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Abstract

In this paper we consider a new class of random dynamical systems which contains in
particular neural networks and complicated circuits. For these systems we consider the
viability problem: we suppose that the system survives only if the system state is in a
prescribed domain Π of a phase space. The approach developed here is based on some
fundamental ideas proposed by A. Kolmogorov, R.Thom, M. Gromov, L.Valiant, L. Van
Valen and others.

Under some conditions it is shown that almost all systems from this class with fixed

parameters are unstable in the following sense: the probability Pt to leave Π within time
interval [0, t] tends to 1 as t → ∞. However, if it is allowed to change these parameters
sometimes (”evolutionary” case), then possibly that Pt < 1 − δ < 1 for all t. (”stable
ebolution”). Furthermore we study the properties of such stable evolution assuming that
the system parameters are coded by a dicsrete code. This allows us to apply the complexity
theory, coding, algorithms etc. Evolution is a Markov process of this code modification.

Under some conditions we show that the stable evolution of unstable systems pos-
sesses such general fundamental property: the relative Kolmogorov complexity of the
code cannot be bounded by a constant as time t → ∞.

For circuit models we define complexity characteristics of these circuits. We find that
these complexities also have a tendency to increase during stable evolution. We give
concrete examples of stable evolution.

To the memory of A.N.Livshitz.
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1 Introduction. Structural stability, instability and com-

plexity

1.1 Some main ideas

The aim of this paper is to connect concepts of structural stability and genericity with the

Kolmogorov complexity theory in order to explain main properties of biological evolution. To

describe mathematically biological systems, we consider classical main models of mathematical

biology (circuits, reaction -diffusion equations). This paper develops our previous results [67,

64, 65] and uses basic concepts proposed by M. Gromov-A. Carbone and L. Van Valen ([70],

[27]). Also we apply some ideas from ergodic theory.

Recall that R. Thom [61] proposed the concept of structural stability to describe complex

structures observed in biology and other applications. This approach has been successfully

applied by many authors ( catastrophe theory). However, this fundamental concept also meets

some serious difficulties (see an interesting discussion in [54]).

Quite opposite ideas were proposed in [70] and [27]. Basing on some experimental data L.

Van Valen concluded that biological species are unstable but evolution can stabilize them. This

assertion (the so-called Red Queen hypothesis) drew upon the apparent constant probability

of extinction in families of related organisms.

Another variant of this idea is recently proposed by M. Gromov and A. Carbone: ”Home-

ostasis of an individual cell cannot be stable for a long time as it would be destroyed by random

fluctuations within and off cell. There is no adequate mathematical formalism to express the

intuitively clear idea of replicative stability of dynamical systems” ([27], p.40).

These ideas [70, 27] lead to two hypothesis. First, that functioning of biological systems are

unstable (in particular, under random perturbations). Second, these systems can be stabilized

by replication (evolution). Here we concentrate our attention to M. Gromov- A. Carbone

variant since it is more mathematically tractable.

Recall that homeostasis ( a basic concept introduced by celebrated french physiologist

Claude Bernard) means supporting of life functions of a system. It is well known that bio-

logical molecules and chemical mechanisms in the cell are fragile under environment variations.

Thus, in order to support their functioning, some main characteristics of the cell (temperature,

pressure, pH, reagent concentrations) must be within some sets (viability domains) [2, 3, 4, 5].
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We denote these domains by Π. In general, they can depend on time. Moreover, one can

consider a more complicated model, when there is a probability 0 < q(u) < 1 to be viable even

outside of Π and then the state must leave Π many times before to be destroyed.

1.2 Outline of approach and main results

Using ideas of the Pfaffian function theory, we introduce a new class of random dynamical

systems. This class contains both polynomial differential systems and circuits of neural or

genetic type.

It is shown that our systems enjoy many remarkable properties. For example, for them one

can define natural complexity characteristic [67, 64, 65]. They can simulate all Turing machines

[39], generate any structurally stable dynamics [69] and spatio-temporal patterns [68, 63, 67].

For our systems a natural measure of the stochastical stability can be defined. This measure

is a probability PT (Π, u0) that for t ∈ [0, T ] the system state (that can evolve in time) stays in

the domain Π if u(0) = u0. This measure is well known and studied [73]. For brevity, if the

system state stays within Π for t ∈ [0, T ], we say that our system survives on [0, T ] (or the

system is viable on [0, T ], see [2, 3]).

Genericity concept also plays here an important role. The systems under consideration can

depend on some parameters P. We use some measures µ on the set of all possible values of P.

Then a property is generic if this property holds for almost all systems with respect to µ. (see

[36], where one can find an interesting discussion of this topic).

Results can be outlined as follows.

I Systems with fixed parameters are unstable

We show that the survival probability PT (Π, u0) → 0 as T → ∞ for a generic system from

our class if system parameters P are fixed. For some classes of circuits this property holds for

all circuits and the probability PT (Π, u0) can be estimated.

II Complexity increasing in evolution of unstable systems

However, evolving systems with changing (from time to time) parameters can be stable even

as T → ∞. This means that

PT (Π, u0) > δ > 0 (1.1)

for all times T > 0. We find a connection between such a stable evolution and the Kolmogorov

complexity (in the next subsection we discuss it in more detail). One can establish, under some

assumptions, certain general properties of stable evolution (satisfying (1.1)). Surprisingly, one
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can show that such a stable evolution should have main features of biological evolution ( systems

must almost always make copies, the mutation probability is small).

III Evolution of circuits

Above we have outlined some general results, but it would be interesting to find concrete

examples of the stable evolution. We find such an example for circuits. When the domain Π

is a simple structure, we give an example of stable evolution of circuits which are important in

neural and genetic networks. There occur connections with the preferential attachment growth

[6, 18], greedy algorithms and the Hebb rule for neural networks. This evolution strategy can

be named centralization.

IV Evolution of spatially extended systems

Dissipative infinite dimensional dynamical systems can be used as models of spatially ex-

tended biological systems. The most popular and well known models in population dynamics

are given by reaction-diffusion equations and systems. We consider such systems with random

parameters of two kinds. The first ones describe a random influence of an environment and

the second ones are discrete variables that determine a random Markov evolution. Under some

biologically natural assumptions we describe a stable evolution process leading to more and

more complex patterns.

Biological and physical interpretations of these results are given in Conclusion, where we

also make a comparison with experiments.

1.3 Evolution and complexity: outline of model

Let us precise the result II. We assume that evolution is a modification, from time to time,

of a discrete parameter which codes parameters of our systems. Our evolution model consists

of a random dynamical system, where the form of this system depends on a discrete parameter,

together with an associated Markov process of this parameter time evolution (see subsection

2.4).

We can suppose, without loss of generality, that this parameter is a binary string s, the

string length is l(s). Such assumptions allow us to apply ideas of the Kolmogorov complexity

theory.

Let us remind briefly some basic notions. Non-formally speaking, given a programming

language F , the complexity KF (s) of a binary string s is the minimal length of a program

to compute s [42, 80] (called Kolmogorov complexity with respect to F ). (In a more formal

4



statement, we should say about Turing machine recursive functions etc. instead of programs

and computers). The fundamental Invariance Theorem asserts, roughly speaking, that KF , is

independent of programming language choice (up to constant): |KF (s)−KG(s)| < C, uniformly

in l(s), where F,G are two universal languages, C is a constant. So, we may talk about some

universal complexity K(x). Such a complexity invented by R. Solomonoff, A. Kolmogorov and

G. Chaitin in 1960s, is a surprisingly deep notion having connections both with key math-

ematical notions as randomness, Godel’s incompleteness theorem, Turing’s halting problem,

and fundamental physics (entropy, Shannon information). We use here the Incompressibility

theorem which asserts that the most of words are incompressible, in other words K(s) is close

to l(s) for almost all words of a given length l(s).

Our result asserts that if a Markov evolution (performed by a discrete code g in a class of

generically unstable systems) is stable, then the Kolmogorov complexity and the length of the

corresponding code g(T ) cannot be a priori bounded: for each C there is a moment T (C) such

that K(g(T )) > C.

1.4 Organization of the paper and main mathematical tools

In the next section we consider main models that will be under consideration. In Section 3 we

formulate main results: theorems on instability of systems with fixed parameters and complexity

increasing in the stable evolution of such systems. We prove the results on instability in Section

4. Here the main problem is to describe a large class of unstable systems, simultaneuosly

important for applications and mathematically tractable. To resolve this dilemma between

generality and tractability, we use here the fruitful tool due to Ascold Khovanski [38]: Pffafian

and Noetherian function theory. This theory has many applications in pure mathematics:

computations and algorithms in algebraic geometry, O-minimality etc. The contemporary

overview of this approach can be found, for example, in [20, 22], some results in [23, 24, 25, 26]

and applications for biology in [64, 65, 67]. By this approach we introduce a new class of

random dynamical systems which contain many previously studied important systems (neural

and genetic circuits) and, on the other hand, for such systems we can prove some general results

on instability.

