial Tm_{λ} obtained by the tropicalization of the monomial symmetric function m_{λ} . Then Ts_{λ} and Tm_{λ} coincide as tropical functions (so, as convex piece-wise linear functions), while differ as tropical polynomials. We prove the following bounds on the complexity of computing over the tropical semi-ring (\mathbb{R} , max, +):

- a polynomial upper bound for Ts_{λ} and
- an exponential lower bound for Tm_{λ} .

Also the complexity of tropical skew Schur polynomials is discussed.

Introduction

We study computations (i. e. circuits, see e. g. [2]) over a tropical semi-ring (\mathbb{R} , max, +) where max plays a role of addition, and + plays a role of multiplication (see e. g. [9]). Actually, computations over (\mathbb{R} , max, +) were considered in Computer Science earlier than tropical algebra and geometry (and even the term "tropical" itself) have emerged (see e. g. [10] and further references there).

The tropicalization of a polynomial $f = \sum_{I} a_{I} x_{1}^{i_{1}} \cdots x_{n}^{i_{n}} \in \mathbb{R}[x_{1}, \dots, x_{n}]$ is a tropical polynomial $Trop(f) := \max_{I} \{i_{1}x_{1} + \cdots + i_{n}x_{n}\}$ defined over the tropical semi-ring $(\mathbb{R}, \max, +)$ (see e. g. [9]). One can treat a tropical polynomial as a convex piece-wise linear function.

We study a tropical Schur polynomial $Ts_{\lambda} = Trop(s_{\lambda})$ (see Section 1) being the tropicalizations of the Schur function s_{λ} , where $\lambda = \{\lambda_1, \ldots, \lambda_n\}$ is a partition.

Since Ts_{λ} is a convex piece-wise linear function $\max_{W} \{w_1x_1 + \cdots + w_nx_n\}$ where the multiindices W range over all integer points of the Newton polyhedron of s_{λ} , it coincides with a function $Tm_{\lambda} := \max_{J} \{j_1x_1 + \cdots + j_nx_n\}$ where the multiindices J range over all the vertices of the Newton polyhedron of s_{λ} . Note that Tm_{λ} are the tropicalizations of the monomial symmetric functions m_{λ} which form (as well as s_{λ}) a

^{*}CNRS, Mathématiques, Université de Lille, Villeneuve d'Ascq, 59655, France E-mail address: Dmitry.Grigoryev@math.univ-lille1.fr

 $^{^\}dagger Central$ Institute of Economics and Mathematics RAS, 117418, Moscow, Russia; email: ko-shevoy@cemi.rssi.ru

basis in the ring of symmetric functions (see [11]). On the other hand, Ts_{λ} and Tm_{λ} differ as the elements of the semi-ring of tropical polynomials [9].

We exhibit (see Theorem 1) a polynomial complexity algorithm which computes Ts_{λ} over $(\mathbb{R}, \max, +)$. On the contrary, we prove (see Theorem 2) an exponential lower bound on the complexity of computing Tm_{λ} over $(\mathbb{R}, \max, +)$. This demonstrates an interesting phenomenon: while Ts_{λ} and Tm_{λ} coincide as tropical functions, their complexities as tropical polynomials differ considerably.

Observe that in [7] there was designed a polynomial complexity subtraction-free algorithm (relying on the cluster transformations), in other words a computation over $(\mathbb{R}, +, \times, /)$ for Schur polynomials. The tropicalization of this algorithm provides a polynomial complexity computation of Ts_{λ} over a tropical semi-field $(\mathbb{R}, \max, +, -)$. Thus, the algorithm from Theorem 1 is better because it avoids subtraction (viewed as a tropical analog of division). It is unclear, whether the complexity of computation of Tm_{λ} over $(\mathbb{R}, \max, +, -)$ is polynomial?

On the other hand, from the tropicalization of the results of [7] we conclude that the tropical polynomial expressing the maximal weight directed spanning tree in the complete graph has a polynomial complexity over $(\mathbb{R}, \max, +, -)$, while its complexity over $(\mathbb{R}, \max, +)$ is exponential. In the proofs of complexity lower bounds we make use of technical tools developed in [12], [10], where some exponential complexity lower bounds were established for computations over $(\mathbb{R}, +, \times)$ as well as over the tropical semi-ring $(\mathbb{R}, \max, +)$.

