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Abstract

We introduce new random dynamical systems generalizing neural networks with ran-
dom sources. We study homeostasis of such system. Namely, following the viability
theory, we suppose that there is a domain D in the phase space such that if the system
state leaves D, the system will be destroyed.

Under some assumptions, we show that a generic system of such type is, in a sense,
unstable under fluctuations. For a system with fixed parameters, the system state leaves
D within the time T with a probability P (T ) such that P (T ) → 0 as T → ∞. However,
such systems can survive for large times, i.e., P (T ) > δ > 0 for all times, if the system
parameters evolve in time.

Some arguments show that if fluctuations are, in a sense, strong, the parameters should
be discrete. This allows to connect this evolution problem with theory of complexity and
to show that the problem of survival may be very difficult, at least NP-hard.

We consider some morphogenesis problems for genetic networks. We show that these
networks are capable to construct any spatio-temporal patterns. As an illustration, the
segmentation problem in Drosophila is considered and the pattern stability problem is
investigated.

Using some recent ideas for NP-complete problems, we formulate, as a hypothesis,
”Freedom Principle”: if a system has sufficiently many internal parameters to adjust, then
the survival is possible, namely, there exists an effective heuristic algorithm of parameter
evolution such that P (T ) > δ > 0 for all times T .
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1. INTRODUCTION

1.1 Homeostasis problem. Circuits. Circuit evolution

Our start point is a remark from [43], where M. Gromov and A. Carbone formulated the

following problem: ”Homeostasis of an individual cell cannot be stable for a long time as

it would be destroyed by random fluctuations within and out of cell. There is no adequate

mathematical formalism to express the intuitively clear idea of replicative stability of dynamical

systems” ([43], p.40).

This assertion contains two hypothesis. First, that functioning of biological systems are

unstable under random perturbations. Second, these systems can be stabilized by replication

(evolution).

The goal of this paper is to formulate mathematically and prove these hypothesis for some

classes of systems important in biology, chemistry and other applications. We introduce a

measure of homeostasis stability under random perturbations. For some important classes of

systems we show that almost all individual systems with fixed parameters are unstable, in a

sense, for large times T , however, populations of evolving systems with changing (from time to

time) parameters can be stable even as T → ∞. Our approach to this homeostasis problem

uses probabilistic methods and theoretical computer science approaches. The goal is to show

mathematically that this approach explains main properties of biological evolution, for example,

gene code existence, replication with seldom mutations, existence of great evolution tree etc.

(for biological consequences see Conclusion).

The homeostasic concept was proposed by Claude Bernard [12]: ”La fixité du milieu intérieur

est la condition d’une vie libre et indépendante.” (” Constance of the internal environment is

the condition for a free and independent life”). This is the underlying principle: homeostasis

means supporting of life functions of a system. Biological molecules and chemical mechanisms

in the cell are fragile. Thus, in order to support their functioning, main characteristics of the

cell (temperature, pressure, pH, reagent concentrations) must be within a narrow domain [3, 11]

independently of external medium oscillations. For example, the temperature of a human body

must lie within 35 − 42C0. Sharp changes in the external medium can destroy the system.

Biological, economical and social systems can survive only when their states stay within some

precribed domains (we denote these domains by Π).

Basing on these ideas we considered some known and new mathematical models. These
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models contain a dynamical component and a stochastical part describing a random environ-

ment. For such models a natural measure of the stochastical stability can be introduced. This

measure is a probability PT (Π) that for t ∈ [0, T ] the system state (that can evolve in time)

stays in the domain Π. This measure is well known and studied [86]. For brevity, if the system

state stays within Π for t ∈ [0, T ], we say that our system survives on [0, T ]. Dynamical systems

with such admissible domains Π are well studied [5, 6, 7, 8].

Besides this stability measure, in this paper the idea of a ”generic” system plays an impor-

tant role. Two concepts of genericity are known.

Suppose a system depends on parameters P. Following standard ideas [46, 15] of differential

topology, we say that a property holds for a generic system if this property holds for an open

dense set in the space of possible values of the parameters P. Another approach is to introduce

a measure µ on the set of values P. Then ”generic” property is valid for all values P besides,

maybe, a set S such that µ(S) = 0. In the other words, this property holds for almost all P

with respect to µ (an interesting discussion on these two concepts one can find in [52]). We

shall mainly use the second approach.

For the considered systems we show their instability if their parameters P are fixed. More

precisely, we show that the survival probability PT (Π) → 0 as T → ∞ for a generic system.

For some important particular class of the systems (genetic circuits), this property holds for

any circuits and the probability PT (Π) can be estimated.

The second main idea is that system evolution can stabilize unstable systems. If we consider

a set of unstable systems with parameters Pi(t), which can change from time to time, then the

limit of the survival probability PT (Π) as T → ∞ may be positive. Briefly, a fixed system is

almost always unstable but an infinite chain of evolving systems may be stable.

As a model of complex biological systems, we consider here circuits (networks). This choice is

natural since last decades a large attention is given to problems of global organization, stability

and evolution of complex networks such as protein and gene networks, networks of metabolic

reactions, neural and economical circuits, Internet etc. (see [54, 55, 44], for an overview [2]).

The simplest mathematical model of such network is a (directed) graph. For example, for

a gene network we can associate with this network a graph where a node describes a gene, the

i-th node is connected with the j-th one if the i-th gene acts on j-th one. The evolution of such

graphs can be considered as an algorithm adding or removing edges and nodes. Stability can
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be examined in different contexts. For example, we can examine how many edges (or nodes)

must be eliminated in order to destroy connectivity of the graph. In biological applications,

such an elimination may simulate mutations.

The first theory of graph evolution was developped by Erdos and Rényi [32, 2, 60]. They

supposed that, at time moments 0, 1, 2, ..., one adds to graph a new edge with probability p.

This theory leads to a Gaussian distribution C̄(k) of the valency of a node. Recall that the

valency of a node is the number of the nodes adjacent to this node. The quantity C̄(k) is the

probability that a node has k adjacent nodes [2]. Recently it was found that real networks has

another structure, namely, the so-called scale-free structure. Here C̄(k) ≈ const k−γ, where the

exponent γ lies usually within (2, 3). Such networks have few number of nodes with a great

valency, whereas the most of the nodes have a small valency.

Other interesting properties of graphs associated with actual biological, informational and

economical systems can be described as follows. The graph diameter is restricted (the diameter

is the maximal length of the shortest path connecting two nodes). The diameter defines the

speed of dynamical processes in the circuit, thus a small diameter is useful to survive in the ran-

dom environment. Moreover, studying of biological circuits showed that the averaged valency

〈C〉 has increased during evolution. Here 〈C〉 can be computed via C̄(k): 〈C〉 =
∑

0≤k≤∞ kC̄(k).

Another property found experimentally for protein nets is that more connected proteins are

more important for organisms: letality correlates with valency [55].

Stability of the free-scale structures is high with respect to a random attack when nodes to

eliminate are chosen randomly. However, this stability is weak with respect to a ”terroristic

attack” (when one eliminates the most connected nodes).

The first evolution algorithm leading to the scale-free organization was proposed by Albert

and Barabasi (see [2]). This algorithm uses the idea of a preferential attachment: the probability

that a new edge is incident to the i− th node is proportional to the valency of this node. Besides

this algorithm, after it was investigated a number of other growth algorithms leading to the

scale-free organisation, in particular, an algorithm proposed by [73] generates an hierarchical

modular structure observed in methabolic networks.

However, metabolic reaction networks or gene networks cannot be described completely by

a simple graph model. They constitute some complex dynamical system, where a scheme of

interaction of substrats, ferments or genes can be associated with a graph. A part of the sub-
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strats enters this system from an external medium (input) and another part can be considered

as an output (products). It is well known that these systems succesfully support an output

independent of fluctuating input [61, 3].

It is difficult to propose a mathematical model for metabolic reactions, neural or gene

interactions in detail. Circuit models were proposed ( [47, 57, 37, 31, 66, 77, 76] among many

others, see [80, 14] for an overview) to take into account theoretical ideas and experimental

information. Some models [31, 82] use Boolean algebra (so-called boolean switch networks).

Gene net models [66, 77] can be considered as a generalization of the famous Hopfield model

of attractor neural network [47]. We consider mainly here a simplified version of [66], however,

we take into account random fluctuations and evolution of network parameters. This network

model is formulated in subsection 1.2, the model for network evolution is described in subsection

1.4. We assume that gene (protein) interaction is a pair one and it is defined by a m × m

matrix K. A directed graph can be associated with this matrix: two nodes are connected if the

corresponding entry of K is not equal 0.

Our evolution model can be considered as a combination of graph evolution approaches

described above and dynamical circuit models. It can be described as follows. One has a

discrete set Y (finite or countable). This set can be considered as a ”genetic code”. One

also has a map from Y to the set P of the network parameters (the number of genes m, the

interaction matrix K and other). ”Evolution” is a time continuous Markov process with values

in Y , which changes y and, therefore, system parameters. Such approach is known in the neural

and gene network theory [14], here we extend previous models addmitting that the network

may grow unboundedly with time.

Our attention is focused on the following problems for genetic networks and their evolution.

I Stochastic stability of the networks with respect to fluctuations describing an internal

noise and environment changes;

II Pattern capacity of the gene networks and patterning algorithms;

III We investigate stable evolution algorithms such that limPT (Π) > 0 as T → ∞, when a

chain of evolving unstable systems has non-zero chances to survive for large times. In this part

our goal is to explain, with the help of this stability approach, the main properties of evolution

(why systems must make copies and the mutation probability is small, why the genetic code

size cannot be bounded during the evolution process, why the evolution tree must be large and
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the networks should be scale-free, etc).

To study these problems we introduce a concept of a priori computational complexity of

evolution problems. It allows us to apply some ideas and notions from complexity theory

[35, 78, 41, 42, 69]. Indeed, it seems that many evolution problems are, in a certain sense,

”complex”. Roughly speaking, since ”almost all” systems are unstable, to construct a stable

system is a ”complex” problem. In fact, for simplified models the evolution algorithm must

resolve a complicated , maybe, even NP-complete problems (about NP-completeness see books

[35, 69], for biological applications, see [72]). We formulate some such problems.

We also consider evolution algorithms for genetic networks. This question is connected with

the graph evolution theory pioneered by Erdos and Rényi [32] since circuits can be associated,

in a natural way, with directed graphs.

IV Problem of evolution speed: to estimate running time of evolution algorithms allowing

to construct an unique structure with a large fitness (”biologically reasonable”) among many

possible structures. This problem is one of key points of evolution theory, was posed still by

Charles Darvin. In fact, it is not obvious how to obtain a complex effectively working organ

by an evolution using a local search, based on random mutations and selection. For example,

the cell can be considered as ”a biological computer” proceeding a complicated feedback [67, 3]

and it is unclear how one can construct such a computer (consisting of unstable elements) by

evolutionary mechanisms. It is clear only that this problem is very difficult.

”To suppose that the eye, with all its inimitable contrivances for adjusting the focus to

different distances, for admitting different amounts of light, and for the correction of spherical

and chromatic aberration, could have been formed by natural selection, seems, I freely confess,

absurd in the highest degree. When it was first said that the sun stood still and the world

turned round, the common sense of mankind declared the doctrine false; but the old saying of

Vox populi, vox Dei, as every philosopher knows, cannot be trusted in science. Reason tells

me, that if numerous gradations from a perfect and complex eye to one imperfect and simple,

each grade being useful to its possessor, can be shown to exist; if further, the eye does vary

ever so slightly and the variations be inherited, which is certainly the case; and if any variation

or modification in the organ be ever useful to an animal under changing conditions of life, then

the difficulty of believing that a perfect and complex eye could have been formed by natural

selection, though insuperable by our imagination, can hardly be considered real. How a nerve
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comes to be sensitive to light, hardly concerns us more than how life itself first originated; but

I may remark that, as some of the lowest organisms, in which nerves cannot be detected, are

known to be sensitive to light, it does not seem impossible that certain elements in their tissues

or sarcode should have become aggregated and developed into nerves endowed with special

sensibility to its action.” (Ch. Darwin, [24], Chapter VI).

This organ development problem has been considered in many books and papers, for ex-

ample, see [74] and references in it. We propose a mathematical formalization of this problem.

Then an answer can be connected with the following mathematical problem: for some NP-

complete problems with a random structure, whether there exist algorithms [21, 35], which

solve these problems within a relatively short running time for a certain subclass of instances.

Recall that the main difficulty in NP-complete problems is that we need a global exhaustive

search, which takes an extremely large running time. In framework of some simplified models

we are going to show, by some algorithmic ideas invented recently (see [19] for a review) and

results [89, 91, 92, 93, 94], that complex organs can be constructed by genetic circuits step by

step, in a gradual manner. Such a conclusion confirms Ch. Darwin ideas (see above).

The main idea is as follows. In Section 4 we show that genetic networks can construct any

spatio-temporal patterns [89, 91, 92, 93, 94]. However, it is not sufficient yet to answer to the

formidable running time need, in general, for a local search algorithm to find a biologically rea-

sonable structure among many of potentially existing structures. To overcome the key obstacle,

we propose to address to recent works on NP-complete problems such as the satisfiability of

boolean constraint problem (k-SAT), different graph problems, boolean programming problem

(see [1, 19, 4, 25, 18]. It has been shown that, under some conditions, these problems can be

effectively resolved.