In Section 5 we prove general results on complexity increasing in stable evolution of such

unstable systems. It can be done by elementary probabilistic estimates and basic facts of the

Kolmogorov complexity theory [42]. We also discuss here connections of this approach with
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some simple stochastical models of biological evolution and random dynamical system theory

[73], with the second law of thermodynamics.

Sections 6,7 give two examples of the stable evolution. The first one describes a stable

growth of a graph associated with a neural (gene) network. The second one concerns with

spatially extended biological models. They can be defined by infinite dimensional dynamical

systems. First we give an estimate of stochastic stability using standard ideas of the attractor

approach [28, 40, 59, 31]. This estimate allows us, in the second part of this section, to

describe a mechanism of a stable evolution. Here we use some biological arguments fundamental

probabilistic tools (concentration inequalities, see [11, 57, 58, 10] and also ideas of the recently

developed theory of the phase transitions in hard combinatorial problems [77, 13, 14]).

The last section is a conclusion, where we discuss mathematical results in connection with

biological experimental data.

2 Systems under consideration

2.1 Some random dynamical systems

Let us remind the notion of a pfaffian chain [38], [22, 23, 24, 25, 26].

Definition. A pfaffian chain of the length r and degree d ≥ 1 is a sequence of real analytic

functions f1(x), f2(x), ..., fT (x) in Rn with the following property: every fj, 1 ≤ j ≤ T satisfies

a Pfaffian equation
∂fj

∂xk
= gkj(x, f1(x), ..., fj(x)), (2.1)

where gkj are polynomials of degrees ≤ d. Then T is called the length and d the degree of the

Pfaffian chain.

Pfaffian functions are well studied. They enjoy the following properties: the sum and the

product of two Pfaffian functions f1 and f2 of lengths ri and degrees di are again Pfaffian

functions of length r1 +r2 and degree d1 +d2 for both the sum and the product. Superpositions

of Pfaffian functions also are Pfaffian (see [22] for details).

Consider some elementary examples. The exponent exp(ax), x ∈ R is a Pfaffian function

of length 1 and degree 2. More generally, any real analytic function f(z), z ∈ R satisfying an

equation
df

dz
= g(z, f) (2.2)
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is a Pfaffian of degree deg(g). We observe thus that many classical sigmoidal functions are

Pfaffian. For example, f = (1 + exp(z))−1 satisfies (2.2) with g = f 2 − f . Superposition

σ(exp(ax)) also is a Pfaffian, etc. Notice, however, that there exist many important analytical

functions that are not Pfaffian ( for example f = sin z). They can be included in a more general

class of Noetherian functions [20, 22].

Notice that there is a connection with the Kolmogorov complexity concept. In fact, let us

consider an analytic function f(z) (for example, f = exp(z)). We can compute this function, up

to a small correction, by the Taylor series (presenting f by a polynomial, and writing down all

polynomial coefficients). On the other hand, we have a very short description of this function

by a differential equation f ′ = f .

We consider random dynamical systems with discrete time

ui(t+ 1) = fi(u(t), ξ(t)), t = 0, 1, .... (2.3)

where u = (u1, u2, ..., un) ∈ Rn = H, ξ(t) = (ξ1(t), ξ2(t), ..., ξm(t)), ξk(t) are random processes

with discrete time. Initial conditions are

ui(0, x) ≡ φi. (2.4)

We shall formulate assumptions on ξ below. One can investigate a more general case, where

u are elements of a Banach space B, for example, ui can be functions of t and x, x ∈ Ω ⊂ R,

φi = φi(x).

Let us consider the following class of systems (2.3):

Class Kh (in the honour of A. Khovanski).

The class Kh consists of random dynamical systems (2.3), where fi are Pfaffian functions

in u, ξ.

This class is sufficiently general: it contains subclasses important in applications. On the

other hand, investigating these systems we can use the powerful tools from the theory of Pfaffian

and Noetherian functions [38, 22, 20, 23, 24, 25, 26]. The first subclass KP is given by f

polynomial in ξ, u:

fi =
∑

l,l′,|l|≤d,|l′|≤d′
bill′u

l
′

ξl (2.5)

where l = (l1, ..., lm), l
′

= (l
′

1, ..., l
′

n), are integer multindices, ξl = ξl1
1 ...ξ

lm
m , li, l

′
j ≥ 0 and

|l| = l1 + l2 + ...+ lm.
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The simplest, well studied in control theory [41, 56] subclass of K (we refer it as class KL)

is defined by f of the form

fi = g0i(u) +
m
∑

k=1

ξkgki(u), (2.6)

where gki are polynomials.

Moreover, the class Kh contains a number of other physically and biologically interesting

systems, in particular, some neural and genetic circuit models. Genetic circuits were proposed

([21], [60], [16], [47]-[53] among many others, see [55] for a review) to take into account theoret-

ical ideas and experimental information on gene interaction. Model [16] uses Boolean algebra

(so-called Boolean switch network). Models [47]-[53] can be considered as a generalization of

the Hopfield model of attractor neural network [33]. We consider here the following model

ui(t+ 1) = σ(
N
∑

j=1

Kijuj(t) + hi − ξi(t)), (2.7)

where t = 0, 1, 2, ..., T, i = 1, 2, ..., N , for positive integers T,N and ui(0) = φi. To use

methods of the Pfaffian function theory, we must suppose here that the function σ is a strictly

monotone increasing function such that limz→−∞ σ(z) = 0, limz→∞ σ(z) = 1 and satisfying

the differential equation

σ′ = P (σ), (2.8)

where P is a polynomial. The well known example can be given by σ(z) = 1+tanh(z)
2

(here

P = σ(1 − σ)/2). The polynomial P satisfies the following properties: P (0) = 0, P (1) = 0 and

P (z) is positive for any z ∈ (0, 1).

Under condition (2.8) Khovanskii’s [38] results can be applied to system (2.7). In fact, it is

obvious that eqs. (2.7) define a Pfaffian function of u, ξ.

Let us introduce complexity of chain (2.7) as the tuple of integers

Comp = { N, T, degP}, (2.9)

where degP is the degree of the polynomial from (2.9) that defines σ.

Moreover, the class Kh also includes complicated circuits with non-pair interactions, for

example

ui(t + 1) = σi(Si), Si =
∑

j

Kijuj1(t)...ujn
(t) +

m
∑

l=1

Milξl + hi, (2.10)
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where j is a multiindex. If σi = H, where H is the step function, H(z) = 0 for z, 0 and

H(z) = 1 for z ≥ 0, eqs. (2.10) give a model of boolean networks.

2.2 Some results on (2.7)

In a part of this paper we focus our attention on model (2.7) (although many results can

be generalized to (2.10)). Let us remind some known facts.

It is well known that (2.7) with ξi = 0 can simulate any complicated dynamics on bounded

time intervals and generate complicated patterns [19, 30, 34]. They can generate any struc-

turally stable dynamics [69] including some chaotic attractors. The most fundamental fact

about (2.7) is that these systems can simulate, in a sense, all Turing machines [39], i.e., per-

form any computations.

2.3 Assumptions to random processes ξ.

We suppose the following. Let δ be a small positive number. Let V (θ, δ) denote the δ -

neighborhood of θ ∈ Rm.

Assumption 2.1. Suppose that ξi(t) are Markov processes with discrete time, t = 0, 1, 2, ....

Assume, moreover, that for each δ > 0 and for each t > 0 , δ > 0 the probability that the process

ξ(t) attains the neighborhood V (θ, δ) is positive:

Prob{ξ(t) ∈ V (θ, δ)} > c(δ) > 0, (2.11)

where a constant c(δ) is uniform in t.

Results for (2.7) hold under a weaker condition formulated in the corresponding section.

Physically these assumptions can be interpreted as existence of strong fluctuations. They hold

for many stochastic processes.

2.4 Evolution

Let us suppose that the parameters of systems (2.3) can depend on some variables s (”in-

ternal parameters”). Let us consider first the case, where s takes some discrete values si ∈ S,

S is a finite or countable set. Denote by N(S) the number of such states. We can suppose that

s are binary strings. Let us denote by S∞ the set of all possible finite binary strings such as

01...0 (of all possible lengths l) and suppose S ⊂ S∞. We extend our phase space H, where

u ∈ H, to H × S. Notice that possibly S = S∞. Suppose that, for fixed s, the time evolution

of u is defined by eqs. (2.3), where coefficients of polynomials g depend on s.

Then in (2.3) the right hand sides fi also depend on s ∈ S∞ through g that define f by

(2.5). An evolution of s is defined by a Markov chain M with discrete time and with countable
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state set S∞, with transition probabilities ps′s(u) to go in s′ from s and, in addition, a Markov

process (2.3) that defines an evolution u. Transition probabilities at moment t can depend on

the current state u(t).