In Sections 2, we speculate that the complexity of a skew Schur polynomial $Ts_{\lambda/\mu}$ in n variables (being the tropicalization of the skew Schur polynomial $s_{\lambda/\mu}$) might depend on the shapes of the partitions λ, μ , and we conjecture that for some shapes its complexity over the semi-ring (\mathbb{R} , max, +) is exponential, while over the semi-field (\mathbb{R} , max, +, -) the complexity is (polynomial) $O(n^5)$ due to the tropicalization of the subtraction-free algorithm from [7] which computes skew Schur polynomials.

In the Appendix we provide some necessary concepts and results on base-polytopes and submodular functions.

1 Tropical Schur polynomials

For a fixed alphabet $[n] := \{1, ..., n\}$ and a partition $\lambda = (\lambda_1 \ge ... \ge \lambda_n)$, we consider a tropical Schur polynomial Ts_{λ} in the form of maximization of a linear function over the set of integer points of the Newton polytope of the usual Schur polynomial [11]

$$s_{\lambda}(x) = \sum_{\mu \in ch(w(\lambda), w \in S_n)} K_{\mu,\lambda} x^{\mu},$$

where $x = (x_1, \ldots, x_n)$, $x^{\mu} = x_1^{\mu_1} \cdots x_n^{\mu_n}$, S_n denotes the group of permutations of the finite set [n], $w(\lambda) = (\lambda_{w(1)}, \ldots, \lambda_{w(n)})$, and $ch(w(\lambda), w \in S_n)$ denotes the convex hull of the points $w(\lambda)$, $w \in S_n$, we denote $\mu \leq \lambda$ if $\mu \in ch(w(\lambda), w \in S_n)$, and $K_{\mu,\lambda}$ are the Kostka numbers. For details see [11].

Thus, the tropicalization of Schur polynomial $s_{\lambda}(x)$ is

$$Ts_{\lambda}(x) = \max_{\mu \in ch(w(\lambda), w \in S_n)} x(\mu),$$

here we consider x as a linear functional on \mathbb{R}^n , and $x(\mu)$ denotes the value of the functional at $\mu \in \mathbb{Z}^n$.

1.1 Complexity: upper bound

The tropicalization (see [1]) of the cluster algorithm in [7] provides an algorithm for computing tropical polynomial $Ts_{\lambda}(x)$ within bit-complexity $O(k^3)$, $k := \lambda_1 + n$, over the tropical semi-field (\mathbb{R} , max, +, -) (in the algebraic setup in [7] we consider \mathbb{R} with addition, multiplication and division).

We conjecture that in the algebraic setup, it is exponential hard to calculate s_{λ} without division, i.e. over $(\mathbb{R}, +, \times)$.

However, the situation drastically changes in the tropical setup. Namely, we can calculate Ts_{λ} over the tropical semi-ring $(\mathbb{R}, \max, +)$ within bit-complexity $O(n^2 \cdot \lambda_1)$.

Let us recall that the Newton polytope $NP(e_k)$ of an elementary symmetric function

$$e_k(x_1, \dots, x_n) = \sum_{i_1 < i_2 < \dots < i_k} x_{i_1} x_{i_2} \dots x_{i_k},$$

is a hypersimplex, that is the convex hull of the set

$$\binom{[n]}{k} = \{I \subset [n], |I| = k\},\$$

where a subset I is naturally identified with a vertex of the hypercube $2^{[n]}$.

A hypersimplex is a matroid, a subclass of base-polytopes. The useful facts on base polytopes are collected in the Appendix.

Denote by λ' the dual partition to λ , that is $\lambda'_i = |\{j : \lambda_j \geq i\}, i = 1, \dots, \lambda_1\}|$. From the Littlewood formula (see [11]) it follows

$$\prod_{k} e_{\lambda'_{k}} = s_{\lambda} + \sum_{\mu \prec \lambda} K_{\lambda', \mu'} s_{\mu}.$$

Hence the Newton polytope $NP(Ts_{\lambda})$ of the Schur polynomial s_{λ} coincides with the Minkowski sum of the Newton polytopes $\sum_{k} NP(e_{\lambda'_{k}})$. Moreover, since the hypersymplexes are matroids, the directions of edges of any hypersimplex take the form $\{e_{i}-e_{j}\}$. The latter set is unimodular, and from [4] we get

$$NP(Ts_{\lambda})(\mathbb{Z}) = \sum_{1 \le k \le \lambda_1} NP(e_{\lambda'_k})(\mathbb{Z}),$$
 (1)

where, for a polytope P, $P(\mathbb{Z})$ denotes the set of integer points in P.

