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It is proved that the work of an indeterminate m-dimensional Turing machine with time com-
plexity t can be simulated on an indeterminate k-dimensional (k = m) Turing machine with time
complexity g1-(1/m)+{t/k)+e {for any £ > 0). Moreover, the following generalization to the multi~
dimensional case of the familiar theorem of Hopecroft, Paul, and Valiant is proved: the work of
an m~-dimensional Turing machine with time complexity t log/™¢t [t() = n} can be simulated on

an address machine working with time complexity t.

In the present paper it is proved that the work of an indeterminate m-dimensional Turing machine with
time complexity t can be simulated on an indeterminate k-dimensional (k = m) Turing machine with time com-
plexity /K- (/mhe (o any € > 0).

In addition, it is remarked that the familiar result [1] on the time gain in passing from Turing machines
to machines with arbitrary access to the memory (in other words, random access machines, RAM, cf. 2]) can
be generalized to the multidimensional case, more precisely, to simulate an m-dimensional Turing machine
working with time complexity tlog‘/ My te) = n for any n], on a RAM with time complexity t. Moreover, the
last simulation can be effected on the apparatus introduced by Slisenko and called in [3] an address machine
(AM). It is a specification of a RAM and is characterized by the fact that in the course of the entire work to
its conclusion, the length of the registers used does not exceed log,t + ¢, where t is the time of work (the num-
ber c is fixed for a given AM).

By DTM (ITM) we shall denote a determinate (indeterminate) multidimensional Turing machine (for the
precise definition, cf. [4]). In the case when some assertion is true both for DTM and for ITM, we use the
notation TM, and here it is understood that either all apparatuses considered in the given assertion are deter-
minate or they are all indeterminate.

1. In the first point of Theorem 1, which is proved below, there is given an estimate of the amount of
time for simulating ITM of higher dimension on a machine of lower dimension. The method used is not simu-
lation on-line, in contrast with the method applied in [5], with which there was obtained an estimate of the
amount of time in lowering the dimension on DTM. We note that the estimate obtained in Sec. 1 for ITM is
better than the corresponding estimate from [5] for DTM (which means also the estimate following from [5] for
ITM). The upper bound given in Sec. 1 is slightly worse than the lower bound obtained in [4] for on-line simu-
lation of TM on TM of lower dimension. Namely (we use the notation of [5] and the correction of the result of
[4] made in {5]), it follows from [4] that for any € > 0

m Kk, A+i-i-¢
MT G)EMT (L ™ 7).
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The method used below allows one to do even more. In studying TM the question arises of the condensa-
tion of the trajectories of the heads. Trajectories can be "spread" over a multidimensional lattice. The
method makes it possible to simulate the original ITM in such a way that the heads simulating the ITM do not
leave the limits of a cube with small edge. We note that the method of [5] also allows one to get a similar re~
sult — to simulate the work of a TM with capacity complexity L and time complexity t, by a k-dimensional TM,

‘/k'i, but the estimate of time here is worse than —tLYk"1, Upon simulating

working in a cube with edge L
ITM on ITM of the same dimension one can achieve condensation close to optimal for power (with arbitrary
exponent larger than one) loss of time,

In pfoving the second point of Theorem 1 using the same method it is shown that upon lowering the dimen-
sion by one, one can get condensation close to optimal, with almost no loss in time.

THEOREM 1. Let k = m be natural numbers and ¢ > 0. Then for any m-dimensional ITM M, working
with time complexity t and capacity complexity L, one can construct

1. a k-dimensional ITM M;, working with time complexity LLE %% in a cube with edge | x*E ;

2. an (m + 1)-dimensional ITM M,, working with time complexity t@gf'b in a cube with edg;e{‘,#ﬁﬁ )
where M; and My both have the same output as M.

(For the case k = 1, point 1 of the theorem overlaps with the basic result of [6], extended to ITM.}

We give two auxiliary lemmas. The first of them is a multidimensional generalization of Lemma 2 of [7]
and was used in proving a multidimensional generalization (whose formulation is given in [8]} of the basic result
of [7].

LEMMA 1. Let the heads of the m-dimensional ITM M on the piece A of a zone (not necessarily con~
nected), containing S > 2m + 1 cells, occur T times. Then one can find & hyperplane ¢, orthogonal to one of
the directions of the lattice, such that

1) on each of its sides there are situated no more than (—2%:—}4)3 cells of the piece Aj

2) the number of passages of heads of the ITM M (in handling the piece A) through o does not exceed
cT/8 1/m, where ¢y depends only on m and the number of heads of the ITM M.

Proof. For each of the m axes of the lattice by convention we call one direction on the axis right, the
other left, We single out the right (left) hyperplane passing through nodes of the lattice, orthogonal to the
direction considered and such that on the left {right) side of it there are situated no more than (ﬁf{ﬁ)s cells
of A.