To describe the effect connected with the viability domain Π we follow the standard con-

struction [73]. We introduce formally an absorbing state a such that p(a → s, u) = 0 for each

s. If u leaves the viability domain Π(t), this means that the system state attains this absorbing

state.

So, our model is defined by:

1) a family of random dynamical systems (2.3) in Rn with fi = fi(u, ξ, s), n = n(s), where

fi are defined by (2.5), i = 1, 2, ..., n(s);

2) by the set Π ⊂ Rn;

3) the Markov chain M with the state space S ∪ a and the transition matrix W(u) with

entries ps′s(u) (the transition probability from s′ to s depending on u) such that pas(u) = 0.

Moreover, we suppose that if u(t) ∈ Π then the process stops, s(t) = s(t+ 1) = ... = a.

About dependence of f on s we suppose the following. All possible values of the coefficients

bill′ defined by (2.5) form an Euclidian space EL of dimension L(d) > 0, which can be equipped

by the standard Lebesgue measure νL. It is reasonable to assume that these coefficients are

some random functions of s. Let Ll be the set of all the binary strings with lengths ≤ l. Let us

introduce measures µl on the sets of all possible maps b : Ll → EL. Suppose that there holds

Assumption 2.2. Suppose A is a set of νL - measure 0 in the space E of the coefficients

bill′ . Then for each length l the probability that the value of the map β lies in A is zero:

µl(B) = 0, B = {b : there exists s ∈ Ll such that b(s) ∈ A}.

This assumption admits a very simple interpretion. Suppose we choose a random point b inside

a finite dimensional space and we aim into a set A. Then it is impossible to expect that we will

have a success (b ∈ A), if the set A of zero measure and if we make only a bounded number of

such random attempts.

For (2.7) we assume that evolution is performed by changes in a directed graph (VN , E)

associated with the matrix Kij. The vertices of this graph is the set VN = {1, 2, ..., N}, an edge

(i→ j) ∈ E if and only if Kij 6= 0.

Each step of evolution may consist of: 1) either (VN , E) stays the same, 2) either one adds

a node to VN that gives VN+1, the edges E conserve, 3) or one adds an edge i→ j to E with a
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new weight Kij.

Definition 2.3. Denote by PT (Π, u0) the probability that u(t) ∈ Π for all t = 1, 2, ..., T if

initial data u(0) = u0 ∈ Π. We say that the evolution is stable, if there is a positive δ such that

PT (Π, u0) > δ > 0 for all integers T > 0 and all u0.

If such an δ does not exist we say that the evolution is unstable.

Notice that it is natural sometimes to introduce a probabilistic measure η on the set of

initial data u. We suppose that the measure η has a support in Π. In this case the averaged

probability to survive during the time interval [0,Π] is defined by PT (Π) =
∫

Π PT (Π, u)η(u)du.

3 Main results

A Instability of systems with fixed parameters

Here we consider the case when the evolution is absent, i.e. S = ∅. Let us denote by dmax

the maximum of the degrees of gil. Let us consider a non-degenerated gaussian measure ν in

the space E of coefficients of polynomials gil of the degree dmax = d+ d
′

+ d
′′

. Let us denote by

PΠ(u, t) the probability to stay in Π at the moment t+1, under condition that, at the previous

moment t, the system was in a state u.

Theorem 3.1 Let us consider systems (2.3) of the class KL, where f is defined by (2.6).

Suppose m ≥ 2, i.e. there are at least two noises and the set Π is bounded: Π ⊂ BR, where

BR is a ball of radius R. Then for almost all (with respect to a measure ν in the space of

coefficients) polynomials gki from (2.6) one has:

PΠ(u, t) ≤ 1 − δ(g) < 1 (3.1)

where δ(g) > 0 is uniform in u ∈ Π, t = 0, 1, 2, ....

Thus, a generic system (2.3) with fixed parameters is unstable, i.e., PT (Π, u0) → 0 as

T → ∞.

Theorem 3.2 If m ≥ 2 and d > 0, the same assertion holds for systems of the class KP.

To prove instability of circuits (2.7) we should seek new arguments since these theorems are

not applicable to this case. For circuits (2.7) one can give more explicit estimates that hold

for all circuit systems, not only for generic ones. Let Nk = {i1, i2, ..., ik} be a set of different

indices, il, 1 ≤ il ≤ n. We refer these corresponding nodes as key ones. Let us consider the sets
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Π such that

Π ⊂ {uil > δl > 0}, il ∈ Nk. (3.2)

In this case we define the complexity of circuit (2.7) as the minimal valency V of the key nodes:

V = minVi, i ∈ NK , (3.3)

where the valency of the node is the number of links connecting this node with other ones; in

our case the valency of i-th node with the state ui is the number of non-zero entries Kij.

In this paper we extend our previous estimates( [65]), which show that the survival probabil-

ity of each circuit (2.7) of a fixed structure tends to zero as T → ∞. Therefore, ”homeostasis”

performed by a fixed circuit (2.7) will be inevitably broken for sufficiently large times. The

more is the complexity V the stabler is the circuit with respect to perturbations.

B Complexity increasing in the process of evolution

Under assumptions of Theorem 3.1 or 3.2 let us consider systems (2.3) from class KP or KL

with fi, gik depending on s, where the binary string s evolves according to a Markov process as

described above (see subsection 2.4). We consider more general Pfaffian systems in the end of

Section 5.

There holds

Proposition 3.3 If the Markov chain M and (2.3) generate only strings with a priori

bounded lengths l(s) < C then for almost all maps s→ b(s) of strings s to the coefficients b the

corresponding evolution is unstable ( the corresponding system is not viable): PT (u,Π) → 0 as

T → ∞.

Theorem 3.4. If the Markov chain M and system (2.3) generate only strings with a priori

bounded relative Kolmogorov complexities KF (s) < C then for almost all maps s → b(s) of

strings s to the coefficients b the evolution is unstable (the corresponding system is not viable):

PT → 0 as T → ∞.

Remark 1. Coefficients b are defined by (2.12) and ”almost all” with respect to some

measure µl (see Assumption 2.2).

Remark 2. Actually, in Theorem 3.4 instead of KF one could take any function K ′ enjoying

the following property: for any n there exists at most a finite number of s such that K ′(s) = n.

Clearly, this property together with inequality K ′(s) < l(s) + const (which usually holds for

relative Kolmogorov complexities) would imply the incompressibility (cf. above).
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Below under complexity we mean KF for a certain fixed F .

Theorem 3.4 gives only a general property of stable evolution that says nothing about

existence of such an evolution.

Notice that for biologically realistic models the question on existence of stable evolution is

not obvious. We give natural examples of such stable evolutions in Section 6, 7.

4 Instability

4.1. Instability in general case

Let us prove Theorem 3.1. We start with the following preliminary lemma, which immedi-

ately implies the Theorem.

Lemma 4.1. Suppose Π is a compact set. Let us consider a system of polynomial equations

gi(u) = 0, i = 1, ..., N, (4.1)

where gi are polynomials of u = (u1, u2, ..., un). Assume that the number of equations N in (4.1)

is more than the number of variables n. Then the probability that this system has a solution

u∗ ∈ Π equals 0.

The formal proof of this obvious assertion is as follows (notice that there is another easy

proof using the resultant theory, see Van der Waerden[75]). Let us introduce an auxiliary

function of the variables u and the coefficients bα of the polynomials gi:

φε(b, u) = exp(−ε−2S(u)) (4.2)

depending on a parameter ε, where S(u) =
∑N

i=1 gi(u)
2. Let us consider now the integral

Iε =
∫

Π

∫

φε(u, b)dν(b)d
nu. (4.3)

Since ν is an exponentially descreasing function, we can change the order of integration in (4.3).

Suppose that there is a set A of coefficients bik of polynomials such that ν(A) > 0 and

that there is a solution u∗(b) of system (4.1) for all polynomials with coefficients b ∈ A. Then

φε > δ > 0 in a ball of radius ε centered at u∗(b). Thus, by integrating first over u and then

over all bik, one obtains that

Iε > cεnν(A). (4.4)
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Let us find now an upper estimate of this integral. Integrating first over all coefficients bi,000..0

corresponding to terms of zero degree in u, we see that
∫

φεdν < CεN . (4.5)

Therefore, due to compactness of Π, one has

Iε < C1ε
N . (4.6)

For N > n estimates (4.4) and (4.6) lead to a contradiction as ε→ 0. The lemma is proved 2.

To demonstrate Theorem 3.1, let us observe that if g1(u) 6= 0 or g2(u) 6= 0 for each u ∈ Π,

infu∈Π(|g1(u)| + |g2(u)|) ≥ κ > 0 since Π is contained in a compact set. But then Assumption

2.1 entails that PΠ(u) < 1 − δ(g). 2.