To explain the main idea, recall that it is a fundamental conjecture of theoretical computing

science that there exists no algorithm capable of solving NP-complete problem with inputs of

size N in a time bounded by a polynomial of N. Consequently, when we are dealing with such

a problem one necesseraly uses algorithms which take exponential times on some inputs.

Let us consider, for example, the k-SAT problem. The task is to satisfy m boolean con-

straints. Each constraint is a disjunction of k boolean variables Ai1 , Ai2 , ...Aik or their negations

taken from the list A1, ..., An of n boolean variables. The total search takes 2n trials whereas

the best known algorithms have running time 2αn, where α << 1 is a positive coefficient [23].
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However, if we consider a generic problem, where constraints are chosen randomly, the

situation becomes better. Then the solution set can be described as follows. If the relation

f = m/n is sufficiently large, the most of randomly constructed problems have no solutions. In

the contrary, if f is small, a solution almost always exists and can be found by relatively simple

algorithms (say, greedy ones). Such algorithms, based on heuristic ideas, have a polynomial in

n running time, i.e., they are fast. Only in relatively small domain of values f the ”generic”

k-SAT problem is actually difficult: a solution can exist and, to seek this solution, the known

algorithms require an exponentially running time 2αn. The good situation, where f is large,

describes the ”free” case, where the alphabet A1, ...An is great enough with respect to the

constraint number. The fact that then, at least in a generic situation, a solution can be found

by a fast algorithm, can be named the ”Freedom Principle”.

In many works the genes were considered as boolean variables, a gene can be expressed

(turned on) or not expressed (turned off) [3, 57, 80, 14]. We assert here, using these mathemat-

ical arguments, that, for biological evolution, the Freedom Principle works successfully since

there is a formidable set of genes generating a large set of proteins with different properties.

However, to use this richness, the Nature needs genetic circuits.

1.2 Systems under consideration

1.2.1 Network models

Let us consider first the model from [66, 76], which has the following form:

∂ui

∂t
= Riσ(

m∑
j=1

Kijuj +
p∑

l=1

Milθl(x) − ηi) − λiui + di∆ui, (1.2.1)

where m is the number of genes included in the circuit, ui(x, t) is the concentration of the i-th

protein, λi are the protein decay rates, Ri are some positive coefficients and di are the protein

diffusion coefficients. We consider (1.2.1) in some bounded domain Ω with a boundary ∂Ω.

The real number Kij measures the influence of the j-th gene on the i-th one. The assump-

tion that gene interactions can be expressed by a single real number per pair of genes is a

simplification excluding complicated interactions between three, four and more genes. Clearly

such interactions are possible, however in this case the problem becomes mathematically much

more complicated.

The parameters ηi are activation thresholds and σ is a monotone function satisfying the
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following assumptions

σ ∈ C∞(R), lim
z→−∞

σ(z) = 0, lim
z→+∞

σ(z) = 1, (1.2.2)

|
dσ

dz
| < C exp(−c|z|), σ′(0) = 1. (1.2.3)

The well known example is σ(z) = (1 + tanh z)/2.

The functions θl(x) can be interpreted as densities of proteins associated with the maternal

genes. The matrix Mil describes the action of the l-th maternal gene on the i-the gene. To

(1.2.1), we should add the boundary and initial conditions. Notice that then eqs. (1.2.1) are

well posed: solutions exist, they are a priori bounded, globally defined for all t > 0. This

system possesses a global finite dimensional attractor. These general facts can be easily proved

by standard methods.

This model takes into account the three fundamental processes: (a) decay of gene products

(the term −λiyi); (b) exchange of gene products between cells (the term with ∆) and (c)

gene regulation and protein synthesis. Notice that if di = 0 this model of gene circuit can be

considered as a Hopfield’s neural network [47] with thresholds depending on x. The Hopfield

system is a basic model in the theory of attractor neural networks [47].

Let us fix a function σ satisfying (1.2.2), (1.2.3) and functions θi. On the contrary, we con-

sider m, Kij, Mil, λi, di, Ri and ηi as parameters P to be adjusted, P = {m,K,M, η, λ, d, R}.

Model (1.2.1) allows to use experimental data on gene regulation (see [76, 66, 53]) to fit pa-

rameters P. The main method to study (1.2.1) was numerical simulations, for example, works

[76, 66, 53] are devoted to the segmentation in Drosophila. The [77] analyses complex patterns

occurring under a random choice of the coefficients Kij . Numerical results of [76, 66, 53] have

elucidated gap-gene interactions in Drosophila. Let us recall that, during Drosophila’s em-

bryo development, 6 gap genes (Knips, Hunchback, Kruppel, Tll, Cadal, Giant) and pair-rule

genes form a periodic pattern formed by some segments (segmentation process). The main

maternal gene, involved in this process, is Bicoid (Bc). An interesting experimental fact about

this process is that the segmentation process is remarkably stable with respect to mutations

(elimination of some genes), fluctuations of bicoid concentration and variations of embryo size

L [51].

To investigate this stability with respect to the morphogene concentrations and mutations,
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we can consider random θl or random thresholds ηi. For example, one can set

ηi = η̄i + ξi(t)

where ξi are random time functions.

Eqs. (1.2.1) are very complex and thus it could be useful to consider simplified versions of

these equations. Let us consider a variant of (1.2.1), where diffusion is removed, namely

∂ui

∂t
= Riσ(

m∑
j=1

Kijuj +
p∑

l=1

Milηl(x) − ξi(t)) − λiui, (1.2.4)

where x is involved as a parameter through thresholds ηi(x), ξi(t) being random noises. A

similar model was first introduced for biochemical applications in [38]. The initial data are

ui(x, 0) ≡ si(x). Another possible model is a dynamical system with discrete time, for example,

defined by the following iterative process

ut+1
i = riσ(

m∑
j=1

Kiju
t
j + θi(x) − ξt

i), (1.2.5)

where t = 0, 1, 2, ..., T , T is an integer, ξt
i are random functions of discrete time t. This model

can be considered as a discrete time version of (1.2.4), where diffusion and degradation are

removed. On the other hand, this system makes a biological sense. In fact, if θi are constants

then eqs. (1.2.5) reduce to the classical model of the neural network theory well studied in last

decades [14, 31, 37, 27]. For patterning problems, this system describes pattern formation by

the so-called sequential induction [3]. The signals that organize spatial patterns of an embryo

typically act over short distances. We can consider concentrations u1(x) as a result of the first

patterning round, u2(x) of the second round etc. In principle, for such a process Kij and σ also

can depend on t. ”It is chiefly through sequential inductions that the body plan of a developing

animal, after being first roughed in miniature, becomes elaborated with finer and finer details

as development proceeds” ([3], p.1169).

If we assume that σ is the Heaviside step function, i.e. σ(z) = 0 for z < 0 and σ(z) = 1 for

z > 0, and that ri = 1, eqs. (1.2.5) give an example of a boolean circuit. Such circuits are well

studied and applied to genetic regulation problems [80, 14, 82]. ”Like an input-output logic

device, an individual gene is thus turned on and off according to the particular combination of

proteins bound to its regulatory regions at each stage of development” ([3], p. 1187).
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One can also use general boolean circuits with non-pair interactions, for example

ut+1
i = σi(u

t
i1
, ut

i2
, ..., ut

il
, θ(x)) (1.2.6)

where σi are boolean functions of boolean arguments, indices ik and integer l can depend on

i, real arguments θ1, ..., where given functions θl describe effects of maternal gene influences.

Boolean models for gene nets were introduced in [57].

1.2.2. Polynomial and other systems

Let us consider general systems with random sources

du

dt
= F (u, ξ), (1.2.7)

where F = (F1, ..., Fn), u = (u1, ..., un) are unknown time functions, ξ(t) = (ξ1, ..., ξp) are

random functions. It is difficult to study such general situation and usually one linearizes

(1.2.7) with respect to ξ [49]. The well studied classical models are given by (see [49] for

detail):

a) stochastical differential equations with white noises

du = f(u)dt +
p∑

l=1

gl(u)dWl, (1.2.8)

where Wl are the standard Wiener processes;

b) stochastical differential equations with Ornstein-Ulenbeck noises

du

dt
= f(u) +

p∑
l=1

ηlgl(u), (1.2.9)

where ηl are defined by

dηl = −γldt + σldWl

or more complicated stochastical equations.

Systems with polynomial gl, f often occur in biological and chemical applications for example

in population dynamics. In this case

fi = Pi0(u), (gl)i = Pil(u), (1.2.10)

where Pil are polynomials of degree rik:

Pik =
∑

|α|≤rik

aα,iku
α. (1.2.11)
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Here α denotes the multiindex α = (α1, α2, ..., αm), where αi ≥ 0, |α| =
∑

i αi and uα =

uα1

1 uα2

2 ...uαm
m .

Polynomial and circuit systems are related: under some assumptions a polynomial system

can be reduced to a circuit (1.2.4) [68]. Such situation occurs if we are dealing, for example, with

a simple chemical reaction involving a substrate S, an enzyme X and a product P . This reaction

can be described by three differential equations with nonlinearities quadratic in concentrations

X, P, S. Supposing that the concentrations S, P are fast variables and excluding equations for

X by a standard procedure, one obtains a differential equation for the concentration S with a

nonlinearity having sigmoidal form, where σ is the Michaelis -Menten function [68]: σ(X) = 0

if X < 0, σ(X) = C(K + X)−1, if X ≥ 0 and where K, C are positive constants.

Let µ(a) be a gaussian measure on the space of all polynomials, with a strictly positively

defined covariation matrix. This measure induces a measure on the set of all polynomial

systems, since each system is defined by polynomials Pik. Below the words ”almost all” mean

that an assertion holds for all poynomials except for a set S of polynomials of measure 0:

µ(S) = 0.

New class of systems. We introduce here a new class of systems with analytical nonlinear-

ities, which includes both many circuits and all polynomial systems. Let us suppose that in

(1.2.7) functions Fi(u, ξ) are pfaffian [58], a definition of the pfaffian functions can be found in

subsection 4.3. Pfaffian functions enjoy remarkable properties [58].

1.3 Assumptions to random processes

1.3.1 Assumptions to fluctuations

Let us formulate some assumptions on the random process ξi(t). We suppose that this

process is a time homogeneous Markov process with values in Rp. Denote by P (t, x, B) the

transition probability from x to the set B within time t, t ≥ 0. Let us recall [39] that such a

process is stochastically continuous if for each point x ∈ Rp and each neighborhood Ux of this

point

lim
t→0

P (t, x, Ux) = 1. (1.3.1)

The following assumption is very important in coming sections.

Assumption 1.3.1. Suppose ξ satisfies the above assumptions, i.e., it is a time homoge-

neous stochastically continuous Markov process. Moreover, let us assume that for each compact
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K ⊂ Rp, for any subset B ⊂ Rp of non-zero measure and any t > 0

infx∈K P (t, x, B) > 0. (1.3.2)

Notice that the standard Wiener and many diffusion processes satisfy this assumption [39].

Condition (1.3.2) can be interpreted as an extremality of random perturbations, they can take

large values. One can say that the system is in an extremal random environment.

1.3.2 Stochastic stability under random fluctuations

We say that a system (1.2.4) ”survives” (supports ”homeostasis”) if the concentrations ui

lie inside a compact set Π ⊂ Rm with non-empty interiour in the u -phase space.

This set Π can be called the admissible domain. Let us assume, moreover, that Π ⊂ Rm is

a subset of the nonnegative cone Rm
+ = {ui ≥ 0}. If, moreover, Π is a subset of the cone

Coni1,i2,...,is = {u : u ∈ Rm
+ , uil > 0, l = 1, 2, ..., s}, (1.3.4)

for the maximal possible s, then we say that i1, i2, ..., is are key indices.

Remark 1. If i is a key index, then ui must be positive (i-th node must be active). For

biological applications, such a node may correspond to a gene important for organism func-

tionning. Let us consider another, non-biological example: let our circuit simulate a country,

nodes are cities, then key indices can correspond important administrative centers.

Remark 2. The set Π can depend on time, then the set of key indices also can depend on

time.

As a measure of the stochastic stability of system (1.2.4) with the initial state u0, we consider

the probability

P (P, Π, u0, T1, T2) = Prob{u(t) ∈ Π for each t ∈ [T1, T2]}, (1.3.5)

where u = (u1, ..., um). This probability depends on the circuit parameters P and the home-

ostasis domain Π. The quantity P (P, Π, u0, T1, T2) can be named the survival probability on

the time interval [T1, T2]. For brevity, we shall denote it sometimes by P (T1, T2) or PT (if

T1 = 0), (omitting the dependence on the parameters P, Π).

1.3.3 Complexity

Let us define a complexity for systems (1.2.4). Each interaction matrix K generates a

directed graph with m nodes and at most m(m − 1)/2 edges. We suppose that i and j -th
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nodes are connected by a directed edge if the corresponding entry Kij 6= 0. We estimate the

stochastic stability via the following parameters: the valency V that will be defined below, K∗ =

maxij |Kij |, θ̄ = max |
∑p

l=1 Milθl|, r = maxi Riλ
−1
i . It is important to take into account the

valency since it is well known that biological circuits are far from being completely connected:

for each fixed node i we have a valency Vi < m: only Vi among the entries Kij are not equal

zero. In applications, typically, Vi << m [2]. We denote V = min Vi, where the minimum is

taken over all key indices, Nkey is the number of such indices. So, the parameter V is defined

as the minimal connectivity of the key nodes.