The 2m hyperplanes singled out as a result (for all m directions) bound a parallelepiped 1, in which, by
virtue of the choice of hyperplanes, are situated not less than (z—n‘{ﬂ-)s cells of A. Hence one of the sides of I
has length not less than (gimS)"m . Consequently, one can find a hyperplane o, orthogonal to this side and
intersecting II, through which heads of the ITM M pass not more than ¢t/S t/m times,

LEMMA 2. Let Py ={1},..., Pj.q be obtained from Pj by replacing its maximal element a by some two
ay and ay such thataj = ca (=1, 2, 1/2=c > 0), where a; + a, = a. Then any element of Py does not exceed
1/cN.

By induction on N one can prove that if a; = ... = ay are all elements of Py, then ay = ca;. Hence

&l <
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We proceed to the proof of Theorem 1 (both points will be proved in parailel).

We choose r sufficiently large that one has —r:3< oL—k — +¢& in the case of point 1 and

N R
9‘}'? (ZM'H)

B f(m+1)jﬁogfz(ZM+4) < #‘*5 ‘%,, in the case of point 2.

The simulation of the work of M will consist of the following. We choose a (indeterminate) hyperplane
with the property indicated in Lemma 1, then we apply Lemma 1 to the larger piece of the zone and thus rk
times (in the case of point 2 r™*! times) we apply Lemma 1 (in both cases if there remains a piece of the zone
containing no more than 2m + 1 cells, then we no longer subdivide it). Each time upon application of Lemma 1
we subdivide indeterminately the largest in number of cells of the pieces of the zone. Let us agree that the
letter ¢ with indices will denote constants, independent of t, I, s.

It will be proved by induction that the entire zone of the ITTM M can be simullated in the memory of the
ITM M, (or M,), accommodating it in a cube with side csL.% logz/kL (respectively, c;LP log} /M) while to
each cell of the active zone of the ITM M corresponds its image, a cell of the memory of M; (or M,), to which
there is attached a cube of side logz/ kg, (respectively, log/ m+1y ) in which there is written the address of the
original cell of the memory of the ITM M.

Let a piece of the active zone of the ITM M, consisting of s cells, be divided in the way described above
in N =X (respectively, N = m-+t) pieces, containing sy = ... = sy, respectively, active cells. We apply
Lemma 2 to the collection of numbers {si/s,..., sN/s} and we get that s; = s/cN, here and later ¢ = 1/(2m + 1),
By the inductive assumption, the pieces of the zone of the ITM M, corresponding to s, are already packed in
cubes with sides c3s{ logj 1k, (respectively, c;;sB logé/(m“)L) so that the time required by M; (or M,) for
simulating the work of the ITM M on these pieces does not exceed cztls? y/m log, L (respectively, cstjlogysi-
log, L); e, willbechosenat the end. For pieces of the zone containing no more than 2m + 1 cells, the inequali~
ties indicated for the lengths of the sides of the cubes can be satisfied at the expense of a suitable .choice of cs.

Since the pieces corresponding to s; can be disconnected, one estimates the sum of the times necessary
for some head of the ITM M, (or M,), over all intervals in which the head of the ITM M modeled by it are found
in a piece of the zone corresponding to sj. Moreover, one estimates thatat the startof eachsuch interval the cor-
responding head of the ITM M; (or M,) is found in the image of the cell in which at the start of this interval the
head of the ITM M modeled by it is situated.

The work of the ITM M, {or M,) consists of steps of two types. Firstly, there is the direct simulation of
the work of the ITM M for steps at which the heads of the ITM M do not pass through the cuts made by the hyper-
planes (steps of the first type include consideration of the contents of cells, the entry of the new content, change
of state). Secondly isthe search for images of cells into which heads of the ITM M pass after intersecting cuts.
The latter will be effected indeterminately by shortest paths, at the end of the search it is only necessary to
verify that the address of the cell [it is entered in a cube with side log‘/ kL (respectively, logl/ (m+1) ] is re-
quired.

Cubes of the memory of the ITM M; (or M,) with sides cys{* logg/kL (respectively, 03s5 log; /(mH)L)

where 1 =i < N, can be packed into a cube with side cSrsi log / L (respectively, csrsf logl/(m'H)L). Then by

Lemma 2

oLy K 1k g% o ik
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and, respectively,
a
B i 4 [ A 4
’ & . L’ =S &) m+d
8y ﬂ()?/z mih<t &?L e+l Wm qu Iy
by virtue of the choice of &, 8, which proves the inductive step on the length of a side of the cube of the memory

of the ITM M, (or M,).

It remains to estimate the time. In handling a piece of the zone corresponding to s, at a step of the first

type the ITM M, (or My) by the inductive assumption spends time not greater than
i
! d=mw
T4‘£.Z(§Atl,5i )é"‘}z’\'
respectively,

Tzlsca(z.,_-h@zs‘e) Log, b

At a step of the second type the ITM M, {or M,) spends time not exceeding

o
T, =¢;s(log ) T )
5 9’& ; 1 3) /m
respectively,

iim 7

T, =Cs5 (Wzb) Z. . (s )

where sj, tj' (1 = j = N) are the number of cells and the times of handling them on the ITM M in pieces of the

zone which are cut out by the hyperplanes at the j-th step of the process described above.