Proof of Theorem 3.2. Due to boundness of Π, there is a R > 0 such that if |u| > R then

u /∈ Π. Let us prove that, generically, for each u ∈ Π there is a value ξ such that |f(u, ξ)| > R.

Let us set m = 2. One has

fi =
∑

l,|l|≤d

hil(u)ξ
l, (4.7)

where hil(u) are some polynomials. Let us consider a finite set A = {a1, a2, ..., ad+2}, where aj

are mutually distinct positive numbers. Let us set ξ1 = z, ξ2 = ajz and let z → +∞. Then one

has from (4.7) that

hil(u) = 0, i = 1, ..., n, |l| = d. (4.8)

So, we have n(d+1) polynomial equations with n unknowns ui. Now we apply Lemma 4.1 and

we obtain that generically (4.8) has no solutions and, therefore, generically |f(u, ξ(z))| are not

bounded as z → ∞. Thus if u(t) ∈ Π then, due to Assuption 2.1, there is a nonzero probability

P (u) that |u(t+ 1)| > R and, consequently, u(t+ 1) /∈ Π 2.

4.2 Instability for circuits

In this section we simplify and improve some results of [65] on instability of circuits (2.7).

We suppose that circuits are under ”strong” noises. Mathematically, this can be formulated

as follows. Denote by Wi(a) the set Wi(a) = {ξ : ξi < a}. We also assume that the domain Π

is defined by (3.2).

We estimate the stability via the following parameters: the circuit complexity V (see 3.3),

the maximum |K∗| of absolute values of the entries Kij, the maximum h∗ of |hi|. We can

suppose, without loss of generality, that the set I of the key indices is I = {1, 2, ..., Nkey}.
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Assumption 4.1 Assume that ξ is a time discrete Markov process with values in RN such

that for each i and a

Prob{ξ(t) ∈ Wi(a), t = 0, 1, 2..., T − 1} = Φi(a, T ) → 0 (4.9)

where i ∈ I, as T → ∞.

Assumption 4.1 holds, for instance, when ξ(t + 1) are independent on ξ(t) and ξ can take

unboundly large values, for many Markov processes and walks. A large class of such ξ can be

described as a section, at t = 1, 2, ..., time continuous diffusion processes. In this case, a rough

asymptotics of Φ can be found by standard methods [8, 73, 9].

The stability (survival in Π) depends on the structure of Π and asymptotical properties

Φi(a, T ) for large a, T .

Proposition 4.2. Each circuit (2.7) with fixed parameters is unstable as T → ∞, i.e.

P (T,Π) → 0 as T → ∞.

To prove this assertion, assume, without loss of generality, that V1 = mini∈I Vi = V . Notice

that 0 ≤ ui(t) ≤ 1 for all t > 0 (since 0 ≤ σ ≤ 1). Thus, |
∑N

j=1K1juj(t)− hi| < VK∗ + h∗ = r.

Therefore, if ξ1(t) > a = r − σ−1(κ), then one has u1(t + 1) < κ and thus u(t + 1) /∈ Π. So,

u(t) ∈ Π for all t = 0, 1, ..., T entails ξ(t) ∈ W1(a) for each t = 0, 1..., T − 1. This gives

Prob{u(1), ..., u(T ) ∈ Π} < Φ1(a, T ) → 0

as T → 0 2.

5 Properties of stable evolution

5.1 Proof of Theorem 3.4

First let us show that, for unstable systems, stable time evolution is possible only when the

code complexity is unbounded in time. Consider systemes of the class KP. They are defined

by (2.3) and (2.5), dependence of gik on s is defined by a random map s→ b(s), where b(s) are

coefficients (see (2.12)), and this map satisfies Assumption 2.2.

First let us prove Prop. 3.3. Suppose that the lengths of all codes s a priori bounded by

an integer l. Let us denote by p(s(t), u(t), t) the probability to survive (to stay in Π) at the

moment t+1 under the condition that, at the moment t, the system is in the state u(t) and the
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system is coded by s = s(t). Then, since our process is a Markov one, the probability PT (Π)

to be in Π at time moments 0, 1, ..., T is the product

PT = p(s(1), u(1), 1)p(s(2), u(2), 2)...p(s(T − 1), u(T − 1), T − 1).

(in fact, the probability to be in Π at moment t+1 depends only on the current state u(t), s(t)

and t). One observes then that the evolution is stable if

logPT+1 =
T
∑

t=1

log p(s(t), u(t), t) > −C, C > 0 (5.1)

uniformly in T . Using Theorem 3.1 one has

logPT+1 =
T
∑

t=1

log p(s(t), u(t), t) ≤
T
∑

t=1

log(1 − δ(g(s(t))) ≤

≤ T log(1 − min
s∈L(l)

δ(g(s))) ≤ constTκ(l), κ(l) = min
s∈L(l))

δ(g(s)), (5.2)

where L(l) is a finite set of strings of lengths bounded by l, and here g denotes polynomials

gik(u) depending on s. This means that the coefficients b of polynomials g in (2.6) are real valued

functions of s. Remind that these functions satisfy Assumption 2.2. Relation (5.2) entails that,

if the evolution is stable, κ(l) = 0. Indeed, for a stable evolution Tκ ≥ logPT+1 ≥ −C for all

T that gives us κ(l) = 0.

Let us compute the probability (with respect to the measure µl on the space of all maps

s→ b(s), see Assumption 2.2) that κ(l) equals 0. Then one finds that this probability is zero.

In fact,

Prob{ min
s∈L(l))

δ(g(s)) = 0} = 1 − Πs∈L(l)Prob({δ(g(s)) > 0}).

But, according to Assumption 2.2, the probability that, for a random map s → b(s), one has

δ(g(s)) > 0 (defined by the measure µL, see Assumption 2.2) equals 1. This completes the

proof 2.

Let us prove Theorem 3.4. First let us note that the lengths l(s) of strings of the Kolmogorov

complexity not exceeding K is a priori bounded: l(s) < NK.

Therefore, all strings of complexity < K are in a finite set BK of binary strings. Thus we

can repeat the arguments from the previous proof.

Remark. Notice, however, that between Prop. 3.3 and Theorem 3.4 is a key difference.

For some relative Kolmogorov complexities KF there are no effective bounds of l(s) via KF (s),
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in particular, for the Kolmogorov complexity K = KF it follows from the well known Rabin

theorem [76] (proved as well by G. Tseitin).

Thus it is impossible to estimate evolution stability, even in average, through the Kol-

mogorov complexity. However, at least theoretically, it may be possible to make it via l(s).

5.2 Entropy and the second law of thermodynamics

In the next subsections, let us consider connections between the Kolmogorov complexity,

entropy and the second law of thermodynamics. We make it first in the framework of simple

Markov models. We shall show how one can obtain this simplified models from (2.3) in the end

of this section.

Consider first the following simplified evolution model based on a Markov chain with a finite

number of states s ∈ L, thus length(s) ≤ l. Here L is a state space, the number of states will

be denoted by N = |L|. (Let p(s, t) be the probability to be in the state with the code s at the

moment t. We write down

p(s, t+ 1) =
∑

s′
ws′sp(s

′, t) (5.3)

where ws′s are transition probabilities (from s′ to s). We suppose (see above) that there is an

absorbing state a such that was = 0 for all s 6= a. We denote by W the linear operator in the

right-hand side of (5.3). Then (5.3) can be rewritten as p(t+ 1) = Wp(t).

If we are dealing with an unstable system, then wsa = v(s) > 0 is a positive (in biology, it

is an ”extinction probability”). Suppose that, if the absorbing state is excluded, chain (5.3) is

ergodic and there is an equilibrium solution peq = π(s) of (5.3) such that all π(s) 6= 0. This

solution, defined by π = Wπ, is an eigenfunction of the operator W with the eigenvalue 1.

Moreover, let us make the standard assumptions that all the rest eigenvalues λj of W satisfy

|λj| < 1. Then our chain is not only ergodic but also it is exponentially mixing: one has

|p(s, t) − π(s)| < C exp(−ct) for some C, c > 0.

If v = 0, the following classical assertion expresses mathematically the second termodynamic

law for model (5.3). Let us consider two distributions p1(s), p2(s) of probabilities of codes s.

Naturally,
∑

s∈L pi(s) = 1 and pi(s) ≥ 0. If p2(s) > 0 for all s, then we can introduce Kullback’s

information in p1 with respect to p2

H(p1, p2) =
∑

s∈L

p1(s) log(p1(s)/p2(s)). (5.4)

It is well known that the map p1 → H(p1, p2) is convex and non-negative. This functional can
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be interpreted as a conditional information (minus entropy) p1 on p2. One can show [9] that,

under some conditions on w(s→ s′), if p1(s, t), p2(s) are two solutions of (5.3), that Kullbac’s

information HK(t) = H(p1(t), p2(t)) is a non increasing in time t function. In particular, for

any solution p(s, t) of (5.3) the information

H(p(t)) =
∑

s∈L

π(s) log(π(s)/p(s, t)) (5.5)

is also non-increasing in t. This formula expresses the second law of thermodynamics (in our

simplest case). The entropy E is defined by E = −H. Below we shall find a connection of this

function with the Kolmogorov complexity.