Definition 1.3.3 Complexity CompN of network (1.2.4) is the quadruple (V, K∗, θ̄, r).

For polynomial systems (1.2.10) complexity is defined by the degrees ril and the multiples

α involved in relations (1.2.10), (1.2.11).

It is difficult to define an analog of such complexity for systems with general analytical

or smooth nonlinearities, however, it is possible for pfaffian systems. Complexity of a system

(1.2.7) with a pfaffian nonlinearity F is complexity of a pfaffian chain that defines F , see

subsection 4.3 . The definition of pfaffian chains can be found in subsection 4.3.

1.4. Evolution models

Let us suppose that the parameters P of systems (1.2.4) can depend on some variable y,

which defines circuit internal parameters P by a map y → P (y). Let us consider the case,

where y takes some discrete values yi ∈ Ỹ , Ỹ is a finite or countable set. If Ỹ is finite, let us

denote by N(Ỹ ) the number of such states, i = 1, 2, ..., N .

Suppose that if a trajectory u(t) of system (1.2.4) leaves Π, our circuit homeostasis instan-

taneously falls. To take into account this assumption, it is convenient to extend formally the

set Ỹ adding to Ỹ a marked state y0 = {∞} (see [39]). Denote Y = Ỹ ∪ {∞}. The transition

probabilities from this marked state to the other states yi, i = 1, ..., N equal zero. The phase

space of our evolution model is H = Rm × Y .

Suppose that, for fixed y, the time evolution of u is defined by eqs. (1.2.4). Since ξl satisfy

condition (1.3.1), a solution of (1.2.4) exists, unique, and (1.2.4) defines a Markov process with

continuous trajectories u(t).

Suppose, moreover, that the time evolition of y is defined by a continuous jump like homo-

geneous Markov process with the state set Ỹ [39].
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The conjoint evolution of y, u can be defined as follows. In each state yi, i 6= 0, the u

-process is defined by (1.2.4) with the parameters P(yi) while u ∈ Π and y = yi. If u leaves

Π, the process finishes at the absorbing state y0 = {∞}. If the process makes a jump from yi

to yj, j 6= 0 at t = t0, we assume that u is continuous: u(t0−) = u(t0+). At last, if this jump

involves new nodes we assume that these new nodes are in zero states at t = t0+.

The process is defined by transition probabilities P(t, B, i | u0, j) ( the probabilities that the

random trajectory u(t, u0, yj) of (1.2.4) with the initial data u0, y(0) = yj enters for B at the

moment t and y(t) = yi). Such processes are well studied [39, 56].

1.5. Patterning problems

Mathematical approaches to pattern formation problem in the developmental biology has

started with the seminal work by A. M. Turing [84] devoted to pattern formation from a spatially

uniform state. Turing’s model is a system of two reaction-diffusion equations. After [84], similar

phenomenological models were studied by numerous works (see [63, 64, 68] for the review).

Computer simulations based on this mathematical approach give patterns similar to really

observed ones [64]. However, there is no direct evidence of Turing’s patterning in any developing

organism ([100], p.347). The mathematical models are often selected to be mathematically

tractable and they do not take into account actual experimental genetic information.

Moreover, within the framework of the Turing-Meinhardt approach some important the-

oretical questions are left open. For example, whether there exist ”universal” mathematical

models and patterning algorithms that allow to obtain any, even very complicated, patterns. In

fact, a difficulty in using of simple reaction-diffusion models with polynomial or rational non-

linearities is that we have no patterning algorithms. To obtain a given pattern, first we choose

a reasonable model (often using intuitive ideas) and later we adjust coefficients or nonlinear

terms by numerical experiments (an excellent example of this approach is given by the book

of H. Meinhardt on pigmentation in shells [63, 64]). To overcome this algorithmic difficulty

we use genetic circuit models. We show that they are capable to generate any spatio-temporal

patterns and that there are different algorithms to resolve patterning problems.

Let us formulate now the patterning problem.

Pattern generation problem for gene circuit model.

Let T0 > 0 and T0 < T . Given functions zk(x, t), x ∈ Ω, t ∈ [0, T ], k = 1, .., s and a

positive number ǫ, to find the parameters P such that the solution of system (1.2.4) with initial
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conditions uj = 0 satisfies

sup
x,t

|zk(x, t) − uk(x, t)| < ǫ, x ∈ Ω, t ∈ [T0, T ]. (1.5.1)

The functions zk can be called target pattern.

Pattern generation problem for time discrete gene circuits

Let T0 > 0 and T0 < T , where T0, T are integers. Given functions zt
k(x) ∈ [0, 1], x ∈ Ω, t =

0, 1, ..., T, k = 1, ..., s and a positive ǫ, to find parameters P such that the functions generated

by relations (1.2.5) satisfy

sup
x,t

|zt
k(x) − ut

k(x)| < ǫ, x ∈ Ω, t = T0, ..., T, k = 1, ..., s. (1.5.2)

For logic (boolean) networks z, um ∈ {0, 1} and we can set ǫ = 0. Then inequalities (1.5.2)

transform into

zt
k(x) = ut

k(x). t = T0, ..., T. (1.5.3)

Let us give a biological interpretation of these problems. Among the variables ui, we select

special variables, say u1, ...us. They can be interpretated as structural genes. The cell states

depend on the expression of these genes.

All the rest genes us+1, ..., um are ”hidden unites”, or regulatory genes. They are involved

in a biochemical machinery, but they do not act directly on the cell states. Such an approach

is consistent with experimental facts (see [100, 3, 99, 17]). Let us consider, for example, the

pigmentation process well studied for Drosophila melanoguster [99]. This patterning process

is controlled by regulatory genes, which control the expression of other genes, and structural

genes, which encode enzymes. These enzymes are involved in biochemical pathways used for

pigment synthesis. Different regulatory genes control expression of the structural genes in

different body regions. The activity of most enzymes is limited to the cells in which they are

expressed [99].

Such problem statement reminds classical approaches of neural network theory [97, 98],

where, similarly, one distinguishes ”input”, ”output” neurons and ”hidden” ones. This helps

to resolve approximation and classification problems by multilayered networks. The output

genes can change the cell states and, therefore, they can predetermine an output pattern z.
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The hidden genes do not influence directly the cell states, they are involved only in an internal

cellular gene regulation.

For stationary patterns z (independent of time) the solution of patterning problem follows

from the well known results on multilayered neural networks [10, 45, 48, 22]. If s = m, i.e.,

without hidden genes, the pattern problem transforms into the fitting problem posed in [66].

In this case we have experimental data on all gene concentrations and we try to find circuit

parameters, which give the best approximation of the data on some time interval.

The patterning and fitting problems admit many solutions; for gap-gene system in Drosphila

the fitting problem was studied by numerical simulations [66, 76, 53, 71]. Even in this case,

where m = 6, p = 1, the problem is difficult: numerical simulations take a large computing

time.

1.6. Outline of main results

The main results can be described as follows. Notice that all these results are obtained

analytically and do not use computer simulations.

I. Instability

For circuit models we show that they are stochastically unstable. This means that for a

circuit of a fixed structure the probability PT to stay in the admissible domain Π within time

T converges to 0 as T → ∞. Estimates of PT yield that the more is the valency of a key node

the stabler is the circuit with respect to perturbations in this node. So, homeostasis generated

by a fixed circuit will be broken as time tends to infinity. The similar results also hold for many

other systems: for example, a generic differential polynomial system is unstable.

To find a stochastically stable system with fixed parameters is, in general, a computationally

complicated task. So, parameter adjusting to construct a stable system is a difficult problem.

These results are stated in Section 2, subsection 2.1 is focused on circuits, subsection 2.2

concerns other systems. Instability entails important corrolaries on evolution.

II Evolution. Inside the considered system classes, a generic system with fixed parameters

is stochastically unstable but a system with evolving in time parameters can be stable even

for large times as T → ∞. To obtain stability, we need non trivial evolution algorithms:

for example, for circuits a random growth, following Erdos-Renýi rule, doest not allow to

attain a stable evolution. The problem of finding of stable evolution mechanism is, in general,
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computationally difficult task.

This fact has an important consequence: one can show, under some assumptions, that the

evolution parameters should be discrete (biological interpretation: unstable systems should

evolve by a genetic code). Moreover, in extremal conditions evolution, to be successful, should

have the following properties: evolution makes copies and the mutation probability is small,

the genetic code size must increase during the evolution process and the evolution tree should

be large.

Moreover, for the considered systems a complexity can be introduced. The circuit complex-

ity must increase in evolution process (on average): a circuit with a priori bounded complexity

is not capable to survive in an extremal random environment. The evolution mechanism is

non-trivial.

These results are stated in Section 3.

III Patterning and hierarchical modular structure of genetic networks

Furthermore, we show that, roughly speaking, any pattern formation process based on a

reaction-diffusion model can be performed as well by a genetic network, with a sufficiently large

number of the genes. For each reaction-diffusion model one can find an approximating gene

network, with the almost same pattern formation capacity. This result implies that classical

Turing-Meinhardt’s models can be reformulated as gene circuits.

The second main result on patterning asserts that, under natural conditions on maternal

genes densities θi, the pattern generation problem always has a solution. Moreover, there is a

constructive and numerically effective algorithm that allows us to find a circuit generating a

given pattern.

We show that the modular hierarchical organisation and sigmoidal interaction are effective

tools to form complex hierarchical patterns. Indeed new, more refined patterns, can be obtained

by using of previous old ones.

Given a final pattern zT (x), one can estimate the minimal number of genes in a network

that generates this pattern. We give definitions of ”complexity” of the circuits and pattern

”complexity”. The Khovanski theory [58] gives then that there exists a connection between

these complexities: it is impossible to obtain a ”complex” pattern by a ”simple” circuit.

These results can be found in Section 4 (also see works [89, 91, 92, 93, 94]). However, to

explain evolution success, we should seek still additional arguments. We should consider the
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evolution rate problem.

IV Evolution rate problem.

The methods and models for patterning problems allow to advance as well the evolution

rate problem. To make this problem more mathematically tractable, we consider simplified

boolean versions of genetic circuits. By these boolean models we can study system response

on environment changes. The environment state is defined by a boolean input. This network

consists of some types of nodes, ”regulator” and ”structural”. We have N regulator and n

structural ”genes” and also additional nodes which define environment state. The state of

each node is a boolean variable, taking the values ”1”, or ”0” (active, passive or expressed, no

expressed respectively). The structural genes respond to an organism features: if such a gene

is expressed, the organism has the corresponding feature. If there are n structural genes we

can obtain 2n possible boolean patterns.

In this model, evolution is a growth of N, n plus a formation of connections between the

two types of the genes. Each connection also is a boolean variable Kij taking the value 0 or K.

To obtain a given pattern for each input, it is a boolean programming problem.

Under some simple restrictions on the circuit structure we show that if the ”Freedom Prin-

ciple” holds, i.e., f = N/n >> 1, then even for a random circuit there is a simple heuristic

algorithm allowing us to find correct connections Kij in linear time O(N).

2. INSTABILITY IN RANDOM ENVIRONMENT

2.1 Instability in circuits

Consider problem (1.2.4). Suppose that condition (1.3.2) holds, i1, i2, ..., is are key indices.

There holds

Theorem 2.1.1 Stochastic stability PT of solutions of problem (1.2.4) can be estimated

through CompN , i.e.,

PT < g(T, V, K∗, θ̄, r), (2.1.1)

where a function g converges to 0 as T → ∞ for all fixed values V, K∗, θ̄, r, (defined in subsection

1.3.3) and g is monotone increasing in V .

Proof. For time discrete networks (1.2.5) an analogous theorem is obtained in [89, 95]. Let

us prove first an auxiliary lemma about the processes satisfying assumption 1.3.1.
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Suppose η(t) is a smooth function with the values in Rp defined on [t1, t2], t2 > t1. Let

Vη,δ,t1,t2 be a tubular neighborhood of the trajectory η:

Vη,δ,t1,t2 = {v : there is t ∈ [t1, t2] such that |v − η(t)| < δ}. (2.1.2)

Lemma 2.2.1 Under Assumption 1.3.1 one has

PT,δ,η = Prob{ξ : ξ(t) ∈ Vη,δ,0,T for each t ∈ [0, T ]} > 0. (2.1.3)

To prove this lemma, let us consider the time points t0 = 0 < t1 < t2 < ... < tn < T = tn+1

such that max |ti − ti+1| < ǫ (the maximum over i). If ǫ > 0 is small enough, then Pt1,δ/2,η > 0.

In fact, since our process is stochastically continuous, relation (1.3.1) implies that with a non-

zero probability the values η(t), t ∈ (t1, t2) of the process lie in a small neignborhood of η(0).

Now relation (2.1.3) can be proved by an induction. Suppose Pti,κ,η > 0 for all κ > 0. Let us

show that Pti+1,δ,η > 0. Let us take κ = δ/2. Let Ux be δ/2 neighborhood of the point x = η(ti).

Condition (1.3.1) implies that P (t, x, Ux) > 0 for 0 < t < ǫ, if ǫ is small enough. Then, since

we are dealing with a Markov process, one concludes that |ξ(t)− ξ(ti)| < δ for t ∈ [ti, ti+1] with

a positive probability. The lemma is proved.