Because of this, we have

Theorem 1. A tropical Schur polynomial Ts_{λ} can be calculated within (polynomial) $O(n^2 \cdot \lambda_1)$ bit complexity over $(\mathbb{R}, \max, +)$.

Proof. Due to (1), in order to calculate Ts_{λ} , one needs first to calculate tropical elementary Schur functions $Te_{\lambda'_k}$, $1 \leq k \leq \lambda_1$. Since

$$e_k(x_1,\ldots,x_n) = e_k(x_1,\ldots,x_{n-1}) + x_n e_{k-1}(x_1,\ldots,x_{n-1}),$$

and a similar identity holds in the tropical setup, the complexity of computation of a tropical elementary Schur function is quadratic in n (to this end, one can use the Pascal triangle).

1.2 Complexity: lower bound

Since tropical Schur function takes the form of maximization of a linear functional over a polytope, it suffices to consider only the vertices of such a polytope. However, over the semi-ring $(\mathbb{R}, \max +)$ the complexity of such a modification can increase exponentially. We demonstrate this phenomenon for a tropical Schur function.

Namely, let us consider the tropicalization of the monomial symmetric functions $m_{\lambda} = \sum_{w \in S_n} x^{w(\lambda)}$,

$$Tm_{\lambda}(x) = \max_{w \in S_n} x(w(\lambda)).$$

Observe that Ts_{λ} and Tm_{λ} coincide as tropical functions, while they differ as the elements of the semi-ring of tropical polynomials, and the complexity of computation in the latter semi-ring is polynomial for Ts_{λ} (Theorem 1), while the complexity of Tm_{λ} is exponential as we prove in the following theorem.

Theorem 2. For λ with the *i*th part of the form $\lambda_{n-i+1} := ni + i^2$, $i = 1, \ldots, n$, the complexity of computation of Tm_{λ} over the tropical semiring $(\mathbb{R}, \max, +)$ is exponential.

Proof. Throughout the proof we omit the adjective "tropical" for tropical polynomials and utilize for the latter the customary notations $+, \times$ for tropical operations max, +, respectively. For a (homogeneous) polynomial P by mon(P) denote the set of monomials of P. We will use the following result from [12], [10]. If for any homogeneous polynomials R, Q such that $mon(P) \supset mon(RQ)$, and of the powers $1/3 \deg P \leq \deg R, \deg Q \leq 2/3 \deg P$, we have $\frac{|monP|}{|mon(RQ)|} > c_1^n$, for some $c_1 > 1$, then the complexity of computation of P over $(\mathbb{R}, \max, +)$ is exponential. We mention that a similar complexity lower bound holds as well for computations over $(\mathbb{R}, +, \times)$ [12], [10].

In our case we have to show that R and Q have exponentially small deal of monomials wrt n! (which equals the number of monomials in $P := Tm_{\lambda}$).

Let us explain our choice of such a specific λ . The parts of λ form a Golomb ruler ([6]), that is $\lambda_i + \lambda_j = \lambda_k + \lambda_l$ iff $\{i, j\} = \{k, l\}$.

This property allows us to separate variables, namely we have $Q = Q'(x_i, i \in S)M(x_j, j \in [n] \setminus S)$ and $R = N(x_i, i \in S)R'(x_j, j \in [n] \setminus S)$, where M and N are monomials in variables $x_j, j \in [n] \setminus S$ and $x_i, i \in S$, respectively. Indeed, assume the contrary. Then there exists $m \in [n]$ and four monomials

$$q_1 = \cdots x_m^{\alpha} \cdots, q_2 = \cdots x_m^{\beta} \cdots \in mon(Q); r_1 = \cdots x_m^{\gamma} \cdots, r_2 = \cdots x_m^{\delta} \cdots \in mon(R)$$

such that $\alpha \neq \beta$, $\gamma \neq \delta$. Since

$$r_1q_1, r_2q_2, r_1q_2, r_2q_1 \in mon(RQ) \subset mon(P)$$

there are $i, j, k, l \in [n]$ for which $\alpha + \gamma = \lambda_i$, $\beta + \delta = \lambda_j$, $\alpha + \delta = \lambda_k$, $\beta + \gamma = \lambda_l$. Hence $\lambda_i + \lambda_j = \lambda_k + \lambda_l$, and we get a contradiction with the Golomb property.