Let us turn to the case v > 0. If v(s) > 0, the probability p(a, t) to be in the absorbing

state a is an increasing in time function.

The case, that admits an asymptotical analysis, occurs if v > 0 is small enough (of order ε,

where ε > 0 is a small parameter). Then it is not difficult to show (using the standard methods,

see[8, 9]) that for an arbitrary initial distribution p(s, 0), the time evolution of solutions of (5.3)

can be described as follows. One has |p(s, t) − π(s)| < C exp(−ct) due to the mixing property.

Within a relatively short stage (this time period is independent of ε) one has that the entropy

E = −H, where H is defined by (5.5), up to ε-small corrections.

To describe the dynamics for t > O(| log ε|) we can use an asymptotical solution having the

form p(s, t) = C(t)π(s) + p̃, s 6= a, where C(t) makes sense of the probability of survival states

and p̃ is a small correction such that
∑

s6=a p̃(s, t) = 0 for all t. The dynamics of C(t) satisfies

the equation

C(t+ 1) = (1 − q)C(t), q =
∑

s∈L

v(s)π(s) +O(ε2). (5.6)

Notice that q = O(ε), thus this dynamics of C is slow. Therefore, for the second stage the

averaged extinction probability is q > 0 and q can be computed by (5.6). Here the survival is

not possible: C(t) → 0 as t→ ∞.

5.3 Process with countable state space

Let us consider now a more complicated situation, where survival is possible. Suppose that

the state number N(t) may increase in time. In the case of increasing state number N(t) an

asymptotic approach can be developed if we assume that new states (codes) s appear, in a

sense, ” seldom”. Between these appearences at moments Tj, Tj+1, the probabilities p(s, t) can

be described by p(s, t) = pi(s, t), where pi(s, t) is a solution on [Tj, Tj+1] for (5.1) with fixed
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state number Nj. Let us denote by peq,j the corresponding stationary solution to (5.1) with the

fixed state number and v = 0. We suppose that |v(s)| < cε and c1ε
−1 < |Tj − Tj+1| < c2ε

−1, ε

is a small paramater, ci > 0.

Then one can use the previous argeuments and one has:

I For the first evolution stage on [Tj, Tj+1] , the entropy is defined by

Ej = −
∑

s6=a

πj(s) log(πj(s)/pj(s, t)),

where πj is an equilbrium state for the Markov chain without absorbing set at j-th stage. The

Ej is a non-decreasing in time. The solution pj(s, t) tends to πj(s) with an exponential rate.

II The second stage: pj = Cj(t)πj + p̃, where all the evolution reduces to a time evolution

of Cj(t) according to (5.6), where q = qj. The entropy Ej is equal to log(1 − Cj) + const.

The stable evolution (in our sense) is possible if there is an infinite sequence of s such that

v(s) → 0 (a sequence of more and more stable states) and transition probabilities to these

states are not too small. A necessary condition for possibility of such evolution is given by the

elementary

Proposition 5.2 If the evolution is stable there is a sequence sn such that v(sn) → 0 as

n→ ∞.

This assertion can be interpreted as follows: the stable evolution must generate new stabler

states. An example of a stable evolution see Section 6.

5.4 Kolmogorov complexity and entropy

Let us discuss in more detail connections between the complexity K(s) and the Kullback

information (when π is uniform, this is the Shannon information connected with the classical en-

tropy of statistical physics). Let us remind an important theorem proved by A. N. Kolmogorov

[80] that reveals a connection between the Kullback ( Shannon) information and complexity of

individual codes.

Theorem. Let r be a positive integer. Let a word x of length i · r consist of i words of

length r, where k-th word of length r occurs in x with the frequency qk (k = 1, 2, ..., 2r). Then

K(x) ≤ i(−H(q) + α(i)) + C,

where H = −
∑

k qk log2 qk, α(i) = C0i
−1 log i→ 0 as i→ ∞
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Let us consider now a population of codes s evolving according to (5.1). Let us assume that

the lengths of all s are a priori bounded by r. Let us compose a large word x connecting all s

together and let us consider the complexity of x (complexity of the genetic pool of population).

The Kolmogorov theorem cited above shows that the genetic pool complexity is proportional,

for large populations, to minus of the Shannon information (entropy) of this genetic pool.

5.5 Reduction of evolution model (2.3) to Markov chain (5.3), ergodicity and

complexity of Pffafian function

Let us discuss now evolution model (see subsection 2.4) for general systems (2.3). In this

more complicated case there are two variants to reduce evolution (2.4) to the cases considered

in previous subsections 5.1 -5.4.

Variant A: Systems with simple attractors.

Eq. (5.3) can be deduced under some strong assumptions on dynamics (2.3). . For example,

one can assume that

f = f0(u, s) + κ
m
∑

k=1

hk(u)ξk, u = (u1, ..., un) ∈ Rn, (5.7)

where κ is a small parameter, hk are Pfaffian functions, all the equilibria of (2.3) for κ = 0 are

hyperbolic rest points Un for each code s defined by equation U = f0(U, s). We suppose that

all Un ∈ Π.

In this case the space of discrete states S should be extended. Suppose that for κ = 0 eqs.

(2.3), (2.7) generate a dissipative semiflow and thus we consider dynamics (2.3), (2.7) inside a

bounded domain D ⊂ Rn.

With each s we associate the set of possible local point attractors U 1(s), ..., Uk(s)(s) of

dynamical system (5.7) with κ = 0. The state of the Markov chain are now (s, U j(s)),

j = 1, 2, ..., k(s). For eacn fixed s the Ventsel- Freidlin theory [73] allows us to estimate

the probability pjk of transitions from U j to Uk for fixed s (they are exponentially small,

log pjk = O(ε)). After this extension we obtain (5.3) with a new larger state space.

Variant B: ergodic ideas and Pffafian functions.

Again we suppose that for κ = 0 eqs. (2.3), (2.7) generate a dissipative semiflow and thus

we can consider dynamics (2.3), (2.7) inside a bounded domain D ⊂ Rn. We assume Π ⊂ D.

Also let us suppose that system (2.3) with f defined by (2.7) is ergodic and mixing for κ = 0.

If η(u) is a measure describing a distribution of initial data (see Subsection 2.4) and let ρ(u, t)
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be the measure obtained from η as a result of time evolution according to (2.3), (2.7). Let us

suppose that the following weak mixing proeprty holds: for is an arbitrary continuous function

φ(u) such that sup |φ| ≤ 1, one has |
∫

Π φ(u)(dρ(u, t)− dρeq(u))| < C exp(−ct), C, c > 0, where

ρeq(u) is a limit measure, constants C, c > 0 are idependent of φ. We suppose that the support

of ρeq is a subset M contained in Π: M ⊂ Π and that this set contains infinitely many points.

For example, it may be a manifold of a positive dimension.

For κ 6= 0 system (2.3), (2.7) generates a Markov chain. Let W (u,Γ) be the transition

probability from u to a set Γ. We can compute this transition probability by W (u,Γ) =

Prob{κh(u, ξ, s) ∈ Γ − {u}}. This probability is small for small κ if f0(u) /∈ Γ.

Then for small κ the probability Pd to leave Π at the moment t admits the following

asymptotics for as t→ ∞:

Pd(t) =
∫

Π
W (u, Π̄D)dρeq(u) +O(exp(−ct)), (5.8)

where Π̄D is a complement of Π in D: Π̄D = D − Π. Notice that the first main contribution

is constant P̄d. Under above assumption P̄d > 0 (exluding only for a trivial case hk ≡ 0). In

fact, if P̄d = 0 thus W (u, Π̄D) = 0 for all u ∈ M. This entails that hk(u) = 0 for all u ∈ M.

Pffafian functions are really analytic, thus, hk(u) ≡ 0 for all u ∈ D.

This implies the instability result for non-polynomial in u pfaffian case:

Proposition 5.3 Then under above assumptions the probability to leave Π admits the esti-

mate

P̄d =
∫

Π
W (u, Π̄D)dρeq(u) > δ > 0. (5.9)

This result on instability is an analog of Theorem 3.2: a fixed pfaffian system (2.3), (5.7)

generated by Pfaffian functions hk of a priori bounded complexity cannot be stable. However,

if the code s(t) evolves in time then a stable evolution is possible.