The next step is a priori estimate of solutions of (1.2.4). One obtains

|ui| < Mi = max{Riλ
−1
i , si}. (2.1.4)

Now, using this estimate and properties of σ, one has the following inequality
m∑

j=1

Kijuj(t) + θi − ξi(t) ≤ ViK∗Mi + θ̄ − ξi(t), (2.1.5)

where K∗, r are defined in subsection 1.3.3. Let us take a sufficiently large a = a(V, θ̄, K∗, r)

and consider a set Ξa of trajectories ξ(t) such that

ξi(t) > a, t ∈ [T1, T2] (2.1.6)

for some i. The probability that a trajectory ∈ Ξa is positive, due to Lemma 2.2.1. Consider

system (1.2.4) on the interval [T1, T2]. Let us fix a key index i. By conditions (1.2.2), one finds

a priori estimate

0 < ui(t) < Mi exp(−λi(t − T1)) + δ(a)Riλ
−1
i (1 − exp(−λi(t − T1)), (2.1.7)
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where δ(a) > 0 is a small number depending on a and converging to zero as a → ∞. For

sufficiently large T2 −T1 and a one has then that ui(T2) is small enough. Therefore, the system

state u leaves the domain Π at the moment t = T2. This shows that PT < 1 for sufficiently large

T and PT can be estimated through the network complexity by a function g of the parameters

V, K∗, θ̄, r and time interval length T . Let us prove that PT → as T → ∞.

The function g is independent of the initial state u0 since our estimates are uniform in

u0 ∈ Π. Thus, PnT < g(V, K∗, θ̄, r)
n. Letting n go to ∞ one concludes that PnT → 0.

2.2 Instability in other systems

One can show that if Π is a compact set and the number of noises p > 1, then a generic (in

sense of differential topology, see [46]) system (1.2.8) is instable. An elementary proof [95] based

on results of [62], which, in turn, hold on fundamental results of R. Thom [46, 83]. The same

result is valid for (1.2.9) and even more general. The main idea is that under (1.3.2) we can

remove the bounded term f from eqs. (1.2.7) and system (1.2.7) can be reduced to a symmetric

differential polydynamical system defined by vector fields gl, l = 1, ..., p. It is a classical objet

of geometric control theory (see [62]). The great transversality theorem of R. Thom allows us

then to show that, for p > 1, a generic polydynamic system is completely controllable. This

property shows, in turn, that always there is a trajectory of this polydynamical system starting

with any point in the compact Π and leaving Π.

These results can be obtained for polynomial systems, where a generic polynomial system

is defined now in another way, by a measure (see subsection 1.2.2).

We consider system (1.2.9) with the right hand sides (1.2.10), where p > 1 (at least two

independent noises). We assume that ηl are random processes satisfying assumptions of sub-

section 1.3.1. Notice that if p = 1, i.e., one has a single noise, a generic system can be stable.

As an example, one can take m = 1, u1 = u, P0(u) = −u, Π = [0, b], b > 0 P1 is a polynom in

u having a root at a point c, c > b.

Theorem 2.2.1 Suppose p > 1. Then, for almost all systems (1.2.6), the stochastic stability

PT satisfies

PT < g̃(T ), (2.2.1)

where a function g̃ converges to 0 as T → ∞.

For proof see Appendix.

22



One can prove that this theorem does not hold for general pfaffian systems with nonlinearly

involved random ξ.

Example: Let us take the pfaffian system

du

dt
= u − a − (u − a)3 +

p∑
i

biσ(ξi),

where σ(z) = (1 + exp(z))−1, a > 0, Π ⊂ (r,∞) with r < a and initial state u0 ∈ Π, and bi are

sufficiently small.

In some cases the stability problem can be investigated in detail. Let us consider the

following situation. We consider admissible domains Π, which, in a sense, are narrow. ¿From

biological point of view, it can be explained by fragility of biological systems. We suppose that

there always exists a direction such that acting in this direction can destroy our system. To

formalize this idea, we introduce the following class of domains Π.

Definition. We say that a set Π ⊂ Rn is δ-narrow at the point x0, where δ > 0, if there

exists a unit vector e such that the ray x1 = x0 + τe, τ > δ, lies outside Π.

The supremum over all the points x0 of the infimum of δ satisfying this definition can be

named the width of the set Π. The width determines the maximal radius of inscribed balls.

The δ-narrow at x0 set can be large in some directions, but it should be sufficiently narrow

at least in one direction defined by the vector e.

If Π is δ-narrow at some x0 with a δ small enough, then analysis of stochastical stability

reduces to some complicated polynomial equations. We are going to use the following known

results of geometric control theory.

Lemma 2.2.2 (Kalman criterium of controllability).

Consider the linear system

dx

dt
= Ax + Bξ(t), x(0) = 0, (2.2.2)

where x ∈ Rn, A is a n × n matrix, B is a vector ∈ Rp and ξ(t), t ∈ [0, T ] is a control. Then

system (2.2.2) is controllable, i.e., for each x1 there exists a ξ(·) such that the corresponding

trajectory of (2.2.2) attains x1 if and only if the following condition holds:

dim Span{B, AB, A2B, ..., An−1B} = n (2.2.2)
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Consider now a system (1.2.9) with a polynomial right hand side, defined by (1.2.10),

(1.2.11). To simplify situation we suppose that p = 1, i.e., we have only one fluctuating

parameter ξ1 = ξ. We investigate a stability at an equalibria of a non-perturbed system, i.e.,

we suppose that for ξ = 0 there exists a point x0 such that F (x0, 0) = 0. We can suppose,

without loss of generality, that x0 = 0. Linearizing eq. (2.1) at 0 we obtain the system (2.2.2)

with A = DF (0, 0), B = ∂F
∂ξ

(0, 0).

Proposition 2.2.3 If Π is δ-narrow at x0 = 0 with a sufficiently small δ then polynomial

system (1.2.9) is stochastically stable only if

dimSpan{B, AB, A2B, ..., AnB} < n, A = DF (0, 0), B =
∂F

∂ξ
(0, 0). (2.2.3)

Proof is simple, see [95].

This assertion shows that the analysis of stochastical stability of equilibria reduces to solu-

tion of the complicated system of polynomial equations:

dim Span{B, AB, A2B, ..., AnB} < n, F (x, 0) = 0

A(x) = DF (x, 0), B(x) =
∂F

∂ξ
(x, 0). (2.2.4)

In general, this system is overdetermined and one can expect that generically this system has

no solutions and thus equilibrium states of (1.2.9) are stochastically unstable.

3. EVOLUTION OF UNSTABLE SYSTEMS

3.1 Circuit evolution

Let P (y) be a mapping that transforms y ∈ Ỹ into a value P (y) of the circuit parameters.

Theorem 3.1.1 Assume that the parameters r, K∗, θ̄, V of network (1.2.4) are fixed and are

independent on y whereas the matrix K and the number of the nodes m depend on y(t). If the

set Y is finite then survival probability PT → 0 as T → ∞.

The proof of this theorem immediately follows from the estimates of section 2.1, since they

are uniform in r, K∗, θ̄, V .

If the state set Ỹ is countable, then it is possible that the stochastical stability does not

vanish for large times: PT > P∗ > 0 for all T > 0. In this case the parameter V satisfies the
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following asymptotical relation

Prob{V (y(t)) < A} → 0 (3.1.1)

as t → ∞ for any A. This means that in this case the circuit complexity is unbounded as

t → ∞.

This assertion is trivial, if there are no a priori restrictions to averaged valency of circuit

and valency growth rates. To see this fact, let us consider to a Markov process with a countable

state set defined by a master (Kolmorogov’s) equation [39]. Denote by pi(t) probabilities to be

in the state yi at the moment t, and p∞, the probability to be into an absorbing set {∞}. The

master equation has the form

dpi

dt
=

∑
j 6=i,j 6=∞

wijpj −
∑
j 6=i

wjipi − w∞ipi, i = 1, 2, ..., N, (3.1.2)

dp∞
dt

=
∑
j 6=∞

w∞jpj (3.1.3)

Here wij are the transition probabilities to go to the state yi from the state yj per unit time.

Due to (3.1.3), the function p∞ is a time non-decreasing function ( Lyapunov function).

Moreover, if w∞,i > δ > 0 (that always holds when N(Y ) < ∞) one has p∞ → 1 as t → ∞.

These facts express ”the second law of termodynamics” for such systems. If w∞i = 0 for all i,

then the Lyapunov function is the entropy H = −
∑

pi log pi.

To show a possibility of the stable evolution, consider the case when the complexity Ci of

i-th state defined by Ci = V (y(i)) is an increasing function of i. Suppose wi+1,i > δ > 0, the

rest entries wij = 0. Then, if Ci increases sufficiently fast with i, one has p∞(t) < 1 as t → ∞.

The number N(y) can be interpreted as a ”genom” size. These results yields that ” genome

size ” must increase in time, otherwise the evolution stops. Moreover, the circuit size m also

grows, at least on average, because V (y) cannot stay bounded.

To analyze the evolution process in more detail, let us consider the simplest model, where

for each i, j either Kij = K∗ or Kij = 0. Then time changing of the matrix K can be considered

as a time evolution of a directed graph associated with K and vice versa, a growth of a directed

graph generates an evolution of a network (1.2.4). The graph evolution can be then considered

as an algorithm adding edges and nodes (see Introduction).
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Following [90], let us compare two evolution algorithms, the Erdos - Rényi one, [32, 60], and

the preferential attachment algorithm [2]. We suppose, in both cases, that averaged (over the

whole circuit) valency is bounded: V̄ = m−1 ∑
i Vi.

In Erdos -Rényi’s algorithm, at time moments 0, 1, 2, ..., one adds to a graph a new edge

with probability p. This leads to a Gaussian distribution for the degree. In the preferential

attachment algorithm [2] the probability that a new edge goes to the i-th node is proportional

to the valency (connectivity) of this node.

It can be shown that the Erdos-Rényi growth mechanism is always unstable (under some

natural assumptions) [90], whereas Albert-Barabasi preferential attachment evolution can be

stable. Indeed, in the Erdos-Rényi case almost all the nodes have valency close to the average

one, which is bounded, and the probability that the key nodes have a great valency is small.

In the preferential attachment case, the key nodes can have a great increasing in time valency

if these nodes have had a great valency at the initial moment. For details, see [90].

Notice that the preferential attachment algorithm can loose stability if the set of the key

indices depends on time.

This preferential evolution can be illustrated by a country evolution. Looking on the map

of a country we can often see that there exist a few of great cities and many of small cities. In

development of many countries we can observe such an effect: there are a large administrative

center attracting a great part of resources and population, and many of small cities (to some

extent, such an example can be given by Russia, where Moscow attracts 5 − 10 percents of

population, more 60 percents financial resources and almost all power, an opposite example is

USA).

A more nontrivial problem is to demonstrate that a stable evolution is possible under some

natural restrictions. Let us formulate such restrictions. To simplify the statement, let us

consider the case of time discrete networks (1.2.5).

R1 The averaged valency of whole network is a priori bounded for all times:

lim
t→∞

m(t)−1
m∑
i

(t)Vi(t) < Kc, (3.1.4)

where Kc is a positive constant, m(t) is the number of nodes involved in the circuit. This

assumption is consistent with experimental data [2, 54, 55]. Let us notice that the averaged

valency of the key nodes is not bounded, according to Theorem 3.1.1.
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R2 The evolution rate is bounded, i.e., at each evolution time step, we add to the graph

associated with the circuit at most one edge and at most one node.

R3 The noises ξt are independent random processes with discrete time satisfying

0 < P (ξt
i > a) = φ(a) < exp(−βa) (3.1.5)

for each a > 0 and for each fixed t, where β is positive constant independent of t.

Theorem 3.1.2 There is a growing circuit (1.2.5) satisfying R1, R2, R3 such that that its

stochastical stability does not vanish for large times: PT > P∗ > 0 for all T > 0. In this case the

valency satisfies the following asymptotical relation (3.1.1) as t → ∞ for any A. This means

that the circuit complexity (defined as an averaged connectivity of key nodes) is unbounded as

t → ∞.

Proof. Let us consider the boolean circuit (1.2.5), where σ is the step fucntion. Let us set

Nkey = 1, ri = 1, θ̄ = 1, K∗ > 0. Let us suppose that at the initial moment we have N = V0

nodes and the matrix K is defined by K1j = K∗, Kj1 = K∗, Kjj = 0, where j = 1, 2, ..., V0.

We set θi(x) = h > 0.

At the time moment t, where t = 1, 2, ..., we can add a node and one edge connecting this

new node with our key node. For the new node, we have weights K1j = K∗, Kj1 = K∗. Let us

denote by V (t) the valency of the key node at the moment t. The total number of the nodes

at the time moment t also is N(t) = V (t). We shall refer the nodes 2, 3, ...N(t) usual nodes.

Let us find first an upper estimate of the probability Q(t) that the circuit will be destroyed

at a moment t. Suppose that, at the moment t, exactly k of the N usual nodes have values 0.

Then the value ut+1
1 can become zero at the time moment t + 1 as a result of the noise action

to the key node. To obtain ut+1
1 = 0, these noise should satisfy the inequality:

ξt
1 > h + K∗(V (t) − k). (3.1.6)

On the other hand, at the tim emoment t the i-th usual node is not active only under the

inequality

ξt−1
i > h + K∗. (3.1.7)

Therefore, due to our hypothesis R3 and (3.1.6), (3.1.7), the probability Q(t) admits the

estimate

Q(t) <
∑

k=2,...,V (t)

Ck
n exp(−β(h + K∗(V (t) − k))) exp(−β(h + K∗)k).
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By summarizing over k one obtains

Q(t) < exp(−β(K∗V (t) + h))(1 + exp(−βh))V (t) = ρV exp(−βh), (3.1.8)

where ρ = exp(−βK∗)(1 + exp(−βh)).