Thus, we have a separation of variables. We get two polynomials A := NQ' and B := MR' in variable x_i , $i \in S$, and x_j , $j \in [n] \setminus S$, respectively.

At the beginning we consider a case of no separation of variables. This means that either Q or R is a monomial. Let for definiteness Q be a monomial.

Then we claim that if $c := \frac{\deg Q}{\deg P} \in [\frac{1}{4}, \frac{3}{4}]$, then R has exponentially small number of monomials wrt n!. Throughout this Section we assume in all the bounds n to be sufficiently big.

Let us prove this claim.

Let $Q = x_1^{\nu_1} \cdots x_n^{\nu_n}$. Firstly, we observe that w.l.o.g. one can suppose that for any i there exists j such that $\nu_i = \lambda_j$. Indeed, if at least two ν_{i_1}, ν_{i_2} among $\{\nu_i\}_i$ violate this condition, we can increase ν_{i_1} by 1 and decrease ν_{i_2} also by 1, thereby not decreasing |mon(R)| for which $mon(QR) \subset mon(P)$. Observe that herein |mon(R)| could increase only if $\nu_{i_2} = \lambda_j + 1$ for some j. If just a single $\lambda_j > \nu_i > \lambda_{j+1}$ violates the condition under discussion, we can preserve inequalities $\frac{\deg Q}{\deg P} \in [\frac{1}{4}, \frac{3}{4}]$ as follows: either replace ν_i by λ_j which keeps |mon(R)| or replace by λ_{j+1} which does not decrease |mon(R)|.

Let $b_j := \{i : \nu_i = \lambda_j\}, j = n, ..., 1$. Then the number of monomials in R(x) is equal to

$$M := b_n(b_n + b_{n-1} - 1) \cdots (b_n + \dots + b_1 - (n-1)).$$

We have

$$\sum b_i \lambda_i = c \sum \lambda_i.$$

Then, we have

$$\sum_{i} \lambda_{i} - \sum_{i} b_{i} \lambda_{i} + \lambda_{1} - \lambda_{n} = \sum_{j=0}^{n-2} (b_{n} + \ldots + b_{n-j} - j)(\lambda_{n-j-1} - \lambda_{n-j}).$$

Thus

$$M\prod(\lambda_{j-1}-\lambda_j) \le \left(\frac{(1-c)\sum \lambda_i + \lambda_1 - \lambda_n}{n}\right)^n.$$

We have $\sum \lambda_i \sim \frac{5n^3}{6}$, $\prod (\lambda_{j-1} - \lambda_j) \sim 2^n \frac{(3/2n)!}{(1/2n)!} \sim (\frac{3^{3/2}}{e}n)^n$.

Therefore it holds (taking into account that due to the choice of λ_i , the degree of P is $5/6n^3 + O(n^2)$) that

$$M \le \left(\frac{5e(1-c)n}{3^{3/2}6}\right)^n. \tag{2}$$

Thus, for $1-c<\frac{6\cdot 3^{3/2}}{5e^2}<\frac{31.14}{38.64}$, the number of monomials in R is exponentially small wrt n!. For $c\in[1/4,3/4]$, this is the case.

Now consider the case of a non-monomial Q. In such a case we have a separation of variables.