Suppose that the maximum of degrees of Pfaffian functions hk is degh and the maximum of

the lenghts is Lengthh. There occurs a natural question about existence of estimates δ through

degh and Lengthh. It is possible only for particular classes of Pffafian functions that can be

constructed by chains of a special form (to show it one can use results [26]).
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6 Example of stable evolution: centralization strategy

To analyze the evolution process in more detail, let us consider the simplest model, where for

each i, j either Kij = K∗ or Kij = 0. Then changing matrix K with time leads to a time

evolution of a directed graph associated with K and vice versa, a growth of a directed graph

generates an evolution of a network (2.7). The graph evolution can be then considered as an

algorithm adding edges and nodes. As an example, let us consider two well studied evolution

algorithms, the Erdös - Rényi one, [18], and the preferential attachment algorithm [6].

In Erdös -Rényi’s algorithm, at time moments 0, 1, 2, ..., one adds to a graph a new edge with

a fixed probability p. This leads to a Gaussian distribution for the degree. In the preferential

attachment algorithm [6] the probability that a new edge goes to the i-th node is proportional

to the valency (connectivity) of this node. The graph obtained by this algorithm has so-called

scale-free structure [6], which can be illustrated by a map of a country. Looking on the map of

a country we can often see a few of great cities and a number of small cities.

The main goal of this section is to demonstrate that a stable evolution is possible under

some natural restrictions on the circuit growth. Let us formulate such restrictions. To simplify

the statement, let us consider boolean circuits (2.7), where σ is the step function, σ(z) = 1 for

z > 0 and σ(z) = 0 for z ≤ 0. Assume that

R1 The averaged valency of the whole network is a priori bounded for all times:

lim
t→∞

N(t)−1
N(t)
∑

i

Vi(t) < Kc, (6.1)

where Kc is a positive constant, N(t) is the number of nodes involved in circuit (2.7). This

assumption is consistent with experimental data [6, 35, 37]. Let us notice that the averaged

valency of the key nodes is not bounded, according to the results obtained above;

R2 The evolution rate is bounded, i.e., at each evolution step, we add to the graph associated

with the circuit at most one edge and at most one node. The weights Kij are a priori bounded:

|Kij| ≥ K∗;

R3 The noises ξi(t) are random processes discrete time such that each ξi(t+1) is independent

of all previous ξj(τ) with τ < t + 1 and satisfying

0 < P (ξi(t) > a) < exp(−βa) (6.2)

for each a > 0 and for each fixed t, where β is a positive constant independent of t and a.
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Theorem 6.1 There is a growing circuit (2.7) satisfying R1, R2, and R3 such that its

stochastical stability does not vanish for large times: PT > p0 > 0 for all T > 0. The circuit av-

eraged valency satisfies asymptotical relation (6.1) as t→ ∞ for any A. The circuit complexity

V (defined by (3.3)) is unbounded as t→ ∞.

Proof. Let us set Nkey = 1, ri = 1, θ̄ = 1, K∗ > 0. Let us suppose that at the initial

moment we have N = V0 nodes and the matrix K is defined by K1j = K∗, Kj1 = K∗, Kjj = 0,

where j = 1, 2, ..., V0.

At the time moment t, where t = 1, 2, ..., we can add a node and one edge connecting this

new node with our key node. Let us denote by V (t) the valency of the key node at the moment

t. The total number of the nodes at the time moment t also is N(t) = V (t) + 1. The nodes

2, 3, ..., N(t) are usual ones.

Let us find first an upper estimate of the probability Q(t) that the circuit will be destroyed

at a moment t + 1 under condition that the circuit states were in Π at τ = 0, 1, ..., t. This

means that u1(τ) = 1 for τ = 0, 1, ..., t and u1(t+ 1) = 0. Suppose that, at the time moment t,

exactly k of the N usual nodes have values 0. The value u1(t + 1) can become zero at the time

moment t + 1 as a result of the noise action on the key node. If u1(t + 1) = 0, this noise ξ1(t)

satisfies the inequality:

ξ1(t) > h+K∗(V (t) − k). (6.3)

On the other hand, at the time moment t the i-th usual node is not active only under the

inequality

ξi(t− 1) > h +K∗. (6.4)

Therefore, due to our hypothesis R3 and (6.3), (6.4), the probability Q(t) admits the estimate

Q(t) <
∑

k=0,...,V (t)

(

V (t)

k

)

exp(−β(h +K∗(V (t) − k))) exp(−β(h+K∗)k).

By summing over k one obtains

Q(t) < exp(−β(K∗V (t) + h))(1 + exp(−βh))V (t) = ρV exp(−βh), (6.5)

where ρ = exp(−βK∗)(1 + exp(−βh)). Suppose ρ < 1. By summing over t = 1, 2, ..., T one

finds

logPT > −βh +
T
∑

t=1

log(1 − ρV (t)). (6.6)
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Assume now that the valency of the key node V (t) increases at least linearly: V (t) > αt+V (0)

where α > 0. Then
T
∑

t=1

log(1 − ρV (t)) > −C − 2
T
∑

t=1

ρV (t) > −C1,

where C,C1 are positive constants. This uniform in T estimate finishes the proof 2.

Remark 1. If the condition R3 does not hold, this proof is not correct (although the

theorem could be true). Indeed, if the noises are correlated, then the probability of destruction

of many nodes may be not small.

Remark 2. If V (0) is large, running of this algorithm is similar to the preferential at-

tachment. The preferential attachment can be considered then as a probabilistic variant of the

described algorithm.

Remark 3. This algorithm can be interpreted as a greedy algorithm. Let us consider a

node without adjacent edges. The algorithm chooses a new edge, adjacent to this node, to

increase maximally the node stability, since the stability grows with valency (connectivity).

Remark 4. We do not know whether this algorithm is optimal (gives maximal value PT

for large T ) or not. Moreover, other stable algorithms are possible. They depend on properties

of φ(a) and on the parameters h,K∗.

Remark 5. Theorem 6.1 holds in a relatively simple situation when the admissible domain

Π is fixed. Actually, biological, economical and social systems survive in much more complicated

situations when Π depends on time and the Π is an unknown set. The key problem is to find

stable evolution algorithms in this case. Some ideas can be found [71, 72].

It is interesting to interprete the growth algorithm from Theorem 6.1 in the framework of

our analogy with a development of a strongly centralized country (an Empire) consisting of a

number of regions and a bureaucratic center. The evolution goal is to conserve the center. The

parameter h can be considered as an internal region resource: for greater h only a great noise

ξi leads to the region disfunctioning. The parameter K∗ determines the connection intensity

between the center and the regions. The noises can be considered as instability sources in the

regions.

We notice that the Empire should be extending. The described algorithm is as follows:

the center obtains resources from all the regions giving, in turn, a minimum of resources for

each region. The regions are disconnected. The algorithm works successfully under condition

ρ < 1. This condition holds if the internal resource parameter h and the connection force K∗
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are both large enough, if K∗ > 0 is small and h is very large, or if K∗ is very large and h > 0

is small. The algorithm, described here, can be called ” centralization ”. Possibly that, in an

opposite situation (small resources, strong connections), other algorithms (for exmaple, leading

to a cluster formation) can be more effective.

Stability depends on the parameter ρ. Expession for ρ allows us to notice an important

fact: to stabilize the circuit, it is more useful to increase of the connectivity parameter K∗ than

to concentrate resources (to increase h).

Centralization does not work if the noises ξi are correlated. Appearence of a correlated noise

can be interpreted, for example, as vanishing of resources in a large region or even in the whole

country.

7 Decentralization strategy of survival

In this section we show that, in opposite to Section 6, for many distributed systems a de-

centralization strategy can give a stable evolution process. In this case the stable evolution

can lead to more and more complex states. This result follows from the attractor theory for

infinite-dimensional dissipative dynamical systems. We shall see that the attractor theory and

complexity theory can be connected.

7.1 Systems under consideration

A typical model of a distributed system can be given by a system of partial differential

equations together with some boundary and initial conditions. Such a system can be rewritten

as an abstract evolution problem in an appropriate Banach or Hilbert space. Taking into

account linear random noises, we consider the following class of evolution equations

ut = Au+ F (u, s) +
m
∑

k=1

ξkFk(u, s), (7.1)

where u ∈ H, H is a Hilbert space with the norm ||u||, F0, Fk are nonlinear maps satisfying

some restrictions (see below), ξk are mutually independent real-valued Markov processes with

continuous trajectories. Let us assume that A is a self-adjoint negatively defined unbounded

operator with a domain D(A) ⊂ H. We define the fractional subspaces Hα ⊂ H associated with

A [31]. The space Hα consists of functions u such that the norm ||u||α = ||Aαu|| is bounded

(here α ∈ (0, 1)). We suppose that F, Fk are bounded C2-smooth maps from a bounded domain
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D(R) = {u ∈ Hα : ||u|| < R} to H for some α ∈ (0, 1). We suppose here that all functions F, Fk

also depend on a binary parameter s = (s1, s2, ..., sM), si ∈ {0, 1}. They can be considered as

”genes” that define the system structure. Below we sometimes omit dependence on s.