Suppose ρ < 1. By summarizing (3.1.8) over t = 1, 2, ..., T one finds

log PT > −βh +
T∑

t=1

log(1 − ρV (t)). (3.1.9)

Assume now that the valency of the key node V (t) increases at least linearly: V (t) > αt+V (0)

where α > 0. Then
T∑

t=1

log(1 − ρV (t)) > −C − 2
T∑

t=1

ρV (t) > −C1,

where C, C1 are positive constants. This uniform in T estimate finishes the proof.

Remark 1. If the condition R3 does not hold, this proof is not correct. (although the theo-

rem, maybe, is correct). Indeed, if the noises are correlated, then the probability of destruction

of many nodes may be not small.

Remark 2. If V (0) is large, running of this algorithm is similar to the preferential attachment.

The preferential attachment can be considered then as a probabilistic variant of the described

algorithm.

Remark 3. This algorithm can be interpreted as a greedy algorithm. Let us consider a node

without adjacent edges. The algorithm chooses a new edge, adjacent to this node, to increase

maximally the node stability, since the stability grows with valency (connectivity).

Remark 4. There is an interesting analogy between this growth algorithm and the well

known Hebb rule of neural network theory. Let us consider a neural network, where synaptic

weights take only values K∗ or 0. For such and more general networks with discrete synaptic

weights a Hebb rule is studied in [16]. This rule can be as a Markov evolution of the entries

Kij. If the both nodes (neurons), say, i-th and j − th ones, are active at the moment t (i.e.,

ut
i = ut

j = 1), and Kij = 0, then with a probability p the weight Kij goes to 1. If one neuron

is active and another one is not active, and Kij = 1 then, with a probability q, the weight Kij

returns to 0.

Let us consider now our network organisation with a key node of a large valency V >> 1

encercled by a number of usual nodes of valency 1. This single key node is always active while
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our circuit survives. Under strong noises the usual nodes will be often disfunctioning. One

can expect then that the Hebb evolution of such network will be similar to the preferential

attachement evolution.

Remark 5. We do not know whether this algorithm is optimal (gives maximal value PT for

large T ) or not. Moreover, other stable algorithms are possible. They drastically depend on

properties of φ(a) and on the parameters h, K∗. To explain this dependence, let us consider the

case, where φ(a) has a threshold behaviour: this function is not small for bounded a, say, on

[0, a0] and it is fast decreasing to zero for a > a0. Let us compare the stability of two structures.

The first one is described above, it consists of a single key node connected with V usual nodes.

Each usual node is connected with the key node, but there are no connections between the

usual nodes.

The second structure is formed by a key node and by clusters. Each usual node is involved

in a cluster consisting of n usual nodes. Inside this cluster all the nodes are completely intercon-

nected, one has Nc = n(n− 1)/2 connections in each cluster. Moreover, each cluster contains a

marked central node (this node also is an usual one). Only this central node is connected with

the key node. Such structure like the network organization is proposed in [73].

Clearly that the second structure can be essentially stabler than the first one. The stability

depends on K∗, h, n and a0. For large h and small K∗ the first structure (no clusters) becomes

stabler, the second one is better for small positive or negative h and large K∗.

Remark 6. Theorem 3.1.2 holds in a relatively simple situation when the admissible domain

Π is fixed. Actually, biological economical and social systems survive in much more complicated

situations when Π depends on time. The key problem is to find stable evolution algorithms in

this case. Some ideas can be found in Section 5. One can assume that the Hebb evolution (see

Remark 4) may be effective in this complicated case.

It is interesting to interprete the growth algorithm from Theorem 3.1.2 in the framework

of our analogy with a strongly centralized country (an Empire) development consisting of a

number of regions and a bureacratic center. The evolution sense is to conserve the center. The

parameter h can be considered as an internal region resource: for greater h only a great noise

ξi leads to the region disfunctioning. The parameter K∗ determines the connection intensity

between the center and the regions. The noises can be considered as instability sources in the

regions.
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We notice that the Empire should be extending. The described algorithm is as follows: the

center obtains resources from the all regions giving, in turn, a minimum of resources for each

region. The regions are disconnected. The algorithm works successfully under condition ρ < 1.

This condition holds if the internal resource parameter h and the connection force K∗ are both

large enough, if K∗ > 0 is small and h is very large, or if K∗ is very large and h > 0 is a small.

The second situtation, by our opinion, corresponds to a model of development that reminds

Russia (great resources, weak connections). Thus, the algorithm, described in Theorem 3.1.2,

can be called ” russia way”. One can suppose that, in an opposite situation (small resources,

strong connections), an algorithm leading to cluster formation should be more effective (such

an algorithm can be called ”european way”).

The russian way does not work if the noises ξi are correlated. Appearance of correlated

noise can be interpreted, for example, as vanishing of resources in a large region or even in the

whole country, or a large rebellion. So, a great Empire can be destroyed only by a correlated

action, for instance, by an attack simultenously on many regions or by general economical

disfunctioning in a number of regions (USSR fall).

3.2 Evolution as a computational problem. Relation to NP-complete problems

Above we have explained that a stable circuit evolution must use special algorithms. Let us

consider now some restrictions to the connection graph K taking into account a real structure

of biological molecules.

Above we have supposed that during evolution process any two nodes can be connected.

This could give an impression that the network evolution is an easy process. However, this

evolution cannot be such a simple process. Indeed, biomolecules consist of numerous polymer

groups. During a chemical reaction, they loose (or accumalate) only one such group. This

explains, in particular, why enzyme reactions proceed in many steps (see [61]). We conclude,

therefore, that it is impossible, in general, to connect two arbitrary nodes. An analogous picture

can be observed for other graphs corresponding to processes in the Nature and society [2].

To take into account possible restrictions on the matrix K fixed a priori, we can introduce a

large graph (V, E), where V is a set of nodes, E is a set of edges. An entry Kij in (1.2.4) could

be non-zero only if it is prescribed by E, i.e., if vi, vj a priori can be connected (vi, vj ∈ E).

Now an evolution can be formally described as a time change of subgraphs (V, Dt), Dt ⊂ E,

where t = 0, 1, , 2, ... and D0 ⊂ D1 ⊂ D2... and the time depending matrices Kt such that
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Kt
ij = 0 if vi, vj /∈ Dt.

Let us consider now some problems connected with such an evolution. Let us fix time t. To

obtain a chemical reaction that transforms a substrat s ∈ V to a product p ∈ V , we have to

find a simple path in (V, Dt) leading from s to p.

It is clear as well that the length of this way may be large, but a priori majorated by a

number Lmax. Otherwise, the relaxation processes will be very long and such a system could

not survive.

Let us recall our main principle, namely, that the system must be stable in stochastical

environment. This implies, in particular, that the system should be stable with respect to mu-

tations or random vanishing of some substrats needed for producing the product p. Mutations

can eliminate of some nodes or edges (see above beginning of Section 2). So, evolution should

form more than one way from different nutrients to products. The more different ways one has,

the stabler is our system. Thus, these ideas lead us to the following problem:

Problem 3.2.1 Given a graph G = (V, E), collection of disjoint node pairs (s1, s̄1), ..., (sk, s̄k).

Does G contain J or more mutually pairwise node-disjoint simple paths connecting si and s̄i

for each i = 1, ..., k?.

This problem is NP-complete (see [35]). The given nodes si could correspond to nutri-

ents (substrates), nodes s̄i could correspond to products, the paths correspond then to some

metabolic paths. Suppose that a system, defined by the graph, survives if the environment

contains at least one type of nutrients si. Environment fluctuations are eliminations of some

nutrients.

There are possible different models of such fluctuations and their action on the system. We

shall distinguish two cases: hard environments and soft ones.

Example. Suppose each nutrient si can vanish independently with a probability ri. The

system will be destroyed if all possible nutrients are absent. Then, if k paths have been found,

the probability to survive (per unit of time) becomes f(k) = 1 − r1r2...rk.

We say that an environment is hard, if the quantity f(k) (the probability to survive per

unit time after finding of the k-th pathway) admits, for large k, the following estimate:

f(k) < 1 − δk−µ, (3.2.1)

for some µ > 0, where δ > 0. Otherwise, the environment is soft.
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Problem 3.2.1 gives rise to a natural hierarchy of the computational problems (to find a

path, to find two paths are found, ... to find k paths).

Circuit stability ideas lead to another natural NP-connected problem that can be formulated

as follows:

Problem 3.2.2 Given a graph (V, E), positive integers K ≤ |V | and B ≤ |E|, is there

a subset Ẽ ⊂ E with |E ′| ≤ B such that the graph (V, E ′) is K -connected, i.e. cannot be

disconnected by removing fewer than K nodes?

This problem is simple for a fixed K but it is NP-hard for K varying [35].

The stabilization of differential polynomial system also can entail computationally hard

problems. Let us consider the situation studied above with a narrow admissible domain. The

main idea is based on the following observation: a ”generic” symmetric polydynamical systems

defined by g, h are not completely controllable. Indeed, the system

g(x, y) = h(x, y) = 0 (3.2.2)

can, even in a generic case, have a solution x for some y (however, to find such y is a hard

problem, see below).

Similarly, for polynomial dynamical systems with F = F (x, y, ξ) we seek for y such that the

system

dimSpan{B, AB, A2B, ..., AnB} < n, F (x, y, 0) = 0,

A(x) = DF (x, 0), B(x) =
∂F

∂ξ
(x, y, ξ)|ξ=0 (3.2.3)

is resolvable. We suppose that coefficients of polynomials involved in relations (3.2.3) lie in hZ,

where h is a rational positive number.

The problems (3.2.3) and (3.2.2) are well known in real algebraic geometry and named

”elimination of quantifiers” (see [9]). It is a hard problem. Algorithms for these problems were

found by D. Grigoriev et al. [41], another method was proposed by M. F. Roy et al. (see book

[9]). The known algorithms take an exponential number NE of steps

NE = (dn)O(n2), (3.2.4)

where d is the maximal degree of polynomials A, B, F in x and y. Notice that, in general, the

problems of quantifier elimination or even of solvability of polynomial systems are NP-hard
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[35]. In the next subsection we shall see that appearance of such problems yields important

consequences: evolution should have special properties.

To conclude this subsection, let us notice the following. First, a number of practical problems

of bioinformatics are quite complicated, see [72]. The second fact is quite fundamental. Some

natural evolution problems are not only complicated. They are not decidable, i.e., there are no

algorithms to resolve them.

To show it, one can use results proved in [13]. Let us consider iterations of some map,

similar to map (1.2.5) (but without random noises). The problem is as follows: whether these

maps attain a some domain in the phase space or not?. It is clear this problem like our problem

of existence of stable evolution. This problem is not decidable according to [13]. So, one can

expect that it is impossible to decide evolution stops or not. We are not capable to foresee the

End of the World.

3.3 Why evolution uses genetic code?

Let us consider other evolution models. For example, one can suppose that the parameter

y is continuous. Then an evolution model consists of a random dynamical system, admissible

domains Πt and a second random dynamical system governing y-evolution:

du

dt
= F (u, y, ξ), u(t) ∈ Πt (3.3.1)

dy

dt
= Y (u, y, η), (3.3.2)

where u is the system state, y is an evolving parameter, ξ, η are random noises. This model

is well studied (under some restrictions to F, η, ξ, which make this problem mathematically

tractable) in viability theory, see [5, 6, 7, 8].

There are some reasons why we have chosen the case, where y is discrete. The first, in prin-

ciple, continuous evolution can be always approximated by a discrete evolution. The classical

example is the organism size L. One can assume that this parameter is continuous, because L

is controlled by many genes [74].

The second, it is difficult to describe a graph growth (for example, formation of new con-

nections) by eqs. (3.3.1), (3.3.2) with a continuous parameter y.

At last, the third argument (most important) is as follows. To create a biological system

effectively functionning in an extremal environment, it is a complicated problem (see above).
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Among all possible parameter values, only a small part gives to biologically reasonable ones.

Therefore, if, fortunately, evolution has found a sufficiently stable system then it is necessary to

retain the corresponding parameter y. Actually, this argument is known in another form ([74],

Ch. 2). For such parameter fixation, a discrete version of eq. (3.3.2) is more effective than

a continuous one. To illustrate this intuitive assertion, let us compare two variants of (3.3.2)

corresponding to a random parameter search. We also take into account a system extinction

connected with leaving of Πt. The first variant describes a discrete diffusion in the state space:

dpi

dt
= d1(pi+1 − 2pi + pi−1) + ωQ(yi)pi = (Lp)i, (3.3.3)

where pi is the probability to be in the state yi ∈ Y , Q(y) ≥ 0 is the extinction intensity,

Y = Z is a countable set, i = .... − 2,−1, 0, 1, 2, ..., d is a diffusion coefficient ( diffusion in the

state space Y ), and ω is a large parameter ( large values ω correspond to extremal conditions).