Let us recall that the polytope $Per_n := ch(\sigma(\lambda), \sigma \in S_n)$ is a base-polytope (see the Appendix) which is set by a submodular function $b_{\lambda}(T) = \sum_{i=1,...|T|} \lambda_{n-i}, T \subset [n]$. Thus, a pair of parallel facets (we agree that a facet is a face of codimension 1) labeled by a subset $W \subset [n]$, |W| = k, are defined by $x(W) = b_{\lambda}(W) = \sum_{i=1,...k} \lambda_i$ and

 $x([n]-W)=b_{\lambda}([n]-W)=\sum_{i=1,\dots,n-k}\lambda_i$, respectively, and any cut with the same separation of coordinates is defined by $x(W)=a, a\in [\sum_{j=1}^k\lambda_j,\sum_{i=1}^k\lambda_{n-i}]$ (for details see the Appendix). Because of symmetry of b_{λ} wrt permutations of coordinates, facets of Per_n are labeled by numbers in [n]. The number of the vertices of a facet labeled by $k\in [n]$ (recall that k corresponds to separation of variables in groups of k and n-k variables) is

$$k!(n-k)!$$
.

Because of this, the cardinality of monomials of the product $A \cdot B$ is bounded by k(A)!(n-k(A))!, where k:=k(A)=|S|. Note that $\deg(A)=\lambda_{i_1}+\cdots+\lambda_{i_k}$ for suitable $1 \leq i_1 < \cdots < i_k \leq n$ satisfies

$$\deg(A) \in \left[\sum_{j=1}^{k} \lambda_j, \sum_{i=1}^{k} \lambda_{n-i}\right].$$

There are two cases.

Case 1. deg A, deg $B \ge c' \cdot \deg P$, for some sufficiently small constant c' which we choose later. In such a case, k = k(A), $n - k = k(B) \ge c'' \cdot n$ for some sufficiently small constant c'' depending on c' (since deg P is cubic in n). This implies that $A \cdot B$ has at most k!(n-k)! number of monomials, so exponentially small wrt n! and we are done.

Case 2. Either $\deg A < c' \deg P$ or $\deg B < c' \deg P$. Let for definiteness $\deg A < c' \deg P$. Then, the degree of the monomial M satisfies $\frac{\deg M}{\deg B} \in \left[\frac{1}{4}, \frac{3}{4}\right]$ since c' is sufficiently small.

Then, the same reasoning as above in the case of no separation with a single monomial, provides a bound $|mon(R')| \leq (c_0(n-k))^{n-k}$ for any fixed $c_0 > \frac{5e(1-c)}{3^{3/2}6}$ (see (2)) due to an appropriate choice of sufficiently small c' in Case 1. We take $c_0 < 1/e$. Because of this and that A has at most k! monomials we get that

$$|mon(RQ)| = |mon(AB)| \le k!(c_0(n-k))^{n-k} < c_2^n n!$$

for some $c_2 < 1$. This finishes the proof of Theorem 2.

2 Tropical skew Schur polynomials

In this Section we discuss a conjecture that for a tropical skew Schur polynomial its complexity over the tropical semi-ring might depend on the shape of the corresponding diagram and could be exponential. While over the tropical semi-field the complexity is always polynomial.

Recall that, for a skew Young diagram $\lambda \setminus \mu$ (where $\mu \leq \lambda$, which denotes the coordinate-wise inequality of the partitions), a semi-standard Young tableaux (SSYT) of a shape $\lambda \setminus \mu$ (in the alphabet [n]) is a filling of the Young diagram $\lambda \setminus \mu$ with entries from [n] strictly increasing along the columns and non-decreasing along the rows ([11]). We accept the French style to draw Young diagram. Here is an example

of a skew SSYT of shape $(5,3,3,1) \setminus (2,1)$

The weight of such a tableau T is the tuple $wt(T) := (\#1(T), \#2(T), \dots, \#n(T)),$ where #i(T) denotes the number of times integer i occurs in T. The skew Schur polynomial $s_{\lambda \setminus \mu}$ is defined by (see [11])

$$s_{\lambda \setminus \mu} = \sum_{T} x^{wt(T)},$$

where the sum runs over the set of all skew semistandard Young tableaux of shape $\lambda \setminus \mu$.

The tropical Schur polynomial $Ts_{\lambda \setminus \mu}(x)$ is a piece-wise linear function defined by the tropicalization of the above formula in the tropical semi-ring, that is

$$Ts_{\lambda \setminus \mu}(x) = \max_{T}(x, wt(T)).$$

where max is taken over all SSYT T of shape $\lambda \setminus \mu$. For $\mu = 0$, we obtain a usual tropical Schur polynomial (cf. Section 1).