Reaction-diffusion equations

∂u

∂t
= d∆u+ f(u, x, s) +

m
∑

k=1

fk(u, x, s)ξk(t) (7.2)

and systems of such equations give a fundamental model for biology and ecology beginning with

seminal work [62] (see, for example, [48, 45] among many others). Here x ∈ Ω, t > 0, Ω is an

bounded domain in Rd, d = 1, 2, with a smooth boundary. In addition to (7.2), we set standard

initial and boundary conditions (for example, no flux Neumann’s boundary conditions), f, fk

are bounded in the norm C1(R). It is well known [31] that (7.2) defines a global semiflow if we

take, as an appropriate phase space, H = L2(Ω). Then for α > 1/2 the functions f(u), fk(u)

define bounded maps from Hα to H.

To use ideas of the attractor theory, let us suppose that the operator A has a countable

sequence of eigenfunctions (ψj), which form a basis in H:

Aψj = −λjψj, 0 < λ1 ≤ λ2 ≤ ..., (7.3)

where λj → ∞ as j → ∞. For each N one considers projection operators PN , QN , where PN

is an orthogonal projection on Span{ψ1, ...ψN}, QN = I − PN . Then one has a decomposition

of H to two subspaces PNH,QNH and two corresponding operators A1 = PNA,A2 = QNA.

These operators generate evolution semigroups exp(A1t), exp(A2t) satisfying estimates

|| exp(A1t)u||α ≤ βα(λ1, t)||u||, (7.4a)

|| exp(A2t)u||α ≤ βα(λN , t)||u||, α ≥ 0, (7.4b)

where βα(λ, t) = Cαt
−α for t ∈ (0, αλ−1] and βα(λ, t) = Cα exp(−λt) for t > αλ−1. We also use

estimates

|| exp(A1t)u||α ≤ λα
i exp(−λ1t)||u||α. (7.5a)

|| exp(A1t)u||α ≤ λα
i exp(−λN t)||u||α. (7.5b)

These estimates can be obtained immediately from the spectral decomposition (7.3) [31].

Let us formulate important conditions to dynamics and noises.
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Assumption 7.1. For ξk = 0 there is a stationary solution u0 of (7.1) such that

Au0 + F (u0) = 0, (7.6)

where the linear operator B = A+DF (u0) satisfies the estimate

|| exp(Bt)u||α < βα(b, t)||u||, t > 0, α ≥ 0, b > 0. (7.7)

Denote by δN the following supremum

sup
n=1,...,N, k=1,...,m

|(ψn, Fk(u0))|, (7.8)

where (f, g) denotes the inner scalar product in H.

Assumption 7.2. Let us denote

φ(h, ξ(·), q) = sup
k,T

(
∫ T+h

T
|ξk(t)|

qdt)1/q.

Suppose that for sufficiently small h the trajectories ξk satisfy

Prob{φ(h, ξ(·), q) > µh} < Φ(µ), (7.9)

where 1/q > 1 − α and Φ(µ) → 0 as µ→ ∞.

7.2 Estimate of probability to leave a small neighborhood of stationary state

Let us take a positive h < 1 and a small r > 0 and let us consider estimates of the probability

Prob(hT, r) to be in the r-neighborhood Br of u0, Br = {u : ||u− u0||α < r} within the time

interval [0, Th]. Let us set

u = u0 + v + w, v = PN(u− u0), w = QN(u− u0).

Now eq. (7.1) can be rewritten as a system, namely

vt = B1v + PNG(v + w) +
m
∑

k=1

ξk(PN(Fk(u0) +Gk(v + w))), (7.10)

where B1 = A1 + PNDF (u0), ||G(v + w)|| < c||v + w||2α, ||Gk(v + w)|| < c||v + w||2α, and

wt = A2w +QN(DF (u0)(v + w) +G(v + w) +
m
∑

k=1

(Fk(u0) +Gk(v + w))ξk). (7.11)
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Denote by Wr the neighborhood Wr = {u : ||u−u0||α < r}. If r is small enough, Wr ⊂ BR.

For integers T = 0, 1, ... let us estimate the probability P (N, h, T ) that u(h(T +1)) /∈ Wr under

condition that u(hT ) ∈ Wr. Due to Assumption 7.2 and since all ξk are Markov, one can,

without loss of generality, set T = 0. First we find a priori estimate of ||v(t)||α, ||w(t)||α(t)

for t ∈ [0, h] that holds with a probability close to 1. The second step is the need estimate of

leaving of Br at t = h.

Let us introduce auxiliary functions V (t) = supτ∈[0,t] ||v(τ)||α, W (t) = supτ∈[0,t] ||v(τ)||α.

Using evolution operators one obtains

v(t) = R1(v(·), w(·), t), w(t) = R2(v(·), w(·), t), 0 < t < h, (7.12)

where nonlinear operators Ri are defined on maps v, w of t ∈ [0, h] such that the norms |||v||| =

supt∈[0,h] ||v||α and |||w||| = supt∈[0,h] ||w||α are bounded. They have the form

R2 = exp(A2t)w(0)+
∫ t

0
exp(A2(t−τ))QN (DF (u0)(v+w)+G(v+w)+

m
∑

k=1

ξkFk(u0 +v+w))dτ,

(7.13)

R1 = exp(Bt)v(0) +
∫ t

0
exp(B(t− τ))PN(G(v + w) +

m
∑

k=1

ξk(Fk(u0 + v + w)))dτ. (7.14)

Now we can estimate the norms ||Rw||α, ||R
v||α in a standard way [31]. By (7.4) one finds

|| exp(−A2t)w(0)||α ≤ r exp(−λNh), (7.15)

|| exp(−Bt)v(0)||α ≤ r exp(−bh). (7.16)

Furthermore,

||G(v + w)|| < c(||v||α + ||w||α)2, ||(DF (u0)(v + w)|| < c(||v|| + ||w||). (7.17)

The typical integrals If =
∫ t
0 f(t)ξk(t)dt can be estimated by the Hölder inequality

|If | ≤ (
∫ t

0
|f |q1dt)1/q1(

∫ t

0
|ξk|

q
2dt)

1/q2,

where 1/q1 + 1/q2 = 1. Let us set q1 = (1− ρ)α−1, where ρ is small enough and 1− ρ− α > 0,

q2 = (1 − ρ− α)−1(1 − ρ). Then one has

||
∫ t

0
exp(A2(t− τ))QN

∑

k

(Fk(u0 + v + w)ξk)dτ ||α ≤

28



≤ (
∫ h

0
|ξk(t)|

q2dt)1/q2(
∫ t

0
|| exp(A2(t− τ))QN

∑

k

Fk(u0 + v + w)||q1

α dτ)
1/q1 . (7.18)

For t > τ estimate (7.4) gives

|| exp(A2(t− τ))QNFk(u0 + v + w)||α < βα(λN , t− τ)||Fk(u0 + v(τ) + w(τ))||.

Therefore,

||
∫ t

0
exp(A2(t− τ))QN

∑

k

ξkFk(u0 + v + w)dτ ||α ≤

≤ cλ−s
N φ(h, ξ(·), q2)(

∑

k

||Fk(u0)|| + C(V (t) +W (t))), (7.19)

where s(q1, α) = (α− 1)α(1 − ρ)−1 > 0. To estimate

I1 = ||
∫ t

0
exp(B(t− τ))PN

∑

k

ξk(τ)Fk(u0 + v(τ) + w(τ))dτ ||α,

we use similar arguments. One has then

I1 ≤ φ(h, ξ(·), q2)(
∫ t

0
βα(b, t− τ)dτ))1/q1(δN + C(V (t) +W (t)). (7.20)

In a similar way one can estimate all other contributions in the right hand sides of (7.12). One

has (by summing the estimates obtained, s′ = 1 − α > 0, 0 < t ≤ h < 1):

V (t) ≤ r exp(−bt) + c0λ
−s′

1 (r2 + (δN + C1(V (t) +W (t)))φ(h, ξ(·), q2)), (7.21)

W (t) ≤ r exp(−λN t)+c1λ
−s′

N (r2+C(V (t)+W (t))+φ(h, ξ(·), q2)(C3+C1(V (t)+W (t)))). (7.22)

Let us set 0 < r0 < r < 1, where r0 is a constant uniform in δN , λN for small δN , λ
−1
N . Let

φ(h, ξ, q2) < c3 min{δ−1
N , λs′

N}, c3 > 0. (7.23)

Then (7.21), (7.22) entail

V (t),W (t) < C̄r, 0 ≤ t ≤ h, (7.24)

where C̄(r0) is a constant such that C̄r > 2r + c0λ
−s′

1 C̄r2 (clearly this constant can be taken

uniform in δN , λN for small δN , λ
−1
N ). Notice now that, according to Assumption 7.2, inequality

(7.23) holds with a probability pN(δN) that goes to 1 as δN → 0 and N → ∞.