Let us suppose that there is a state y = y0 such that Q(y) is minimal at this state and that

ωQ(y0) = O(1), i.e., the value y0 gives a stable state. Let us assume that, at y = 0, the Taylor

approximation holds:

Q(y) = Qy0
+ c(y − y0)

2 + ... (3.3.4)

The time asymptotics of pi(t) for large times is defined by the eigenfunction Ψ0 of the linear

operator L with the minimal eigenvalue λmin. To calculate λmin, we use the standard pertur-

bation theory. For large ω by a time rescaling one can obtain the case, where the diffusion

operator is small. Standard calculations show then that

λmin = ωQ(y0) + O(d1) ω → ∞. (3.3.5)

This means that the mean survival time τ has the order O(1), i.e., PT has the asymptotic

exp(−t/τ) (we suppose that the initail state is y0).

Let us consider now the second case describing a continuous diffusion in the state space:

∂p(y, t)

∂t
= d2pyy + ωQ(y)p, (3.3.6)

where y ∈ Y = R. An estimate based on (3.3.3) shows that

λmin = ωQ(y0) + O(d2ω
1/2), ω → ∞, (3.3.7)

where the term O(ω) is positive. Comparing (3.3.5) and (3.3.6) one observes that the discrete

variant is stabler for large ω, at least if d2 > cd1ω
−1/2, where c is constant. So, in the continuous
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case the diffusion coefficient d2 should be very small. But small values d2 are not admissible

because then there appears a new difficulty: the system is not able to attain at the stable

state within a relatively short time. Let us set y0 = 0. Let us denote by p(y, 0) the initial

probability density for (3.3.6). Suppose this densityis localized at y = y1 > 0 (for example, the

support of p(x, 0) lies in (y1/2, 3y1/2)). Then p(0, t) > 1/2 in the time τtrans = O(d−2
2 ), and if

d2 = O(ω−1/2), one obtains τtrans = O(ω). This last relation implies that the transition time

has the same order that the survival times for non-stable states. Roughy speaking, if we are in

a stable state, we survive but it is impossible to attain this stable state.

In the discrete case (3.3.3) one concludes that values of d2 such that the transition time is

not too large and the stability is high, should be small.

Using analogous arguments, one seeks for an optimal structure of a Markov operator, which

define evolution with maximal chances to survive, independently of initial states. Instead of

eq. (3.3.3), let us consider a general kinetic equation (3.1.2) with the extinction probabilities

Qi = w∞i and with a finite number N of the states.

Proposition 3.3.1 Suppose that among Qi > 0 there is a Qi0 such that Qi0 < δ, the rest

Qi > c1 > 0. If for all sufficiently small δ the survival probability Pt(i) of the state yi satisfies

Pt(i) > C exp(−c0δt), t > 0, c0 > 0, (3.3.8)

where c0 is a constant independent of δ, then the following estimate holds:

N∑
j=1

wji < Cδ, C > 0, (3.3.9)

where C is a constant independent of δ.

Moreover, for each i there is such a j 6= i that wij > 0.

The proof uses the standard perturbation theory. Let us decompoze the linear kinetic op-

erator L into two parts. The first part defines transitions (Wp)i =
∑

j 6=i,j 6=∞ wijpj −
∑

j 6=i wjipi,

the second one defines extinction Qpi = −Qipi. The first part can be considered as a pertur-

bation, while the second operator is a diagonal operator with eigenfunctions Ψ
(l)
i = δli and the

corresponding eigenvalues λl = −Ql. The perturbation λ̃ of λi0 under W is defined by W is

λ̃ =
∑N

i=1 wii0 . This proves the upper estimate (3.3.9). The second assertion trivially holds

because otherwise it is impossible to attain the stable state i0 from another state i and thus

estimate (3.3.8) is not fulfilled.
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Biological interpretation: since the stable state i0 can be aribitrary, depending on the random

environment, this elementary proposition yields that evolution almost always makes copies, the

mutation probabilities are small, however, they should be positive.

So, one can assume, that many years ago, when there were yet no complicated evolution

algorithms, and primitive biosystems lived in extremal conditions, they used a genetic code to

survive. Fragile systems without such a code have vanished under fluctuations and chaos. Some

fragile systems could survive using first a primitive random search and after more sophisticated

evolution algorithms were found. Notice that a concrete mathematical model of genom evolution

is proposed in seminal work [30].

To conclude this section, let us notice that from our arguments an interesting consequence

follows: organism death, probably, should be genetically programmed (this idea is well known

for biologists, see [29]). Replication cannot work without death. In fact, since resources are

bounded, old organisms should be destroyed.

3.4 Evolution for countable state sets: branching processes, algorithms, NP-

hardness and evolution properties

We suppose here, that at each time moment t the state y may proceed to new states

y′
1, ..., y

′
n(t,y). The number n of new potentially possible states is finite but it may depend on

the moment of time and the previous states. One can think about an evolution ”tree” growing

with time. During tree extending, some states can vanish.

We state the following problem: how to estimate the size of the evolution tree providing a

stable evolution, when the survival probability limit PT stays greater than a positive constant?

(i.e., the limit relation PT → 0 as T → ∞ does not hold). Our goal is to explain increasing of

evolution tree and genetic code with time growing. The main idea is to connect this problem

with the theory of algorithmic complexity. In fact, we have just seen that to create a system

making a stable homeostasis, is a complex problem.

To formalize more the problem, one assumes the following. Let us suppose that each state y

is defined by a code Cy. To simplify, we consider the problem with discrete time: t = 0, τ, 2τ, ...,

where τ is a time step. At each instant of time, we transform this code to another code.

We suppose moreover that the survival problem has some ”a priori computational complex-

ity” Compapriori = Compa. Let us observe that there exists a tradeoff between a memory Mem

needed to perform an algorithm and the number of steps Ntime of this algorithm. For certain
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compututional problems there was obtained the estimate (first it was obtained in [42], see book

[78] for a review):

Mem · Ntime ≥ Compa. (3.4.1)

We can illustrate this fundamental relation by an example. Let us consider the following famous

salesman problem, which is NP-complete. Let n cities be located in a country. Distances

between cities are given. The problem is to find a tour running all n cities (each city once) and

having the minimal total length. Here the algorithm of the exaustive search has an exponential

time cost Ntime = O(ne)n but it uses the memory O(n). On the other hand, if we use a memory

2n, we can solve the salesman problem in O(n) steps (see [69]).

Remark: It is important to note that if P 6= NP and, for a NP-complete problem the Ntime

depends polynomially on the input size |C|, and Compa is not polynomial in |C|, then the

memory size should be non-polynomial in |C|.

Furthermore, we suppose that the evolution solves a chain of computational problems to

survive. Namely, we deal with problems Pr1, . . . P rk, . . . of increasing a priori complexities

Compa(1), Compa(2), . . . , Compa(k), . . ..

Let us formulate an important assumption.

Assumption 3.4.1 At the moment t, all states can be destroyed simultaneously by the

random environment within time interval [t, t + 1] with the probability Q(y) independent of t

(thus we suppose that the random processes are homogeneous in time).

Example. Let us turn to problem 3.2.1. Recall that given nodes si could correspond

to nutrients (substrates), given nodes s̄i could correspond to products, the unknown paths

correspond then to metabolic paths. in this case the problem Prk is to find k mutually disjoint

paths from si to s̄i, i.e., from substrats to products. Under assumptions from subection 3.2.1,

one has Q(y) = r1r2...rk.

We suppose, moreover, that if the corresponding state y is a solution of the problem Prk,

then the probability Q(y) satisfies

Q(y) > 1 − f(k) > 0, (3.4.2)

where f(k) > 0 is a function of the integer argument k. This means that, at each step, there

is an uniform lower bound for the destruction probability (depending on the step number).

By solving a sequence of the computational evolutionary problems the population increases
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the survival probability. The chances to survive depend on the evolution algorithm speed and

on the environment properties.

Let us introduce the quantity Sev(k), which is the number of the states (the nodes of the

evolution tree ) with pairwise different codes obtained to this moment, when k-th computational

problem is resolved. Notice that only different codes are essential for evolution, it follows

from Assumption 7.1. Moreover, let us observe the inequality Sev(k) ≤ max |C(y)|, where the

maximum is taken over all states at the k-th step. Therefore, if the tree is large, the code

length also is large.

Proposition 3.4.2 Suppose that the evolution is stable, i.e., PT > p∞ > 0 as T → ∞.

Assume that the evolution solves a sequence of computational problems (as described above)

such that their a priori complexities Compa(k) increase faster in k than any polynomial kO(1)

and that for these problems the estimate (3.4.1) holds. Assume that the population is in an

hard environment, i.e.

f(k) < 1 − δk−µ, δ, µ > 0. (3.4.3)

Then, if P 6= NP , the evolution tree size Sev(k) tends to ∞ as k → ∞.

The proof see in [95].

4. CIRCUITS and MORPHOGENESIS

4.1 Generation of complicated patterns

Let us consider pattern generation problem for time discrete gene circuits (1.2.5). To sim-

plify the statement, let us set s = 1.

Theorem 4.1.1 Suppose T0 > 2 and that there exist continuous functions φl(θ), l = 1, ..., d

defined on Rm such that xl = φl(θ1(x), ..., θm(x)) for each x ∈ Ω ⊂ Rd. Then the pattern

generation problem has a solution.

Remark 1. The assumption of the theorem implies that at least d functions θi are non-

trivial: θi 6= const. In the one-dimensional case d = 1, to satisfy this assumption, it is sufficient

to suppose that at least one function θi is strictly monotone. Moreover, under the condition

of the theorem, any function f(x1, ..., xd) can be presented as a function of θ = (θ1, ..., θm).

Indeed, f(x1, ..., xd) = f(φ1(θ), ..., φd(θ)) = f̃(θ).

Remark 2. We also observe that the assumption on θi is necessary to approximate any

sequences zt(x). In fact, chain (1.2.5) can generate only such sequences zt, where each zt(x)
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depend on x through θ(x) = (θ1(x), ..., θm(x)). This means that for each zt there exists a

function Gt(θ) such that zt(x) = Gt(θ). If our assumption does not hold, the trivial target

sequence zt = xk cannot be approximated by iterations (1.2.5). Consequently, the assumption

of the theorem is sufficient and necessary to resolve the pattern generation problem for any

outputs zt.

This theorem can be considered as a generalization of the well known results for multilayered

neural networks (multilayered perceptrons) [97, 98, 10, 45, 48, 22] and time recurrent networks

[34, 88, 87]. In fact, removing t from (1.2.4) and introducing the input v = ut and the output

w = ut+1, we transform (1.2.4) to a multilayered network. The multilayered perceptrons are

capable to generate complicated patterns and resolve classification problems [97, 98, 10, 45,

48, 22]. If we remove x from (1.2.4) we obtain a time recurrent network. It is well known

that these networks can generate all possible time trajectories [34]. Also they are capable

to generate all possible structurally stable attractors (up to a topological orbital equivalency)

[88, 87]. Roughly speaking, they can induce all time depending patterns. Theorem 4.1.1 is a

development of these previous results.

This theorem can be obtained by the following lemma.

Superposition Lemma 4.2.1 Consider a family consisting of p circuits (1.2.5) generating

functions ut
i,s, where t = 0, ..., T1, s = 1, ..., p and i = 1, 2, ..., ms (here the index s marks the

functions generated by s-th circuit, ms is the number of the genes involved in s-th circuit).

Denote by ut the vector with the components ut
1,1, u

t
2,1, ..., u

t
m1,1, u

t
1,2, ..., u

t
m2,2, ..., u

t
1,p, ...u

t
mp,p.

Suppose that zt(x) = F (ut(x)), where F is a continuous function of N variables defined

on N -dimensional cube QN = [0, 1]N and N =
∑p

s=1 ms is the complete number of functions

involved in the circuits. (This means that the target pattern can be expressed through the patterns

generated by our family). Then for any ǫ > 0, there exists a circuit (1.2.5) satisfying (1.5.2)

with T0 = 2 and T = T1 + 2.

The main idea of the proof of this lemma is based on the biological fact: the gene networks

have modular hierarchical structure and are organized in blocks [44, 73]. As a mathematical

basis, we use as well the following known approximation result: for each κ > 0 there exist a

number m and coefficients Akjs, bk, ηk such that

|σ−1(F (u)) −
m∑

k=1

bkσ(
p∑

s=1

ms∑
j=1

Akjsuj,s − ηk)| < κ, u ∈ QN , (4.1.1)
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for detail see [94]. The theorem easily follows from Lemma 4.2, see [94].

This proof gives, moreover, an algorithm to resolve the pattern generation problem. Namely,

the key step of the proof (approximation (4.1.1)) can be realized by a constructive procedure (see

[87]). An explicit estimate of the gene number m can be obtained under some supplementary

assumptions on F from this lemma and on zt from Theorem 4.1.1. Namely, we suppose that

the functions F (u) and zt(x) are Lipshitzian, with the Lipshitz constants Lip(F ) and Lip(zt).

Analogues of these results can be obtained for time continuous patterning problem (1.5.1),

see [92, 93]. Lemma 4.2.1 confirms the famous law ”moprhogenesis repeats evolution” [74,

3, 100]: new, more refined patterns, can be always obtained by old patterns by a sequential

induction.