Thus, $T_{s_{\lambda \setminus \mu}}(x)$ is a piece-wise linear function of the form of the maximum of a linear function (x,\cdot) over the set of points $\nu:=wt(T)$, while T runs over the set of all skew semistandard Young tableaux of shape $\lambda \setminus \mu$.

This set of weights constitute the set of integer points of the polytope $\mathcal{GC}(\lambda,\mu)$ defined by the inequalities

$$\lambda([1,|I|]) - \Delta_{|I|} \ge \nu(I), \quad \lambda([n]) - \Delta_n = \nu([n]),$$

where $\lambda([1, |I|]) = \lambda_1 + \cdots + \lambda_{|I|}, \ \nu(I) = \sum_{i \in I} \nu_i, \ \Delta_{|I|} = \Delta_1 + \cdots + \Delta_{|I|}, \ \Delta_k := \max\{0, \mu_1 - \mu_1\}$ $\lambda_{k+1}\} + \max\{0, \mu_2 - \lambda_{k+2}\} + \dots + \max\{0, \mu_{n-k} - \lambda_n\} \text{ (for details see [3])}.$ For given λ and μ we get a function $\Lambda: 2^{[n]} \to \mathbb{R}$, $\Lambda(I) = \lambda([1, |I|]) - \Delta_{|I|}$, $I \subseteq [n]$.

The properties of this function depend on shape $\lambda \setminus \mu$. For example, for $\mu = 0$, this function is submodular (see the Appendix below). Let λ and μ be such that the function Λ is submodular. That is, for any |I|, it holds

$$\lambda([1,|I|]) - \Delta_{|I|} - \lambda([1,|I|+1]) - \Delta_{|I|+1} \geq \lambda([1,|I|+1]) - \Delta_{|I|+1} - \lambda([1,|I|+2]) - \Delta_{|I|+2}.$$

In such a case, the polytope $\mathcal{GC}(\lambda,\mu)$ is a base-polytope, and the complexity of computation of $Ts_{\lambda \setminus \mu}(x)$ as a tropical function using the greedy algorithm (see [5] and the Appendix) is polynomial in n.

While, for λ and μ , for which Λ fails to be submodular, the problem of finding maximum can be hard, since some of the vertices of $\mathcal{GC}(\lambda,\mu)$ do not even corresponds to the weights of SSYT. Because of this we conjecture that the complexity of computation of the tropical polynomial $Ts_{\lambda \setminus \mu}(x)$ is exponential as well over the semi-ring $(\mathbb{R}, +, \max)$.

However, over the semi-field (\mathbb{R} , max, +, -), the complexity of the tropical skew Schur polynomial $Ts_{\lambda\setminus\mu}(x)$ is polynomial independently of λ and μ . This follows from the tropicalization of the subtraction-free algorithm in [7] which computes skew Schur polynomials.

Appendix

Here we recall some basic facts on base-polytopes. For details see [5, 8]. A function $f: 2^{[n]} : \to \mathbb{R}$ is submodular if, for any $S, T \subseteq [n]$, it holds

$$f(S) + f(T) > f(S \cup T) + f(S \cap T).$$

To a submodular function f is associated a base-polytope B_f in \mathbb{R}^n

$$B_f := \{ x \in \mathbb{R}^n : x(S) \le f(S), x([n]) = f([n]) \},$$

where x(S) denotes the sum $\sum_{i \in S} x_i$.

This polytope is located in the hyperplane x([n]) = f([n]). Edges of such a polytope are parallel to 'roots' $\alpha_i - \alpha_j$, where α_i denotes the *i*-th basis vector in \mathbb{R}^n .