The sum Z;Qt;/(si,i)”m bounds by Lemma 1) the number of steps in whose time cuts happen, and
c3s® log,L (respectively, c3sPlog,L) bounds the number of steps of the ITM M, (or M,) in the search for the
image of the necessary cell after passing through a cut. Since sj! zZ 8 -cN, one has

i
d~p 1
T, <cts ’”élogz;\,,

respectively,

TL < 04'[}5 &ng
f d-%
Hence for the ITM M, one has T,+T, ~<.Cq‘b5 Kogzw CztS (1-») Eogzb <Gts mﬂogzlg) the last in-
equality is achieved by a suitable choice of c, [we note that the choice of cj, ¢, for the ITM M; {or M,) did not

depend on the choice of cy). Analogously for the ITM M, one has

{
Ti+To it (loges+ {log(m—c))ﬂogzw cqtsﬁ m&u}zb eyt logas loga s
at the expense of a suitable choice of c;. The inductive step on bounding the time is verified and Theorem 1 is
proved,

2. In the second section we generalize fo the multidimensional case one of the results of {1]. The proof
uses the method proposed in [1] and the method of Schénhage [9] for simulating in real time a TM by the
Kolmogorov — Uspenskif algorithm [10]. In connection with the fact that the proof has a compilational character,
it is not recounted in great detail.

THEOREM 2. Let the k-dimensional TM M work with time complexity not exceeding t (t() = nlog¥ku).

Then there exists an AM R, working with time complexity t/Iogl/kt and having the same output as M.
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In the first stage of the proof, just as in [1], we transform (with linear delay} the TM M into a TM M’ so

that M' becomes block-respected, cf. [1], with the block cilog‘/kt, where the constant ¢; will be chosen later.

We divide the memory of M' into cubes with side cllog‘/kt. The requirement of being block-respected is that
all the time of work of the TM M’ is divided into intervals of length ¢, logx/ kt, and in the course of one interval
no head intersects boundaries of cubes.

To satisfy the requirement of block-respect we replace each head of the TM M by 3K heads of the TM M'
and we add further for each of these heads a head-indicator, which in some chosen cube with marked faces will
simulate the position of the head in the cube and signal the time when it goes past the boundary.

All the time intervals of the work of M' are divided into basic and auxiliary. In the time of basic inter-
vals there occurs simulation of the work of M, in the time of auxiliary intervals heads assume initial positions.
The initial position of the 3K heads corresponding to a head of the TM M, at the beginning time of a basic inter-
val is the following. One head, we shall call it central, is found in a cell of the TM M’ corresponding to that
cell of the TM M in which its head being modeled is found, The remaining (3k — 1) heads which we call periph-
eral are found in neighboring cubes on the boundaries in cells close to that cell in which the central head is
found (here and later we describe the work of the 3k heads of the TM M', corresponding to one head of the TM
M, the work of the remaining heads is simulated analogously). In the time of motion of the simulated head of
the TM M inside a cube this condition is preserved,

Suppose at sometime a head of the TM M passes through the boundary into one of the neighboring cubes.
In this case the corresponding central head remains on the boundary, its role starts to be played by the corre-
sponding peripheral head, and all the remaining (3k — 1) heads are found at each following moment in closest
cells to the new central head. Then there can again occur a change of central head, etc. The constructions
indicated allow the block-respect condition to be satisfied.

By the configuration of the TM M! for the start of a time interval we mean the content of all cubes in

which at this time there is found at least one head of the TM M' {these cubes will be called active for this inter-
val), and neighborhood relations between active cubes. By the choice of the constant ¢; one can achieve that
the number of all possible configurations does not exceed ci® for some o < 1.

The preliminary stage of the work of the AM R consists of the following. All possible configurations of
the TM M' are entered in the memory of AM (for each configuration one needs a fixed number of registers).
Next a fixed number of registers of the AM R are available for the entry of the content of the active cubes after
the work of M' in the course of a time interval of length cllog‘/ kt, the new state, the situation of heads, and
the indication of neighborhoods of new active cubes in relation to the old.

The proper simulation of the work of M' uses what was done by the AM R in the preliminary stage and the
construction of Schénhage [9] (the author considered it inappropriate to reproduce in detail the construction of
[9]). The memory of the TM M' can be described in the form of a tree analogous to Schonhage's tree, but to
its leaves are "attached" cubes with side cilogl/kt (the handling of this tree is easily simulated in real time on
an AM). The content of the active cubes is changed in accord with the preliminary stage, the Schonhage tree
is used for forming the configuration at the start of the next time interval — the tree with "attached" cubes

allows one to show the content and neighborhood relations between active cubes.
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The time of work at the preliminary stage is estimated as cyt® log‘/kt, the time of proper simulation is

estimated as c4t/log1/kt. Since the length of the entry of one active cube does not exceed clf log,t, by lowering

¢y it is easy to satisfy the condition on the length of registers formulated in defining AM {cf. [3]).

The author expresses thanks to A. O. Slisenko for interest in the work, S. V. Pakhamov for helpful dis-

cussions, and A. P, Bel'tyukov for valuable comments,
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