Notice that the obtained algorithm, based on a superposition, is not unique. There are

many variants to resolve the patterning problem. Even for the gap-gene fitness problem, when

we have experimental data on all the gene concentrations, numerical results show that there are

a number of solutions. Finding of these solutions needs a global search and takes a formidable

processing time. The first works have used simulated annealing [66, 76], afterwards asymptotic

approaches were developped in order to diminish processing time [71]. Moreover, to handle

experimental data correctly, we need a priori hypothesis on the net structure. It is well known

that such inverse problems for gene nets are very difficult, although different approaches are

proposed [57, 101, 71, 70]. Furtermore, we should take into account a fundamental robustness of

circuit with respect to variations in maternal gene concentrations, mutations embryo sizes. The

output pattern should be proportional to the embryo length [51, 50]. There are possible different

reaction - diffusion models to explain this stability observed in experiments [50], however we

think that they are still far from biological reality. The problem is far from to be resolved: it

is a topic for coming investigations.

4.2 Approximation of reaction-diffusion systems by gene networks

We consider, for simplicity, the case of two component reaction-diffusion systems

∂u

∂t
= d1∆u + f(u, v),

∂v

∂t
= d2∆v + g(u, v). (4.2.1)

The phenomenological approach based on eqs. (4.2.1) gives excellent results for some pattern

formation problems, see [64, 63, 68].

In these equations, u and v are unknown functions of the space variables x = (x1, x2, x3)
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defined in a bounded domain Ω. System (4.2.1) must be complemented by standard initial

and boundary conditions. The general multi-component case can be studied in a similar way.

Assume solutions of (4.2.1) remain globally bounded, i.e., for some positive constants Ci we

have the estimate

|u(x, t)| < C1, |v(x, t)| < C2, (4.2.2)

for all t > 0, if it holds for t = 0. Let us define the domain DC1,C2
as follows:

DC1,C2
= {(u, v) : 0 ≤ u < C1, 0 ≤ v < C2}. (4.2.3)

We suppose that initial condition belongs to DC1,C2
for each x.

One can show that, for a given reaction-diffusion system we can always find an ”ǫ- equiv-

alent” circuit (1.2.1). Namely, for this equivalent circuit there exists a smooth map b(y) :

(y1, y2, . . . , ym) → (u, v) transforming the gene concentrations to the reagent concentrations

and such that time evolution of u, v is defined by a new reaction -diffusion system with nonlin-

earities Φ1(u, v), Φ2(u, v), ǫ- close to nonlinearities f(u, v), g(u, v). Therefore, one can say that

reaction -diffusion systems can be realized as gene circuits.

To construct this circuit, we use the same modular approach ( subsection 4.1), and algebraic

tools from [87]. Let us consider a system (1.2.1) having a special modular structure. Namely,

we assume that there exist two kinds of the genes. We denote these groups of the genes by

y and z, where vector y(x, t) contains m1 components and z(x, t) contains m2 components.

Naturally, m = m1 + m2. We consider a system (1.2.1) of the special form

∂yi

∂t
= σ(Kyy

i y + Kyz
i z − θi) + d1∆yi, (4.2.4a)

∂zi

∂t
= σ(Kzy

i y + Kzz
i z − θ̄i) + d2∆zi. 4.2.4b

Here we use notation Kiy =
∑m

j=1 Kijyj and matrices Kyy, Kzz, Kzy and Kyz describe

interactions between different groups of the genes.

In general, these interactions are not symmetric, i.e., Kyz is not equal to the transpose of

Kzy. The coefficients d1 and d2 coincide with the diffusion coefficients in equations (4.2.1). We

choose the entries of the matrices Kyy, Kzz, Kzy and Kyz as follows:

Kyy
ij = aibj , Kyz

ij = γib̄j , Kzy
ij = γ̄ibj , Kzz

ij = āib̄j
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where ai, āi, γi, γ̄i, bi, b̄i are unknown coefficients.

Let us define ”collective variables”

u =
m1∑
i=1

biyi, v =
m2∑
i=1

b̄izi.

After some calculations ( see [93]) we obtain

∂u

∂t
= d1∆u + Φ1(u, v),

∂v

∂t
= d2∆v + Φ2(u, v),

where

Φ1(u, v) =
m1∑
i=1

biσ(aiu + γiv − θi), Φ2(u, v) =
m2∑
i=1

b̄iσ(āiv + γ̄iu − θ̄i).

The well known approximation results of the neural network theory [10, 48, 45, 34] yield

that for any ǫ > 0 there exist numbers m1, m2, vectors a, b, ā, b̄, γ, γ̄ and θ, θ̄ such that

|Φ1(u, v) − f(u, v)| < ǫ, |Φ2(u, v) − g(u, v)| < ǫ

for all u, v from some bounded domain. This proves the following result [92, 93]:

Proposition 4.2.1

Consider equations (4.2.1) whose solutions remain in a domain DC1,C2
.

Then, if functions f , g are continuous, for any ǫ > 0, there exist such a system (4.2.1) with

a sufficiently large number m and coefficients r = (r1, r2, . . . , rm) and s = (s1, s2, . . . , sm) such

that the functions

u = ry =
m∑

i=1

riyi, v = sy =
m∑

i=1

siyi

satisfy the system

ut = d1∆u + f̃(u, v), vt = d2∆v + g̃(u, v),

where

|f(u, v) − f̃(u, v)| < ǫ, |g(u, v)− g̃(u, v)| < ǫ

for (u, v) ∈ DC1,C2
.

Therefore, any reaction-diffusion patterning processes on a bounded time interval [0, T ] can

be performed as well by genetic networks. In other words, the pattern capacity of the gene

circuits on bounded time intervals are not less than the pattern capacity of reaction-diffusion

systems.
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4.3 Complexity of pattern and complexity of network

In this subsection we consider the following problem. Suppose we observe some sequence of

patterns zt(x), x ∈ Ω, t ∈ [0, T ]. We would like to estimate the number of the genes required

to create this sequence.

To resolve this problem we can use different characteristics of pattern complexity. In this

paper we employ the following three quantities: C1(z
t(·), c), C2(z

t(·), c1, c2) , E(zt(·)). They

are functions of the discrete time t.

The quantity C1 is the number of the connected components of the set

Dc,t = {x : zt(x) = c}. (4.3.1)

To define C2, let us consider a set Dc1,c2,t depending on two parameters c1, c2 and t. Namely,

let us define

Dc1,c2,t = {x : c1 ≤ zt(x) ≤ c2}. (4.3.2)

Then C2 is the number of the connected components of this set.

Both complexity measures are discrete, whereas E is a continuous quantity defined by

E(t) =
∫
Ω
|∇zt|2dx. (4.3.3)

Let us discuss now the biological sense of C1, C2 and E and relations between them.

Organisms consist of cells and these cells can be in different states. Following classical ideas

[67, 3] we assume that different cell states appear as a result of expression of different genes.

We consider here the case of one gene. Let um be such a gene.

Then we can study structures consisting of two kinds of cells: modified and the usual ones.

If um is expressed at x then we have here a modified cell at x, otherwise the cell remains in a

usual state.

Following the usual threshold approach we suppose that the gene um is expressed if um > c

and it is not expressed in the opposite case (um ≤ c). In this case we obtain, as a natural

measure of complexity, the quantity C1.

The measure C2 admits a similar interpretation. Here we assume that um is expressed

if um > c2 and it is not expressed if um < c1. In the case c1 < um < c2 we deal with an

intermediate (transient) state.
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Thus both measures C1 and C2 relate to the number of transitions between the cells of

different types.

Notice that using Sard’ theorem [46] we can choose c, c1, c2 in definitions (4.3.1) and (4.3.2)

such that at least locally the boundaries of the connected components will be smooth subman-

ifolds of Ω of the codimension 1. In particular, if Ω is an interval, these components will be

isolated points.

Example. For a periodical in x function zt(x) (”layered structure”) C1=C2= number of

layers (for appropriate c, c1, c2).

The third measure, the quantity E, can be interpreted as a mean value of ”oscillations” of

z.

The results for C1 and C2 are quite different. To estimate m through C1 we use so-called

Pfaffian chains [58], under some additional assumptions on σ. It allows us to obtain rough

estimates of C1 by Khovanski’s results. Estimates of C2 and E can be derived in a simpler way

and appear to be essentially better.

Up to now, nobody knows whether the Khovanskii bounds can be improved. The key

difference between estimates of C1 on the one hand, and C2, E on the other is that the estimates

of C2 and E depend, in particular, on the diameter diam(Ω) of domain Ω whereas the ones of

C1 are independent of this diameter.

An estimate of m via C1

Let us introduce the key notion of a Pfaffian chain [58], [40].

Definition. A Pfaffian chain of the length r and degree d ≥ 1 is a sequence of real analytic

functions f1(x), f2(x), ...fT (x) in Rn with the following property: every fj, 1 ≤ j ≤ T satisfies

a Pfaffian equation
∂fj

∂xk
= gkj(x, f1(x), ..., fj(x)), (4.3.4)

where gkj are polynomials of degrees ≤ d. Then T is called the length and d the degree of the

Pfaffian chain.

Pfaffian functions are well studied. They enjoy the following properties: the sum and the

product of two Pfaffian functions f1 and f2 of lengths ri and degrees di are again Pffafian

functions of length r1 +r2 and degree d1 +d2 for both the sum and the product. Superpositions

of Pfaffian functions also are Pfaffian (see [40] for details).

Consider some elementary examples. The exponent exp(ax), x ∈ R is a Pfaffian function
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of length 1 and degree 2. More generally, any real analytic function f(z), z ∈ R satisfying an

equation
df

dz
= P (z, f) (4.3.5)

is a Pfaffian of degree degP . We observe thus that many classical sigmoidal functions are

Pfaffian. For example, f = (1 + exp(z))−1 satisfies (4.3.5) with P = f 2 − f . Superposition

σ(exp(ax)) also is a Pfaffian, etc.

Let us show first that chain (1.2.5) is a Pfaffian chain if σ(z) = 1 + exp(−az)−1, where

a > 0. Let us introduce complexity of chain (1.2.5) as the tuple of integers

Comp = { m, T, rθ, dθ, degP}, (4.3.6)

where rθ is the sum of the lengths of Pfaffian chains for θi, dθ is the maximum of the degrees of

Pfaffian chains determining θi, degP is the degree of the polynomial from (4.3.5) that defines

σ.

Using induction, let us consider now the functions u1
i . By differentiating, one has

∂u1
i

∂xl
= σ′(µiθi − ηi)µi

∂θi(x)

∂xl
.

Consequently by (4.3.5) one obtains

∂u1
i

∂xl
= P (µiθi − ηi)µiPi,l(x, vi

1, v
i
2, ..., θi), (4.3.6)

where Pj,l are appropriate polynomials, vj
k are functions of chains determining θj . Thus, u1

i and

θj form a chain of the degree dθ +degP and the length rθ +m. Repeating these calculations, we

conclude that ut
i, u

t−1
i , ...θi form a chain of the degree dθ + tdegP and the length rt = rθ + tm.

Now the complexity of the pattern uT
m(x) can be estimated applying known results ([58],

see also [40], Proposition A4).

Theorem 4.3.1. The number C1 of the connected components of the pattern uT
m(x) gener-

ated by (1.2.5) can be bounded from above by

C1 < 2(rθ+Tm)2(dθ + TdegP )O(rθ+Tm+n). (4.3.7)

Thus given C1 we can bound from below R = rθ + Tm roughly as (log2 C1)
1/2, provided

that log(degP ), log(dθ), n
1/2 are less than rθ + Tm. The quantity R can be interpreted as a

”complexity” of gene circuit (1.2.5).
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This estimate does not look optimal but in general case up to now there exist no methods

that could improve it.

5 CAN EVOLUTION CONSTRUCT A ”BIOLOGICAL COMPUTER” ?

Following classical concepts [3, 67] we consider here organisms as ”biological computers”,

which should give a correct response to different environment challenges. How an evolution

based on local search and mutations can construct such a computer? The key question: Is

there a stable evolution algorithm generating step by step such a computer? This problem is

much more complicated than patterning problem studied in the previous section although there

exists a connection. We are not capable yet to resolve this problem, but we state here some

ideas that allow us to expect to a positive answer.

To simplify the problem, in this section we consider boolean circuits. We suppose that

they involve structural genes z1, z2, ...zn and regulatory genes u1, u2, ...uN . In real systems

there are many different regulator elements (enchancers, transcription factors etc). Recall

the fundamental experimental fact: organism complexity is generated mainly by regulatory

elements. In fact, only three genoms are decoded: the genom of the worm C. elegans, of the fly

Drosophila melanoguster and Homo sapiens. The first contains 19000 genes, the second contains

14000 ones and the third has 30000 genes. Main genes making body design in C. elegans and

Drosophila are similar. The fly is more complex with respect to the worm because the fly

genom contains more regulatory elements. The simplest well studied patterning processes

are pigmentation and segmentation in Drosophila. The segmentation is controlled by both

maternal (zygotical) genes (Bicoid, Nanos) and regulatory genes (gap-genes, pair-rule genes,

segment-polarity genes). Details of their interaction are unknown, but it it well known that

this interaction is redundant and some genes repress a part of other ones, and activate another

part. The same redundancy can be observed in pigmentation. ”For instance, the yellow locus

contains five independent cis-regulatory elements (enchancers) that control its expression in the

developing body, wings, bristles, laval mouthparts and denticle belts. There is also evidence for

a simialr modular organization of cis-regulatory elements of other enzyme genes” [99]. Because

each enchancer element is independent, random modification of an enchancer do not affect the

regulatory functions. It helps gene expression to evolve independently in each body part [99].

Drosophila melanoguster development involves, besides gap, pair-rule and segment -polarity

genes, homeotic selector genes and many others. These gens are organized in modules (see
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above and [3, 44].