The Edmonds greedy algorithm [5] implies that the vertices of the base-polytope are labeled by permutations from S_n . Namely, for a permutation $\sigma \in S_n$, the corresponding vertex has coordinates defined by the rule $x_{\sigma(1)} = f(\{\sigma(1)\}), x_{\sigma(2)} = f(\{\sigma(1)\}, \sigma(2)\}) - f(\{\sigma(1)\}), \ldots$

$$x_{\sigma(i)} = f({\sigma(1), \dots, \sigma(i)}) - f({\sigma(1), \dots, \sigma(i-1)}).$$

Any facet of a base-polytope is a direct product of two base-polytopes. Moreover, each facet is labeled by a subset $W \subset [n]$ and is the product of the base-polytope $B_{f|w} := \{x \in \mathbb{R}^W : x(S) \leq f(S), S \subset W, x(W) = f(W)\}$ and the base-polytope $B_{f^W} := \{x \in \mathbb{R}^{[n] \setminus W} : x(T) \leq f(T \cup W) - f(W), T \subset [n] \setminus W, x([n] \setminus W) = f([n]) - f(W)\}$. The polytope $B_{f|w}$ is a subset of \mathbb{R}^W , and the polytope B_{f^W} is a subset of $\mathbb{R}^{[n]-W}$. Remark that the facet labeled by the complementary set [n] - W, is the product of the polytope $B_{f|n]-W}$ in $\mathbb{R}^{[n]-W}$ and the polytope $B_{f^{[n]-W}}$ in \mathbb{R}^W . In other words, these facets are parallel and decomposed as the product of polytopes in \mathbb{R}^W and $\mathbb{R}^{[n]-W}$.

Thus, a facet labeled by a subset W of cardinality k has at most $k! \times (n-k)!$ vertices. Moreover, this bound on the number of vertices is valid for any 'cut'

$$B_f \cap \{x \in \mathbb{R}^{[n]} : x(W) = a, x_i = 0, i \notin W\},\$$

where a is in the segment $f([n]) - f([n] - W) \le a \le f(W)$. (From the submodularity it holds that $f(W) + f([n] - W) \ge f([n])$.) In fact, such a cut is a facet of the base polytope

$$B_f \cap \{x \in \mathbb{R}^{[n]} : x(W) \le a, x_i = 0, i \notin W\}.$$

Let us warn that in general the intersection of base-polytopes may be not a base-polytope, but the intersection of a base-polytope with a half-space $\{x \in \mathbb{R}^{[n]} : x(W) \le a, x_i = 0, i \notin W\}$ is always a base-polytope.

Acknowledgements. The authors are grateful to the Max-Planck Institut für Mathematik, Bonn for its hospitality during writing the paper.

References

- [1] A.Berenstein, S.Fomin, and A.Zelevinsky, Parametrizations of canonical bases and totally positive matrices, Adv. Math. 122 (1996), 49–149.
- [2] P.Bürgisser, M.Clausen, and A.Shokrollahi, Algebraic Complexity Theory, Springer-Verlag, 1997.
- [3] V.Danilov, A.Karzanov and G.Koshevoy, Discrete strip-concave functions, Gelfand-Tsetlin patterns, and related polyhedra, *J. Comb. Theory, Ser.A* 112 (2005), 175–193
- [4] V.Danilov and G.Koshevoy, Discrete Convexity and Unimodularity. I. Advances in Mathematics, 189 (2004), 301–324
- [5] J.Edmonds, Submodular functions, matroids, and certain polyhedra, in: R. Guy, et al., (Eds.), Combinatorial Structures and their applications, Gordon and Breach, Scientific Publishers, New York, 1970, pp. 69–87.
- [6] P. Erdös, and P.Turán, On a problem of Sidon in additive number theory and some related problems, *Journal of the London Mathematical Society* 16:4(1941), 212-215.
- [7] S.Fomin, D.Grigoriev, and G.Koshevoy, Subtraction-free complexity, cluster transformations, and spanning trees, arXiv:1307.8425
- [8] S.Fujishige, Submodular Functions and Optimization, (North-Holland, 1991)
- [9] I.Itenberg, G.Mikhalkin, and E.Shustin, Tropical algebraic geometry. Second edition. Oberwolfach Seminars, 35. Birkhäuser Verlag, Basel, 2009
- [10] M.Jerrum, and M.Snir, Some exact complexity results for straight-line computations over semirings. J. Assoc. Comput. Mach. 29 (1982), no. 3, 874–897.
- [11] I.G.Macdonald, Symmetric functions and Hall polynomials, Oxford mathematical monographs, 1979
- [12] L.G.Valiant, Negation can be exponentially powerful, *Theor. Comput. Sci.* **12**, (1980), 303–314.