Lemma 7.1 Let us assume that r, C̄ satisfy

r > r exp(−bh) + c0λ
−s′

1 C̄r2. (7.25)
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Then under condition (7.23) and if δN , λ
−1
N are sufficiently small, one has u(0) ∈ Br implies

u(h) ∈ Br.

To prove this lemma, we use (7.24) and (7.21), (7.22). This gives V (h) ≤ r exp(−bh) +

c0λ
−s′

1 C̄r2 + (δN + c4r)φ(h, ξ, q2). If V (h) > r, we have a contradiction with (7.24) and (7.25).

In a similar way, W (h) ≤ r exp(−λNh)+ c1λ
−s′

N (C̄r+ c5φ(h, ξ, q2)). If W (h) > r this inequality

also leads to a contradiction with (7.24) 2.

Using this lemma, we obtain the following assertion:

Proposition 7.2 Let us choose a C̄, r satisfying (7.25). Suppose BC̄r ⊂ Π. Then if u0 ∈ Br,

the probability Pd that u(t) /∈ Π for some t ∈ [0, h], satisfy

Pd < Prob{φ(h, ξ, q2) > c3 min{δ−1
N , λs′

N}. (7.26)

Now we shall use these estimates to investigate a biological mechanism of the stable evolu-

tion.

7.3 Stability of complex patterns

Let us consider eq. (7.2). To understand the decentralization mechanism, let us remind

the basic facts about biological systems. Cells are separated in compartments and biochemical

reactions work in the corresponding compartments [43]. Moreover, we suppose that Π is a

subdomain of Hα (for example, it is a ball of the radius R centered at u0). To simplify the

statement, we set m = 1.

We can describe this compartment structure by the following assumptions:

A1 The function f1 has the form

f1 =
L
∑

l=1

χl(u, x, s), (7.26)

χl are smooth functions of u and x with mutually disjoint supports Ωl in x, where c0r <

diam(Ωl) < c1r, r is a parameters, c0, c1 are independent of r as r → ∞,

A2 Equation (7.2) without noises (i.e., for f1 = 0) has a stable stationary solution u0 such

that equation (7.6) holds, u0 ∈ Π and

dist{u0, ∂Π} > R0.
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Let us denote

aln(s) =
∫

Ωl

χl(u0(x), x, s)ψn(x)dx, (7.27)

where ψn are eigenfunctions of the operator A = −∆ (see (7.3)). Under A1 inequality (7.8)

can be then rewritten as follows

Z(s) = sup
n=1,...,N

|
L
∑

l=1

al(s)| < δN . (7.28)

Even for a simple case, when aln are linear functions of s, for example,

aln = blnsi(l) + cln, (7.29)

an attempt to satisfy (7.28) leads to a linear boolean programming problem, which, in general,

is an NP-hard one. Here the output size for this problem is N +M , where M = maxlength(s).

In general, it is impossible, within a time polynomial in N + M , to find s satisfying stability

conditions (7.28).

Nonetheless, under some restrictions to Z(s) one can show that there are possible poly-

nomial algortihms and thus one can expect that there is a stable random evolution process

allowing to find s satisfying (7.28). We apply here a powerful tool from the probability the-

ory : concentration inequalities [11, 10, 57, 58] and an idea of the phase transitions in hard

combinatorial problems [77, 13, 14].

Assumption A3Suppose that the function Z(s) satisfies bounded differences inequality:

|Z(s1, s2, ...si−1, si, si+1, ..., sM) − Z(s1, s2, ..., si−1, s
′
i, si+1, ..., sM)| < µi, 1 ≤ i ≤M, (7.30)

and, moreover, µi satisfy

DZ =
M
∑

i=1

µ2
i < κ(M), (7.31)

where κ(M) → 0 as M → ∞ for fixed L,m,N .

Consider some examples when (7.31) holds. Let us consider the case when L = o(M 1/2),

i.e. the domain number is much less than the gene number. If (7.29) are fulfilled and indices

i(l) are chosen randomly among the set {1, 2, ...,M} of all possible indices (that is natural from

the biological point of view) then for a random map l → i(l) one has µi < constLM−1 that

gives even a stronger asymptotics DZ < constL2M−1.
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A more intricated case occurs if each aln depends on genes si1(l), si2(l), ..., siK(l), where K is

a natural number that determines how much genes are involved in genetic controls of reactions

in a compartment. There occur maps l → ij(l). We can suppose that they are random and

then one has DZ < constK2L2M−1. If K is bounded as M → ∞ one obtains that (7.31) again

holds.

Now we use the following fundamental theorem, so-called concentration inequality (see [10]).

We formulate it below for our particular case.

Theorem. Suppose that X1, X2, ..., XM are independent random boolean variable, Xi takes

the value 1 with a probability pi and 0 with the probability 1 − pi. The random variable Z =

Z(X1, ..., XM) satisfies

Prob{|Z − EZ| > t} ≤ 2 exp(−t2/DZ). (7.32)

Let us fix numbers N,m. Let us consider the following problem associated with (7.28).

Problem 7.1 To find the probabilities 0 ≤ pi ≤ 1 such that the average EZ satisfies

2|EZ| < δN . (7.33)

The next assertion shows that if a solution of this problem on real pi exists, the solution

of boolean problem (7.28) can be found in a polynomial (in M,L) time. Notice that the real

problem for averages can be much simpler than this boolean one.

Proposition 7.3 Suppose

δN > 4(DZ)1/2 (7.34)

and problem (7.1) has a solution. Then there exists a solution s∗ of boolean problem (7.28).

The proof is trivial: probability (7.32) is less than 1, thus a solution exists.

As an example, let us consider the case (7.29). Then the associated problem is a linear

programming one: to satisfy inequalities

−δN <
L
∑

l=1

(blnpi(l) + cln) < δN , (7.35a)

for n = 1, 2, ..., N and

0 ≤ pj ≤ 1, 1 ≤ j ≤M. (7.35b)
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Suppose that N,L are fixed and the number of genes M → ∞. We can verify existence of

solution of (7.35) in a time polynomial in M .

This fact and Prop. 7.2 allows us to propose the following algorithm of the evolution. We

increase the genome, i.e., the gene number M , the number N and construct more and more

refined decompositions of Ω in smaller and smaller domains in order to satisfy (7.33), (7.34). If

the growth M,N satisfies restrictions N = o(M), δN → 0 as N → ∞, then for large N one can

expect that problem 7.1 has a solution such that (7.34) holds and this solution can be found

within an average time polynomial in N (see [13, 14, 77]). Indeed, roughly M is the number

of variables and N is a number of conditions to satisfy. In such a situation even NP- hard

problems (like to K-SAT problem) can be resolved in an average polynomial time by greedy or

local search algorithms.

8 Conclusion

Here we discuss physical and biological interpretations and consequences, connections with

experiments. There exists a number of approaches, theories and speculations about biological

evolution (see an overview of some of them in [51]). We proposed a mathematical approach,

having a goal to confirm the one of them, so-called Red Queen hypothesis proposed by the

famous biologist L. van Valen and formulated more mathematically by M. Gromov and A.

Carbone.

In previous works [67, 64, 65] we have considered circuit models important in biology,

chemistry, economics and physics. We first find some properties of stable evolution algorithms

for these circuits. This question is connected with the graph evolution theory pioneered by

Erdös and Rényi [18] since circuits can be associated, in a natural way, with directed weighted

graphs. Then an evolution adds edges and vertices to a graph. An evolution algorithm is a

program to add these edges and vertices. It is interesting to note that the Erdös and Rényi

evolution leads to so-called universal graphs (about them [74]).

For circuits and for simple viable domains Π ( time fixed rectangles) one can show that the

Erdös-Rényi evolution is unstable but the Albert - Barabasi preferential attachment algorithm

[6], may be stable. We showed that the larger valency of some key nodes the stabler circuit

and the valency have a tendency to increase (cannot be bounded by a constant within all

times). These results are in a good accordance (qualitatively) with experimental facts [35, 37].
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Indeed, in Nature we observe so-called free scale graphs that can be obtained by the preferential

attachement.

In this paper we gave the first example of the stable circuit growth performed under some

rigid restrictions (at each step one can add at most one edge and one node). The networks,

obtained in such a way, also occur in biological applications (O. Radulescu, private communi-

cation).

The result on increasing of the Kolmogorov complexity and the length of genetical code is

confirmed by experimental data, in general times. Actually, the code length also had a tendence

to increase during evolution process (although this increasing was non-monotone).

This approach also leads to the concept of a genetically programmed death (developed, in

particular, by V. M. Dilman [15]).

At last, results on spatially extended systems (obtained here and earlier, see [66, 64, 65])

also are in a good accordance with biological facts. Here we showed that if a system generate

typical patterns observed in biological applications (see [62, 45, 48, 50]) and if these patterns in

an evolution process become more and more complicated, then such an evolution process may

be stable. Results of Section 7 lead to relations that can be checked experimentally.
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