We consider two simplest models of such redundant regulations. In the both cases one can

aplly some contemporary ideas of the algorithm theory.

The first model is a particular case of (1.2.5)

zi = σ(r̃1i + r1iui1 + r̃2i + r2iui2 + ... + r̃ki + rkiuik − hi) (5.1.1)

where σ is the step function, hi ∈ (0, k), the indices i1, i2, ...ik are chosen randomly for each

i. We suppose that parameters rli are random variables, taking values 1 or −1 and r̃il to be

defined by the condition: if rli = 1 then r̃il = 0 and if rli = −1 then r̃il = 1. We consider the

time following stationary assignment problem: are there values u1, ..., uN such that

zl(u) = 1.

It is easy to see that this problem reduces to the random k-SAT problem: to satisfy n randomly

constructed disjunctions

zl = vi1(l) Or vi2(l) Or... Or vik(l), i = 1, 2, ..., n (5.1.2)

where each vir is either uir , or the negation ūir of uir . The k-SAT problem has been a central

for theoretical computer science since S. Cook established that it is NP-complete in 1971 [20].

Of course, as a model for gene network, this circuit is too simplified, however, all our

arguments are valid for general networks (1.2.6) if they possess a redundancy parameter. We

say that a family of boolean functions σi(u
t
i1, ui2, ..., uis) has the redundancy k if for each i

boolean function σi contains k-disjunctions vj1 Or vj2 or... Or vjk
, where each vir is either uir ,

or the negation ūir of uir .

Notice that problem (5.1.2) is complicated, namely, it is NP-hard [35, 69], there are 2N possi-

ble inputs. This problem admits such biological intepretation: we suppose that our ”organism”

survives only if all n structural genes are correctly assigned. Structural genes predetermine

”organism” features. If zl = 1 then one can say that an ”organism” possesses l -th feature.

To form a complex organ, the organism should form simultaneuosly many features, and, more-

over, this formation process should be proceeded step by step (mathematically, this means that

(5.1.2) should be resolved by a local search algorithm, for example, a greedy algorithm).

In general case problem (5.1.2) cannot be resolved in a polynomial in n time: the best known

algorithms use running time 2cn, 0 < c < 1 [23]. This means that this problem is absolutely
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hopeless for a darwinian biological evolution based on gradient descent methods (greedy ones).

Such algorithms use some function of input u trying to increase this function at each step. In

biology, this function is the so-called fitness introduced by R. Fisher [33, 81]. The hardness of

(5.1.2) means, that for large n, say n > 40, in general there are no fitness that could resolve

(5.1.2) in a ”biologically reasonble” time.

Nonetheless, one can show that problem is not so hopeless. Suppose that N < (2−k/k)n.

Then there is an algorithm, which resolves (5.1.2) with a probability, close to 1 as n → ∞ (for

rigorious mathematical results [1, 18], for a review see [19]. First such algorithms were invented

by sophisticated methods of theoretical physics, see works [4, 25, 26], where these methods have

applied for different NP-hard problems). These mathematical ideas yield such a

Biological corollary.There is a relation between the number of regulatory genes and of

structural genes. The more redundancy, the smaller may be the proportion α of regulatory

genes with respect to structural ones. If α is too small, evolution stops.

Notice that redundancy plays an important role in evolution [96].

This assertion can be called Freedom Principle: the number of regulatory elements should

be sufficiently large with respect to the number of structural elements. The relation α between

these numbers depends on the regulation mechanism, mathematically, on the boolean function.

In more complicated situations, the critical level α may be higher.

To illustrate it, let us consider a model describing a boolean gene circuit which responds to

external medium changes. This model is similar to systems considered in [14, 27] and it has

the following form

yk = σ(
n∑

j=1

wkjs
in
j ), k = 1, ..., N (5.1.3)

sout = σ(
N∑

k=1

Wkyk). (5.1.4)

We assume that σ is the step function and sout, sin
j , yk ∈ {0, 1}. This circuit contains three kinds

of nodes. The nodes sin
j contain information about external environment, yk are regulatory

ones, sout is an output state. Let us suppose that wkj and Wk take values 0, 1,−1. We assume

that there exists a graph V, E describing connections between nodes. Each input node sin
i is

connected with a random set Bi of y -nodes consisting of m nodes, |Bi| = m.

The problem is to find a correct correspondence between inputs and the output. Suppose
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that l-th type of environment (where l = 1, 2, ..., L) activate sin
i in such a way: sin

i = δil. We

set wkj = 1. For each l the system should give a correct output, 1 or −1. This leads to the

following problem of boolean programming: to find Wk satisfying the inequalities:

N∑
k=1

Wkykl > (<)0, l = 1, 2, ..., L (5.1.5)

where the sign > or < depends on l and any sequence of the signs is possible, ykl are boolean

coefficients describing a reaction to l-th input defined by (5.1.3). In general, such a problem is

NP-complete [35], however, in our case the freedom principle works successfully. If α = N/m is

large enough, a simple heuristic algorithm resolves the problem (with a probability close to 1).

To see it, let us notice that problem (5.1.5) can be rewritten ( under above assumptions) by

∑
k∈Bl

Wk > (<)0, l = 1, 2, ...L. (5.1.6)

This chain of the inequalities can be satisfied step by step in such a way. If for l = 1 one has

>, let us set Wk = 1 for all k ∈ B1 otherwise one takes Wk = −1 for k ∈ B1.

At l + 1 step, we set Wk = 1 for > in (5.1.6) and Wk = −1 for < for all k ∈ Bl+1 such that

Wk is not yet defined at the previous steps. If the value Wk is defined earlier, we do not change

this value.

Correctness of the algorithm follows from the next elementary Lemma.

Lemma 5.1.1. Let us consider the set IN = {1, 2, ..., N}. Let Bm′ be a subset of IN

consisting of 1 ≤ m′ < N elements. Let us consider the probability P (m, m′, k) that a random

subset Rm consisting of 1 ≤ m < N elements has an intersection with Bm′ having at least k

elements. Then this probability satisfies the estimate

P (m, m′, k) < (const
mm′

kN
)k. (5.1.7)

By applying this estimate inductively one obtains that the algorithm works with probability

P ∗

P ∗ > (1 − (
cm

N
)m/2)(1 − (

2cm

N
)m/2)...(1 − (

Lcm

N
)m/2).

Since log(1 − x) > x, one finds that

log P ∗ > L(
cmL

N
)m/2.
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So, for large N and m, L such that the parameter mL/N is small enough this algorithm works

with a probability close to 1.

Notice that this model is similar to multilayered perceptron models [97, 98], it is a completely

discrete version of multilayered perceptron, where synaptic weights (connection forces) take

discrete values. Such neural models are well studied ( see [16]). In the time reccurent case,

they can generate a complicated dynamics (an analytical proof see [88]) and, therefore, they

can simulate any Turing machine [13, 59].

The proposed algorithm realizes a training process for such multilayered circuit. This al-

gorithm is essentially simpler than the usual backtraining procedure [97, 98]. Moreover, this

algorithm is fast and proceeds step by step, where the need step number can be estimated by

linearly O(mL). The last fact is very important: this means that, using Freedom principle,

evolution can create complicated organs step by step (see the citation from Charles Darwin in

Introduction). Taking into account that evolution uses a great tree (see subsection 3.4), the

process can be accelarated.

However, it is necessary to note that such local search algorithms can be succesful in real

biological situation only when there is a fitness having a biological meaning and growing with

each step (or, at least on average, during some steps). This hypothesis is not mathematical

assertion, it is a biological one that can be verified only by experiments. The assertion is

not evident, because the first untuitive impression that, in many cases, only a completely

constructed organ (or subsystem) can help to survive. As an example one can consider the

famous Krebs cycle that plays the key role in organism energetics [3]. This cycle consists of

many chemical reactions. It is unclear why such a cycle can be obtained by the discussed

scheme of step by step evolution: a reaction chain, that still non compeletely constructed, does

not function. A natural hypothesis is that, possibly, such noncomplete chains could function

in transient extincted organisms. Some arguments show that the hypothesis of such kind could

be correct [74], however, this problem is far from to be resolved.

CONCLUSION

In this paper we have developped a mathematical approach to evolution of complex sys-

tems. This approach seems opposite to R. Thom’s structural stability ideas [83, 36]. Indeed,

the fundamental concept of structural stability meets serious difficulties (see, for example, a

discussion in [79]). A general dynamic system is structurally stable under very restrictive con-
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ditions [28, 79, 75, 52]. Paradoxally, by R. Thom’s results one can show that many systems are

unstable under strong fluctuations of their parameters ( multiplicative noises) [62, 95].

Notice that the instability ideas were known in biology under the name ”Red Queen hy-

pothesis” and was proposed by Van Valen [85] in 1973. They are confirmed by experimental

data on species survival. On average, the species survival times are bounded by some million

years. The Red Queen hypothesis asserts that species extinction probabilities are positive.

Following [85, 43] we develop here the idea that biological systems are fundamentally un-

stable under fluctuations, however, evolution can stabilize them.

The large classes of stochastically unstable systems have been found, in particular, circuits

are unstable. Independently of an initial state, the state of an unstable system leaves an

”admissible domain”, where this system is viable.

We have introduced here a definition of stable evolution algorithms. Stable evolution algo-

rithms give, for a set of unstable evolving circuits, non-zero chances to stay stable even under

strong multiplicative noises ( earlier or later, noises destroy each individual circuit, but a chain

of the circuits can live eternally).

Mathematical tools based on network theory, graph theory, control theory, probabilistic

approaches and theoretical computer science allow us to understand, at least for classical circuit

models, main properties of stable algorithms and even to describe some stable algorithms.

There is a connection between stable algorithms and such classical models of graph and network

evolution as the preferential attachment, the Hebb rule. In some situations, the stable evolution

leads to free-scale structures, in other cases to cluster formation.

It seems that the developped approach is in a good accordance with fundamental experi-

mental data. Namely, it explains, at least to some extent, 1) existence of genetic code; 2) a

growth of this code (maybe, non-monotone); 3) existence of a great evolution tree; 4) a bounded

average time of species life; 5) death is a genetically programmed phenomen.

In the framework of this approach the most interesting and complicated problem is as

follows. Since seminal work [67], biologists consider the cell as a complicated mechanism per-

forming a sophisticated feedback. This feedback based on gene switches helps to survive in

the response of environment challenges [3]. Are there stable evolution algorithms allowing to

construct ”biological computer” , consisting of unstable elements but working in stable manner,

within an evolutionary reasonable time period?
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To advance this problem we show first that gene networks, organized in modular hierarchical

structures, can construct any complicated spatio-temporal patterns; one can estimate theoret-

ically the gene number need for this process and connect a circuit complexity with a pattern

complexity. In the last section we have considered a toy model of ”biological computer”.

The obtained results allows us to expect that an evolution based on random mutations

and selection actually can construct effective gene switches within a bounded time period,

nonetheless, the question on existence of a stable evolution leading to such gene circuits is

open.

To conclude, let us notice a remarkable and fundamental fact. Although each fragile or-

ganism should die, and, probably, this process is genetically programmed [29], but the problem

on the evolution end is, probably, not decidable. This means that it is impossible, due to

fundamental reasons, to foresee the End of the World.
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6.Appendix

The proof of Theorem 2.2 is based on the following lemma.

Lemma 6.2 Suppose Π is a compact set. Let us consider the system of polynomial equations

Pik(u) = 0. (6.1.1)

Assume that the number of equations N(P ) in (6.1.1) is more than the number of variables m.

Then the probability that this system has a solution u∗ ∈ Π equals 0.

The formal proof of this obvious assertion is as follows. Let us introduced an auxiliary

function of the variables u and the coefficients aα

φǫ(a, u) = exp(−ǫ−2S(u)) (6.1.2)

depending on a parameter ǫ, where

S(u) =
∑
ik

Pik(u)2.
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Let us consider now the integral

Iǫ =
∫
Π

∫
φǫ(u, a)dµ(a)dmu. (6.1.3)

Since µ is an exponentially descreasing function as |u| → ∞, we can change the order of

integration in (6.1.3).

Suppose there is a solution u∗ of system (6.1.2). Then

φǫ > δ > 0 (6.1.4)

in a ball of radius ǫ1−r centered at u∗, where r ∈ (0, 1] and δ is uniform in ǫ as ǫ → 0. Thus,

by integrating first over u and then over a, one obtains that in this case

Iǫ > δǫ(1−r)m
∫

dµ(a) > cǫm. (6.1.5)

Let us find an upper estimate of this integral. Integrating first over all coefficients a000...0,i at

the term , one sees that ∫
φǫdµ(a) < CǫN(P ).

Therefore, due to compactness of Π, one has

Iǫ < CǫN . (6.1.6)

For N > m estimates (6.1.6) and (6.1.5) lead to a contradiction as ǫ → 0. The lemma is proved.

Notice that in our case N(P ) = pm. Thus since p > 1 we can use the lemma. Therefore, for

each initial state u0 there are indices i, k0 such that Pik0
(u) 6= 0. Let us choose functions ηk(t)

defined on [0, T/a], where a is a positive parameter, such that ηk0
= a, ηk ≡ 0 for k 6= k0. Let

us define a small δ(a) tubular neighborhood W of η(t). One can show now that, if a is large

enough and δ(a) is sufficiently small, and if ξ(t) ∈ W, the solution u(t) leave the compact Π

(see [95] for more detail). Now the proof can be finished By Lemma 2.2.1.
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